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We discuss a two-group SEIR epidemic model with distributed delays, incorporating random
fluctuation around the endemic equilibrium. Our research shows that the endemic equilibrium
of the model with distributed delays and random perturbation is stochastically asymptotically
stable in the large. In addition, a sufficient stability condition is obtained by constructing suitable
Lyapunov function.

1. Introduction

For the research of control of disease in populations, significant progress has been made
in the theory and application of epidemiology modeling by mathematical research [1–8].
One of the main problems for the theory of differential equations and their applications
is connected with stability. Most traditional compartmental models in mathematical
epidemiology descend from the classical SIR model of Kermack and McKendrick [9], where
the population is divided into the classes of susceptible, infected, and recovered individuals.
For some diseases, such as influenza and tuberculosis, on adequate contact with an infectious
individual, a susceptible becomes exposed for a while, that is, infected but not yet infectious.
Thus it is realistic to introduce a latent compartment; the total population can be partitioned
into four compartments: susceptible, latent or exposed, infectious, and recovered, with sizes
denoted by S, E, I, and R, respectively. The resulting models are of SEI, SEIR, or SEIRS
type, respectively. SEIR model has been widely discussed in the literature. Local and global
stability analysis of the disease-free and endemic equilibria has been carried out using
different assumptions and contact rates in [6, 7]. Greenhalgh [5] considered SEIR models
that incorporate density dependence in the death rate. Korobeinikov [6] considers the global
properties for SEIR and SEIS by means of the Lyapunov functions. In fact, there are real
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benefits to be gained in using stochastic models because real life is full of randomness and
stochasticity. Recently, some stochastic epidemic models have been studied by many authors,
see [3, 10]. Dalal et al. [4] showed that stochastic models had nonnegative solutions and
carried out analysis on the asymptotic stability of models. Tornatore et al. [10] studied the
stability of disease-free equilibrium of a stochastic SIRmodel with or without distributed time
delay. On the other hand, taking into account environmental variability, white noise stochastic
perturbations around the positive endemic equilibrium of epidemic models was considered
in [3, 11]. Beretta et al. proved the stability of epidemic model with stochastic time delays
influenced by probability under certain conditions [3]. Such type of stochastic perturbations
firstly was proposed in [3, 12] and later was successfully used in many other papers for many
other different systems (see, for instance, [13–20]). A more general multigroup epidemic
model is proposed to describe the disease spread in a heterogeneous host population with
general age structure and varying infectivity by Li et al. [1]. They investigated a class of
multigroup epidemic models with distributed delays and established the global dynamics
determined by the basic reproduction number R0. More specifically, they proved that, if
R0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable; if R0 > 1, then
there exists a unique endemic equilibrium, and it is globally asymptotically stable. However,
to the best of the authors’ knowledge, no literature exists regarding SEIR model with random
perturbation. Thus, the current study hopes to serve such a need and is inspired by the report
of [1]. In this paper, based on the SEIR model of [1], we consider the white noise stochastic
perturbations around its endemic equilibrium and use the methods, which is similar to [3].
We construct a class of the Lyapunov functions, as it is useful to study the global properties
of stochastic models. By means of it, we prove the SEIR model is stochastically asymptotically
stable in the large under certain condition.

The paper is organized as follows. In Section 2 we recall the deterministic SEIR model
and its main results by Li et al. [1]. We introduce the model with stochastic perturbations
around the endemic equilibrium in Section 3. In Section 4 the global stability of the endemic
equilibrium is proved by the method of the Lyapunov functions.

2. Preliminaries

We briefly review the following results obtained by Li et al. [1]. Let Sk, Ek, Ik, and Rk denote
the susceptible, infected but noninfectious, infectious, and recovered populations in the kth
group, respectively. Let ik(t, r) denote the population of infectious individuals in the kth
group with respect to the age of infection r at time t, and Ik(t) =

∫∞
r=0 ik(t, r)dr. Let hk(r) � 0

be a continuous kernel function that represents the infectivity at the age of infection r. The
disease incidence in the k-th group, assuming a bilinear incidence form, can be calculated
as
∑n

j=1 βkjSk(t)
∫∞
r=0 hj(r)ij(t, r)dr, where the sum takes into account cross-infections from all

groups and βkj represents the transmission coefficient between compartments Sk and Ij . In
the special case hk(r) ≡ 1, the incidence becomes

∑n
j=1 βkjSk(t)Ij(t) as in [2]. Therefore, the

model in [2] can be generalized to the following system of differential equations

S′
k = Λk −

n∑

j=1

βkjSk(t)
∫∞

r=0
hj(r)ij(t, r)dr − dS

kSk,

E′
k =

n∑

j=1

βkjSk(t)
∫∞

r=0
hj(r)ij(t, r)dr −

(
dE
k + εk

)
Ek,
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I ′k = εkEk −
(
dI
k + γk

)
Ik,

R′
k = γkIk − dR

kRk, k = 1, 2, . . . , n.

(2.1)

HereΛk represents influx of individuals into the kth group, dS
k
, dE

k
, dI

k
, and dR

k
represent death

rates of S, E, I, and R populations in the kth group, respectively, εk represents the rate of
becoming infectious after a latent period in the k-th group, and γk represents the recovery
rate of infectious individuals in the k-th group. All parameter values are assumed to be
nonnegative and Λk, d

S
k , d

E
k > 0 for all k. Note that

(
∂

∂t
+

∂

∂r

)
ik(t, r) = −

(
dI
k + γk

)
ik(t, r),

ik(t, 0) = εkEk(t),
(2.2)

whose solution is

ik(t, r) = ik(t − r, 0)e−(d
I
k
+γk)r = εkEk(t − r)e−(d

I
k
+γk)r . (2.3)

Substituting (2.3) into (2), we obtain

S′
k = Λk −

n∑

j=1

βkjSk(t)
∫∞

r=0
hj(r)εjEj(t − r)e−(d

I
j+γj )rdr − dS

kSk,

E′
k =

n∑

j=1

βkjSk(t)
∫∞

r=0
hj(r)εjEj(t − r)e−(d

I
j+γj )rdr −

(
dE
k + εk

)
Ek,

I ′k = εkEk −
(
dI
k + γk

)
Ik,

R′
k = γkIk − dR

kRk, k = 1, 2, . . . , n.

(2.4)

Since the variables Ik and Rk do not appear in the first two equations of (2.4), Li et al.
consider the following reduced system with distributed time delays and general kernel
functions [1]:

S′
k = Λk −

n∑

j=1

βkjSk(t)
∫∞

r=0
fj(r)Ej(t − r)dr − dS

kSk,

E′
k =

n∑

j=1

βkjSk(t)
∫∞

r=0
fj(r)Ej(t − r)dr −

(
dE
k + εk

)
Ek.

(2.5)

Here the kernel function fk(r) � 0 is continuous and 1 �
∫∞
r=0 fk(r)dr = hk > 0. System

(2.5) can be interpreted as a multigroup model for an infectious disease whose latent period
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r in hosts has a general probability density function (1/hk)fk(r)dr, for the k-th group. Let
S0
k
= Λk/d

S
k
, hk =

∫∞
r=0 fk(r)dr. The next-generation matrix for system (2.5) is

M0 =

(
βkjS

0
k
hk

dE
k
+ εk

)

n×n
. (2.6)

Define the basic reproduction number as the spectral radius ofM0,

R0 = ρ(M0). (2.7)

In the special case when fk(r) is an exponential function, R0 reduces to that for the resulting
ODE models. Make the following assumption on the kernel function fk(r) in (2.5):

∫∞

r=0
fk(r)e−λkrdr < ∞, (2.8)

where λk is a positive number, k = 1, 2, . . . , n. Define the following Banach space of fading
memory type:

Ck =

{

φ ∈ ((−∞, 0],R)φ(s)eλks is uniformly continuous on (−∞, 0] and sup
s�0

∣∣φ(s)
∣∣eλks <∞

}

(2.9)

with norm ‖φ‖k = sups�0|φ(s)|eλks. For φ ∈ Ck, let φt ∈ Ck be such that φt(s) = φ(t + s), s ∈
(−∞, 0]. Let Sk,0 ∈ R+ and φk ∈ Ck such that φk(s) � 0, s ∈ (−∞, 0]. We consider solutions
(S1(t), E1t, S2(t), E2t, . . . , Sn(t), Ent) of system (2.5) with initial conditions

Sk(0) = Sk,0, Ek,0 = φk, k = 1, 2, . . . , n. (2.10)

Standard theory of functional differential equations implies Ekt ∈ Ck for t > 0. We
consider system (2.5) in the phase space

X =
n∏

k=1

(R × Ck). (2.11)

It can be verified that solutions of (2.5) in X initial conditions (2.10) remain nonnegative. In
particular, Sk(t) > 0 for t > 0. The following set is positively invariant for system (2.5):

Θ =

{

(S1, E2(·), S2, E2(·), . . . , Sn, En(·)) ∈ X | 0 � Sk � Λk

dS
k

, 0 � Sk + Ek(0) � Λk

d∗
k

, Ek(s) � 0,

s ∈ (−∞, 0], k = 1, 2, . . . , n

}

.

(2.12)
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All positive semiorbits in Θ are precompact in X and thus have nonempty ω-limit sets. We
have the following results [1].

Lemma 2.1. All positive semi-orbits in Θ have non-empty ω-limit sets. Let

Θ◦ =

{

(S1, E2(·), S2, E2(·), . . . , Sn, En(·)) ∈ X | 0 < Sk <
Λk

dS
k

, 0 < Sk + Ek(0) <
Λk

d∗
k

, Ek(s) > 0,

s ∈ (−∞, 0], k = 1, 2, . . . , n

}

.

(2.13)

It can be shown that Θ◦ is the interior of Θ.

Lemma 2.2. Assume that B = (βkj) is irreducible.

(1) If R0 � 1, then P0 is the only equilibrium for system (2.5) in Θ.

(2) If R0 > 1, then there exist two equilibria for system (2.5) in Θ: the disease-free equilibrium
P0 and a unique endemic equilibrium P ∗.

Lemma 2.3. Assume that B = (βkj) is irreducible.

(1) If R0 � 1, then the disease-free equilibrium P0 of system (2.5) is globally asymptotically
stable in Θ. If R0 > 1, then P0 is unstable.

(2) If R0 > 1, then the endemic equilibrium P ∗ of system (2.5) is globally asymptotically stable
in Θ◦.

Biologically, Lemma 2.3 implies that if the basic reproduction number R0 � 1, then
the disease always dies out from all groups; if R0 > 1, then the disease always persists in all
groups at the unique endemic equilibrium level, irrespective of the initial conditions.

3. Stochastic Model Derivation

In this paper, based on system (2.5), we consider the case of k = 1, 2 in the following
system(3.1):

Ṡk = Λk −
2∑

j=1

βkjSk

∫∞

r=0
fj(r)Ej(t − r)dr − dS

kSk,

Ėk =
2∑

j=1

βkjSk

∫∞

r=0
fj(r)Ej(t − r)dr −

(
dE
k + εk

)
Ek,

İk = εkEk −
(
dI
k + γk

)
Ik,

Ṙk = γkIk − dR
kRk.

(3.1)



6 Abstract and Applied Analysis

It is easy to see that equilibrium for system (3.1) is given by P ∗ = (S∗;E∗; I∗;R∗),

S∗
k =

dE
k + εk

∑2
j=1 βkjhj

, E∗
k =

Λk − dS
k

∑2
j=1 βkjS

∗
khj

, I∗k =
εkE

∗
k

dI
k
+ γk

, R∗
k =

γkI
∗
k

dR
k

. (3.2)

We assume stochastic perturbations are of white noise type, which are directly pro-
portional to distances Sk(t), Ek(t), Ik(t), Rk(t) from values of S∗

k, E
∗
k, I

∗
k, R

∗
k, influence the

Ṡk(t), Ėk(t), İk(t), Ṙk(t) respectively. So system (2.4) results in

Ṡk = Λk −
2∑

j=1

βkjSk

∫∞

r=0
fj(r)Ej(t − r)dr − dS

kSk + σ1k
(
Sk − S∗

k

)
Ḃ1k,

Ėk =
2∑

j=1

βkjSk

∫∞

r=0
fj(r)jEj(t − r)dr −

(
dE
k + εk

)
Ek + σ2k

(
Ek − E∗

k

)
Ḃ2k,

İk = εkEk −
(
dI
k + γk

)
Ik + σ3k

(
Ik − I∗k

)
Ḃ3k,

Ṙk = γkIk − dR
kRk + σ4k

(
Rk − R∗

k

)
Ḃ4k, k = 1, 2,

(3.3)

where B1k(t), B2k(t), B3k(t), B4k(t) are independent standard Brownian motions and σ2
ik

> 0
represent the intensities of Bik(t) (i = 1, 2, 3, 4), respectively. Obviously, stochastic system
(3.3) has the same equilibrium points as system (3.1). In the next section, we will investigate
the stability of the equilibrium P ∗ of system (3.3). Below we will construct a class of different
Lyapunov functions to achieve our proof under certain conditions.

4. Stochastic Stability of the Endemic Equilibrium

In this paper, unless otherwise specified, let (Ω,F, {Ft}t�t0 , P) be a complete probability
space with a filtration {Ft}t�t0 satisfying the usual conditions (i.e., it is increasing and right
continuous while F0 contains all P -null sets). Let βi(t) be the Brownian motions defined on
this probability space. IfR0 > 1, then the stochastic system (3.3) can be centered at its endemic
equilibrium P ∗ = (S∗

k, E
∗
k, I

∗
k, R

∗
k), by the change of variables

uk = Sk − S∗
k, vk = Ek − E∗

k, wk = Ik − I∗k, zk = Rk − R∗
k. (4.1)

we obtain

u̇k = −
2∑

j=1

βkjuk

∫∞

r=0
fj(r)vj(t − r)dr −

2∑

j=1

βkjS
∗
k

∫∞

r=0
fj(r)vj(t − r)dr −

2∑

j=1

βkjukE
∗
j hj − dS

kuk

+ σ1kukḂ1k,

v̇k =
2∑

j=1

βkjuk

∫∞

r=0
fj(r)vj(t − r)dr +

2∑

j=1

βkjS
∗
k

∫∞

r=0
fj(r)vj(t − r)dr +

2∑

j=1

βkjukE
∗
j hj

−
(
dE
k + εk

)
vk + σ2kvkḂ2k,
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ẇk = εkvk −
(
dI
k + γk

)
wk + σ3kwkḂ3k,

żk = γkwk − dR
k zk + σ4kzkḂ4k, k = 1, 2.

(4.2)

It is easy to see that the stability of the equilibrium of the system (3.3) is equivalent to
the stability of zero solution of system (4.2). Before proving the main theoremwe put forward
a lemma in [21]. Consider the d-dimensional stochastic differential equation

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t), t � t0. (4.3)

Assume that the assumptions of the existence-and-uniqueness theorem are fulfilled. Hence,
for any given initial value x(t0) = x0 ∈ Rd, (4.3) has a unique global solution that is denoted
by x(t; t0, x0). Assume furthermore that f(0, t) = 0 and g(0, t) = 0 for all t � t0. So (4.3) has the
solution x(t) ≡ 0 corresponding to the initial value x(t0) = 0. This solution is called the trivial
solution or equilibrium position. Denote byC2,1(Rd×[t0,∞);R+) the family of all nonnegative
functions V (x, t) defined on Rd × [t0,∞) such that they are continuously twice differentiable
in x and once in t. Define the differential operator L associated with (4.3) by

L =
∂

∂t
+

d∑

i=1

fi(x, t)
∂

∂xi
+
1
2

d∑

i,j=1

[
gT (x, t)g(x, t)

]

ij

∂2

∂xixj
. (4.4)

If L acts on a function V ∈ C2,1(Rd × [t0,∞);R+), then

LV (x, t) = Vt(x, t) + Vt(x, t)f(x, t) +
1
2
Tr
[
gT (x, t)Vxx(x, t)g(x, t)

]
. (4.5)

Definition 4.1. (1) The trivial solution of (4.3) is said to be stochastically stable or stable in
probability if for every pair of ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε, r, t0) > 0 such that

P{|x(t; t0, x0)| < r ∀ t � t0} � 1 − ε (4.6)

whenever |x0| < δ. Otherwise, it is said to be stochastically unstable.
(2) The trivial solution is said to be stochastically asymptotically stable if it is

stochastically stable, and, moreover, for every ε ∈ (0, 1), there exists a δ0 = δ0(ε, t0) > 0
such that

P

{
lim
t→∞

x(t; t0, x0) = 0
}

� 1 − ε (4.7)

whenever |x0| < δ0.
(3)The trivial solution is said to be stochastically asymptotically stable in the large if it

is stochastically asymptotically stable and, moreover, for all x0 ∈ Rd,

P

{
lim
t→∞

x(t; t0, x0) = 0
}

= 1. (4.8)
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Lemma 4.2 (see [21]). If there exists a positive-definite decrescent radially unbounded function
V (x, t) ∈ C2,1(Rd × [t0,∞);R+) such that LV (x, t) is negative definite, then the trivial solution
of (4.3) is stochastically asymptotically stable in the large.

From the above lemma, we can obtain the stochastically asymptotically stability of
equilibrium as follows.

Theorem 4.3. Assume that B = (βkj) is irreducible and R0 > 1; then, if the following condition is
satisfied

σ2
1k < 2dS

k , σ2
2k < 2

(
dE
k + εk

)
, σ2

3k < 2
(
dI
k + γk

)
, σ2

4k < 2dR
k , (4.9)

the endemic equilibrium P ∗ of system (3.3) is stochastically asymptotically stable in the large.

Proof. It is easy to see that we only need to prove the zero solution of (4.2) is stochastically
asymptotically stable in the large. Let x(t) = (u(t), v(t), w(t), z(t))T . We define the Lyapunov
function V (x(t)) as follows:

V (x)=
2∑

k=1

⎡

⎣aku
2
k+v

2
k+bk(uk+vk)2+a2

kw
2
k+a

4
kz

2
k+

2∑

j=1

βkjS
∗
k(1+ak)

∫∞

r=0
fj(r)

∫ t

t−r
v2
k(τ)dτ dr

⎤

⎦,

(4.10)

where ak > 0, bk > 0 are real positive constants to be chosen later. So it is obvious that V (x)
is positive definite and decrescent.

Using Itô’s formula, we compute

LV

=
2∑

k=1

⎧
⎨

⎩
2(akuk + bk(uk + vk))

×
⎡

⎣−
2∑

j=1

βkjuk

∫∞

r=0
fj(r)vj(t−r)dr−

2∑

j=1

βkjS
∗
k

∫∞

r=0
fj(r)vj(t−r)dr−

2∑

j=1

βkjukE
∗
j hj−dS

kuk

⎤

⎦

+ 2(vk + bk(uk + vk))

⎡

⎣
2∑

j=1

βkjuk

∫∞

r=0
fj(r)vj(t − r)dr +

2∑

j=1

βkjS
∗
k

∫∞

r=0
fj(r)vj(t−r)dr

+
2∑

j=1

βkjukE
∗
j hj −

(
dE
k + εk

)
vk

⎤

⎦

+ 2a2
kwk

(
εkvk−

(
dI
k + γk

)
wk

)
+2a4

kzk
(
γkwk−dR

k zk
)
+(ak+bk)σ2

1ku
2
k+(1+bk)σ

2
2kv

2
k

+a2
kσ

2
3kw

2
k + a4

kσ
2
4kz

2
k+

2∑

j=1

βkjS
∗
k(1+ak)hjv

2
j −

2∑

j=1

βkjS
∗
k(1+ak)

∫∞

r=0
fj(r)v2

j (t−r)dr
⎫
⎬

⎭
.

(4.11)



Abstract and Applied Analysis 9

Using (3.2), we obtain

LV =
2∑

k=1

⎧
⎨

⎩
−u2

k

⎡

⎣(ak + bk)
(
2dS

k − σ2
1k

)
+ 2

2∑

j=1

akβkjE
∗
j hj

⎤

⎦ − v2
k

⎡

⎣(1 + bk)

⎛

⎝2
2∑

j=1

βkjS
∗
khj − σ2

2k

⎞

⎠

⎤

⎦

− a2
kw

2
k

(
2
(
dI
k+γk
)
−σ2

3k

)
−a4

kz
2
k

(
2dR

k −σ2
4k

)
+2

⎛

⎝
2∑

j=1

βkjE
∗
j hj−bk

⎛

⎝dS
k+

2∑

j=1

βkjS
∗
khj

⎞

⎠

⎞

⎠

× ukvk + 2
(
a2
kεkvkwk + γkwkzk

)
+ 2

2∑

j=1

βkjS
∗
k(vk − akuk)

∫∞

r=0
fj(r)vj(t − r)dr

+ 2
2∑

j=1

βkjuk(vk − akuk)
∫∞

r=0
fj(r)vj(t − r)dr +

2∑

j=1

βkjS
∗
k(1 + ak)hjv

2
j

−
2∑

j=1

βkjS
∗
k(1 + ak)

∫∞

r=0
fj(r)v2

j (t − r)dr

⎫
⎬

⎭
.

(4.12)

In (4.12), we choose

bk =

∑2
j=1 βkjS

∗
k
hj

(
dS
k +
∑2

j=1 βkjS
∗
khj

) . (4.13)

Then

LV =
2∑

k=1

⎧
⎨

⎩
−u2

k

⎡

⎣(ak + bk)
(
2dS

k − σ2
1k

)
+ 2

2∑

j=1

akβkjE
∗
j hj

⎤

⎦ − v2
k

⎡

⎣(1 + bk)

⎛

⎝2
2∑

j=1

βkjS
∗
khj − σ2

2k

⎞

⎠

⎤

⎦

− a2
kw

2
k

(
2
(
dI
k + γk

)
− σ2

3k

)
− a4

kz
2
k

(
2dR

k − σ2
4k

)
+ 2a2

k

(
εkvkwk + a2

kγkwkzk
)

+ 2
2∑

j=1

βkjS
∗
k(vk−akuk)

∫∞

r=0
fj(r)vj(t−r)dr+2

2∑

j=1

βkjuk(vk−akuk)
∫∞

r=0
fj(r)vj(t−r)dr

+
2∑

j=1

βkjS
∗
k(1 + ak)hjv

2
j −

2∑

j=1

βkjS
∗
k(1 + ak)

∫∞

r=0
fj(r)v2

j (t − r)dr

⎫
⎬

⎭
.

(4.14)

Moreover, using the Cauchy inequality to 2a2
k
εkvkwk and 2a4

k
γkwkzk, we can obtain

2a2
kεkvkwk � a2

kεk

(
v2
k

ak
+ akw

2
k

)

,

2a4
kγkwkzk � a4

kγk

(
w2

k

ak
+ akz

2
k

)

,
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2
2∑

j=1

βkjS
∗
k(vk − akuk)

∫∞

r=0
fj(r)vj(t − r)dr � ak

2∑

j=1

βkjS
∗
k

(
u2
k +
∫∞

r=0
fj(r)v2

j (t − r)dr
)

+
2∑

j=1

βkjS
∗
k

(
v2
k +
∫∞

r=0
fj(r)v2

j (t − r)dr
)
.

(4.15)

Substituting (4.15) into (4.14) as well as using 1 �
∫∞
r=0 fk(r)dr = hk > 0, yields

LV �
2∑

k=1

⎧
⎨

⎩
−u2

k

⎡

⎣bk
(
2dS

k − σ2
1k

)
−

2∑

j=1

akβkjS
∗
k

⎤

⎦

− v2
k

⎡

⎣(1 + bk)

⎛

⎝2
2∑

j=1

βkjS
∗
k − σ2

2k

⎞

⎠ − ak

⎛

⎝εk +
2∑

j=1

βkjS
∗
k

⎞

⎠

⎤

⎦

− a2
kw

2
k

(
2
(
dI
k + γk

)
− σ2

3k − ak

(
εk + γk

)) − a4
kz

2
k

(
2dR

k − σ2
4k − akγk

)

+2
2∑

j=1

βkjuk(vk − akuk)
∫∞

r=0
fj(r)vj(t − r)dr +

2∑

j=1

βkjS
∗
k(1 + ak)v2

j

⎫
⎬

⎭

= L0V + 2
2∑

k=1

2∑

j=1

βkjuk(vk − akuk)
∫∞

r=0
fj(r)vj(t − r)dr,

(4.16)

where

L0V

=
2∑

k=1

⎧
⎨

⎩
−u2

k

⎡

⎣bk
(
2dS

k−σ2
1k

)
−

2∑

j=1

akβkjS
∗
k

⎤

⎦−v2
k

⎡

⎣2bk
2∑

j=1

βkjS
∗
k−(1+bk)σ2

2k−ak

⎛

⎝εk+
2∑

j=1

βkjS
∗
k

⎞

⎠

⎤

⎦

−a2
kw

2
k

(
2
(
dI
k + γk

)
− σ2

3k − ak

(
εk + γk

)) − a4
kz

2
k

(
2dR

k − σ2
4k − akγk

)
⎫
⎬

⎭
.

(4.17)

From (4.9) it follows that there exists ak > 0 such that

ak < min

⎧
⎨

⎩

bk
(
2dS

k − σ2
1k

)

∑2
j=1 βkjS

∗
k

,
2bk
∑2

j=1 βkjS
∗
k
− (1 + bk)σ2

2k

εk +
∑2

j=1 βkjS
∗
k

,
2
(
dI
k + γk

) − σ2
3k

εk + γk
,
2dR

k − σ2
4k

γk

⎫
⎬

⎭
.

(4.18)

Therefore, there exists C > 0 such that LV0 � −C|(uk, vk,wk, zk)|2.
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Let us suppose that P{|vk(t)| < δk} = 1. Then

2
2∑

j=1

βkjuk(vk − akuk)
∫∞

r=0
fj(r)vj(t − r)dr �

2∑

j=1

βkjδk
(
u2
k(1 + 2ak) + v2

k

)
. (4.19)

Therefore

LV �
2∑

k=1

⎧
⎨

⎩
−u2

k

⎡

⎣bk
(
2dS

k − σ2
1k

)
−

2∑

j=1

akβkjS
∗
k −

2∑

j=1

βkjδk(1 + 2ak)

⎤

⎦

− v2
k

⎡

⎣(1 + bk)

⎛

⎝2
2∑

j=1

akβkjS
∗
khj − σ2

2k

⎞

⎠ − ak

⎛

⎝εk +
2∑

j=1

βkjS
∗
k

⎞

⎠ −
2∑

j=1

βkjδk

⎤

⎦

−a2
kw

2
k

(
2
(
dI
k + γk

)
− σ2

3k − ak

(
εk + γk

)) − a4
kz

2
k

(
2dR

k − σ2
4k − akγk

)
⎫
⎬

⎭
.

(4.20)

Hence for sufficiently small δk > 0, LV (x, t) is negative definite in a sufficiently small
neighborhood of x = 0 for t � 0. According to Lemma 4.2, we therefore conclude that the zero
solution of (4.2) is stochastically asymptotically stable in the large. The proof is complete.
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