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According to the integrated pest management strategies, a Holling type I functional response
predator-prey system concerning state-dependent impulsive control is investigated. By using
differential equation geometry theory and the method of successor functions, we prove the
existence of order one periodic solution, and the attractivity of the order one periodic solution
by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to
illustrate the feasibility of our main results which show that our method used in this paper is more
efficient than the existing ones for proving the existence and attractiveness of order one periodic
solution.

1. Introduction

It is one of the significant problems in the world today to prevent plant pests and pesticide
pollution and to protect ecological balance for the sustainable development of agriculture
and forestry, which is also an important research topic demanding prompt solution. In recent
decades, plant pests worldwide are increasingly serious with the damage of the world’s
natural ecosystems. In agricultural production, pesticides spaying (chemical control) and
release of natural enemies (biological control) are the ways commonly used for pest control.
But if we implement chemical control as soon as pests appear, many problems are caused: the
first is environmental pollution; the second is increase of costs including human and material
resources and time; the third is killing natural enemies, such as parasitic wasp; the last is
pests’ resistance to pesticides, which brings great negative effects [1–3]. The second way,
which controls pests with the help of the increasing natural enemies, can avoid problems
caused by chemical control and gets more and more attention. So many scholars have been
studying and discussing it [4–6].
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Considering the effectiveness of the chemical control and nonpollution and limitations
of the biological one, people have proposed the method of integrated pest management
(IPM), which is a pest management system integrating all appropriate ways and technologies
to control economic injury level (EIL) caused by pest populations in view of population
dynamics and its relevant environment. In the process of practical application, people
usually implement the following two schemes for the integrated pest management: one is to
implement control at a fixed time to eradicate pests [7, 8]; the other is to implement measures
only when the amount of pests reaches a critical level, which is to make the amount less than
certain economic impairment level, not to wipe out pests [9–11].

In consideration of predator-prey capacity, Holling [12] proposes three different
predations with functional response based on experiments; the average predator-prey system
with Holling response is as follows:

x′(t) = xg(x) − yφ(x),

y′(t) = −dy + eyφ(x),
(1.1)

where x represents the densities for prey’s density while y is the predator’s; g(x) is the unit
rate of prey density in lack of predators. φ(x) is the Holling functional response. Holling
type-I functional response is

φ(x) =

{
cx, x ≤ x0,

cx0, x > x0,
(1.2)

where C is a constant; when the amount of prey is greater than certain threshold value x0,
predatory rate is a constant.

Holling type-II and type-III functional responses are as follows, respectively:

φ(x) =
αx

1 +ωx
, φ(x) =

αx2

β + x2
. (1.3)

Refer to [12] for details.
As the Lotka-Volterra predator-prey system with Holling functional response is more

practical, many authors have studied about it [13–15]. The researches mostly focus on Lotka-
Volterra predator-prey model with Holling type-II or Holling type-III functional response in
contrast to the model with Holling type-I. This paper sets up and adopts new mathematic
method to study comprehensive control (releasing natural enemies and spraying pesticide)
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adopted when the amount of predators (pests) reaches the economic test (ET), thus the
following pest-control model with Holling type-I functional response is set up:

x′(t) = rx(t) − cx(t)y(t), x ≤ x0, x < h,

y′(t) = −dy(t) + ecx(t)y(t), x ≤ x0, x < h,

x′(t) = rx(t) − cx0y(t), x > x0, x < h,

y′(t) = −dy(t) + ecx0y(t), x > x0, x < h,

Δx(t) = −αx(t), x = h,

Δy(t) = −βy(t) + q, x = h,

(1.4)

where r, c, d, e are all positive constants, x(t) and y(t) represent the densities of prey (pest)
and predator (natural enemy) at time t, respectively; r is the intrinsic growth rate of the
prey; d denotes the death rate of the predator; h is the economic threshold ET; α, β ∈ (0, 1)
represent the proportion of killed prey and predator by spraying pesticides, respectively, q >
0 is the number of natural enemies released at this time. When the amount of prey reaches the
threshold h at time th, controlling measures are taken and the amount of prey and predator
abruptly turns to (1 − α)h and (1 − β)y(th) + q, respectively. Δx = x(t+) − x(t), Δy = y(t+) −
y(t), x(t+) = limw→ 0+ x(t +w), y(t+) = limw→ 0+ y(t +w).

This paper is organized as follows. In the next section, we present some basic
definitions and important lemmas as preliminaries. In Section 3, we prove existence for an
order one periodic solution of system (1.4). The sufficient conditions for the attractiveness
of order one periodic solutions of system (1.4) are obtained in Section 4. At last, we state
conclusion and the main results are carried out to illustrate the feasibility by numerical
simulations.

2. Preliminaries

We first consider the model (1.4)without impulse effects

x′(t) = rx(t) − cx(t)y(t), x ≤ x0,

y′(t) = −dy(t) + ecx(t)y(t), x ≤ x0,

x′(t) = rx(t) − cx0y(t), x > x0,

y′(t) = −dy(t) + ecx0y(t), x > x0.

(2.1)

We consider the following function:

V
(
x, y

)
=
∫x

x∗

−d + eφ(s)
φ(s)

ds +
∫y

y∗

s − y∗

s
ds, (2.2)

and we can easily know that V (x, y) is positive definite in the first quartile and fits for all
conditions of Liapunov function.
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We can get that

V ′(x, y) =
exy∗

φ(x)
(
φ(x) − φ(x∗)

)(φ(x∗)
x∗ − φ(x)

x

)
. (2.2)

It is easily proved that V ′(x, y) ≡ 0 on condition that x ≤ x0, so all solutions of model
(1.4) which form a set {(x, y)/V (x, y) ≤ V (x0, y

∗)} are closed trajectory V (x, y) = C, where
0 < C < V (x0, y

∗).
Since V ′(x, y) > 0 on condition that x > x0, so the trajectory of system (2.1) passes

through closed curve V (x, y) = C when it is out of the curve V (x, y) = V (x0, y
∗).

Therefore, we observe the straight line:

L
(
x, y

)
= y + x − n, n > 0, x0 < x ≤ h. (2.3)

The derivative of L(x, y) along (2.1) is that

L′(x, y)/L=0 = x′ + y′ = −dy + ecx0y + rx − ecx0

= −(dn − ecx0n + cx0n + cx0h − dx0) − (ecx0 − r − cx0)

≤ dh − ecx2
0 + rh + cx0h − (d − ecx0 + cx0)n.

(2.4)

We have L′/L=0 < 0 on condition that n > (dh − ecx2
0 + rh + cx0h)/(d − ecx0 + cx0). Therefore,

we can get the following lemma.

Lemma 2.1. The system (2.1) possesses the following.

(I) Two steady states 0(0, 0)-saddle point, and R(d/ec, r/c) = R(x∗, y∗)-stable centre under
the condition x ≤ x0 and d ≤ ecx0.

(II) The trajectory of system (2.1) goes across the straight line y + x − n = 0 from the right to
the left under condition x0 ≤ x ≤ h and n > (dh − ecx2

0 + rh + cx0h)/(d − ecx0 + cx0),
and intersects with the straight line x = x0.

Definition 2.2. A triple (X,Π, R+) is said to be a semi-dynamical system if X is a metric space
R+ is the set of all non-negative real andΠ(P, t) : X ×R+ → X is a continuous map such that;

(i) Π(P, 0) = P for all P ∈ X;

(ii) Π(P, t) is continuous for t and s;

(iii) Π(Π(P, t)) = Π(P, t + s) for all P ∈ X and t, s ∈ R+. Sometimes a semi-dynamical
system (X,Π, R+) is denoted by (X,Π).

Definition 2.3. Assume that

(i) (X,Π) is a semi-dynamical system;

(ii) M is a nonempty subset of X;

(iii) function I : M → X is continuous, and, for any P ∈ M, there exists a ε > 0 such
that for any 0 < |t| < ε,Π(P, t) /∈ M.
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Then, (X,Π,M, I) is called an impulsive semi-dynamical system.
For any P the function ΠP : R+ → X defined as ΠP (t) = Π(P, t) is continuous and we

call ΠP (t) the trajectory passing through point P . The set C+(P) = {Π(P, t)/0 ≤ t < +∞} is
called positive semitrajectory of point P . The set C−(P) = {Π(P, t)/ −∞ < t ≤ 0} is called the
negative semi-trajectory of point P .

Definition 2.4. We consider state-dependent impulsive differential equations:

x′(t) = P
(
x, y

)
,

(
x, y

)
/∈ M

(
x, y

)
,

y′(t) = Q
(
x, y

)
,

(
x, y

)
/∈ M

(
x, y

)
,

Δx(t) = α
(
x, y

)
,

(
x, y

) ∈ M
(
x, y

)
,

Δy(t) = β
(
x, y

)
,

(
x, y

) ∈ M
(
x, y

)
,

(2.5)

whereM(x, y) andN(x, y) represent the straight line or curve line on the plane andM(x, y)
is called impulsive set. The function I is continuous mapping, and I(M) = N, I is called the
impulse function.N(x, y) is called the phase set. We define “dynamic system” constituted by
the definition of solution of state impulsive differential equation (2.5) as “semi-continuous
dynamic system,” which is denoted as (Ω, f, I,M).

Definition 2.5. Suppose that the impulse setM and the phase setN are both lines, as shown in
Figure 1. Define the coordinate in the phase setN as follows: denote the point of intersection
Q betweenN and x-axis asO, then the coordinate of any point inN is defined as the distance
between A and Q and is denoted by yA. Let C denote the point of intersection between the
trajectory starting from A and the impulse set M, and let B denote the phase point of C
after impulse with coordinate yB. Then we define B as the successor point of A, and then the
successor function of point A is that f(A) = yB − yA.

Definition 2.6. A trajectory Π̃(P0, t) is called order one periodic solution with period T if there
exists a point P0 ∈ N and T > 0 such that P = Π(P0, t) ∈ M and P+ = I(P) = P0.
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We get these lemmas from the continuity of composite function and the property of
continuous function.

Lemma 2.7. Successor function defined in Definition 2.2 is continuous.

Lemma 2.8. In system (1.4), if there existA ∈ N, B ∈ N satisfying successor function f(A)f(B) <
0, then there must exist a point P(P ∈ N) satisfying f(P) = 0 : the function between the point of A
and the point of B, thus there is an order one periodic solution in system (1.4).

3. Existence of the Order One Periodic Solution

In this section we shall investigate the existence of an order one periodic solution of system
(1.4) by using the successor function defined in this paper. For this goal, we denote that

M1 =
{(

x, y
) ∈ R+

2 | x = h, h < x0, y ≥ 0
}
,

M2 =
{(

x, y
) ∈ R+

2 | x = h, h > x0, y ≥ 0
}
.

(3.1)

Phase set N of set M is that

N = I(M) =
{(

x, y
) ∈ R+

2 | x = (1 − α)h, y ≤ q
}
. (3.2)

Isoclinic line is denoted, respectively, by lines

L1 =
{(

x, y
)(
x, y

) ∈ R+
2 | y =

r

c
, 0 ≤ x ≤ x0

}
,

L2 =
{(

x, y
) ∈ R+

2 | x =
d

ec
, 0 ≤ x ≤ x0, y ≥ 0

}
,

L3 =
{(

x, y
) ∈ R+

2 | y =
r

cx0
x, x ≥ x0, y ≥ r

c

}
.

(3.3)

For the convenience, if P ∈ Ω −M, F(P) is defined as the first point of intersection of C+(P)
andM, that is, there exists a t1 ∈ R+ such that F(P) = Π(P, t1) ∈ M, and for 0 < t < t1,Π(P, t) /∈
M; if B ∈ N,R(B) is defined as the first point of intersection of C−(P) and N, that is there
exists a t2 ∈ R+ such that R(B) = Π(B,−t2) ∈ N, and for −t < t < 0, Π(B, t) /∈ N.

For any point P , we denote yP as its ordinate. If the point P(h, yP ) ∈ M, pulse shall
occur at the point P , and the impulsive function transfers the point P into P+ ∈ N. Without
loss of generality, we assume that the initial point of the trajectory lies in phase set N unless
otherwise specified.

Due to the practical significance, in this paper we assume the set N always lies in the
left side of stable centre R, that is, (1 − α)h < d/ec.

In the light of the different position of the set M1 and the set M2, we consider the
following three cases.

Case 1 (0 < h < d/ec). In this case, sets M1 and N are both in the left side of stable center R.
The line L1 intersects with N at point A((1 − α)h, r/c), as shown in Figure 2. The trajectory
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passing through point A which tangents to the set N at point A intersects with the set M1

at point P0(h, yP0). Since the point P0 ∈ M1, impulse occurs at point P0, supposing point P0

is subject to impulsive effects to point P+
0 ((1 − α)h, yP+

0
), where yP+

0
= (1 − β)yP0 + q, and the

position of the point P+
0 has the following three cases.

Subcase 1.1 ((1 − β)yP0 + q < r/c). In this case, the point P+
0 lies below the point A, thus the

successor function of the point A is f(A) = (1 − β)yP0 + q − r/c < 0.
Take another point C((1 − α)h, ε) ∈ N, where ε > 0 is small enough. Then there must

exist a trajectory passing through the point C which intersects M1 at point C1(h, yC1) ∈ M1.
Supposing that the point C1 is subject to impulsive effects to point C+

1 ((1 − α)h, yC+
1
), yC+

1
=

(1 − β)yC1 + q > ε, so we have f(C) = yC+
1
− ε > 0.

By Lemma 2.8, there exists an order one periodic solution of system (1.4), whose initial
point is between the point C and the point A in set N.
Subcase 1.2 ((1 − β)yP0 + q > r/c) (as shown in Figure 3). In this case, the point P+

0 lies above
the pointA; there must exist a trajectory passing through the point P+

0 which intersects the set
M1 at a point P2(h, yP2) under P1. Denote the coordinates of impulsive point P+

2 ((1−α)h, yP+
2
)

corresponding to the point P2(h, yP2), then yP+
2
< yP+

0
. So we obtain f(P+

0 ) = yP+
2
− yP+

0
< 0.

Take that another point B1((1−α)h, ε+r/c) ∈ N aboveA, where ε > 0 is small enough.
Then there must exist a trajectory passing through the point B1 which intersectsM1 at a point
P1(h, yP1). In view of continuous dependence of the solution on initial value and time, we
know yP1 < yP0 and the point P1 is close to P+

0 enough, then we obtain f(B1) = yP+
1
− yB1 > 0.

From Lemma 2.8, there exists an order one periodic solution of system (1.4), whose
initial point is between B1 and P+

0 in set N.
Subcase 1.3 ((1 − β)yP0 + q = r/c). P+

0 coincides with A, and the successor function of A is
f(A) = 0, so there exists an order one periodic solution of system (1.4) which is just a part of
the trajectory passing through the point A.

Now we can summarize the above results as the following theorem.

Theorem 3.1. Assuming that d < ecx0, 0 < h ≤ d/ec < x0, there exists an order one periodic
solutions of the system (1.4).

Case 2 (d/ec < h ≤ x0). In this case, the setM1 is in the right side of R and setN is in the left
side of R. Let the line L1 intersects the setsM1 andN at pointsA(h, r/c) and B((1−α)h, r/c),
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respectively (Figure 4), then there exists a unique closed trajectory Γ1 of system (1.4) which
is contained inside the point R and is tangent to the set M1 at the point A.

Since Γ1 is a closed trajectory, we take their minimal value of abscissas δmin at the
trajectory Γ1, namely, δmin ≤ x holds for any abscissas of Γ1.

In light of the different positions of the set N, we consider the following three subject
cases.
Subcase 2.1 (0 < (1 − α)h < δmin < d/ec). In this case, there is a trajectory, which is contained
inside the point R and is tangent to the set N at point B which intersects M1 at the point
P1((1−α)h, yP1) ∈ M1. Supposing that point P1 is subject to impulsive effects to point P+

1 ((1−
α)h, yP+

1
) ∈ N, here yP+

1
= (1 − β)yP1 + q. Like the analysis of Case 1 we can prove there exists

an order one periodic solution in system (1.4) in this case.
Now we can summarize the above results as the following theorem.

Theorem 3.2. If d < ecx0, 0 < (1 − α)h < δmin < d/ec < h ≤ x0, there exists an order one periodic
solution in system (1.4).
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Subcase 2.2 (δmin < (1 − α)h < d/ec). In this case, let the closed trajectory Γ1 of system (1.4)
intersects the setN at two pointsA1((1−α)h, yA1) andA2((1−α)h, yA2), as shown in Figure 5.
Since A ∈ M1, impulse occurs at point A. Supposing that point A is subject to impulsive
effects to point P+

0 ((1 − α)h, yP+
0
), here yP+

0
= (1 − β)(r/c) + q.

If (1 − β)(r/c) + q = yA1 or (1 − β)(r/c) + q = yA2 , P
+
0 coincides with A1 or P+

0 coincides
with A2; the successor function of A1 or A2 is that f(A1) = 0 or that f(A2) = 0, so there exists
an order one periodic solution of system (1.4)which is just a part of the trajectory Γ1.

If (1−β)(r/c)+q < yA2 , the point P
+
0 lies below the pointA2, like the analysis of Subcase

1.1, and we can prove there exists an order one periodic solution to the system (1.4) in this
case.

If (1−β)(r/c)+q > yA1 , the point P
+
0 is above the pointA1. Like the analysis of Subcase

1.2, we can prove there exists an order one periodic solution to the system (1.4) in this case.
Now we can summarize the above results as the following theorem.

Theorem 3.3. Assuming that d ≤ ecx0, δmin < (1−α)h < d/ec < h < x0, if (1−β)(r/c) + q ≥ yA2

or (1 − β)(r/c) + q ≥ yA1 , then there exists an order one periodic solution to the system (1.4).

Subcase 2.3 (yA2 < (1 − β)(r/c) + q < yA1). In this case, we note that the point P+
0 must lie

between the point A1 and the point A2 (as shown in Figure 6). Taking a point E1 ∈ M1 such
that E1 jumps to A2 after the impulsive effect, we denote A2 = E+

1 . Since yP+
0
> yE+

1
, we have

yA > yE1 . Let R(E1) = E+
2 ∈ N, taking a point E2 ∈ M1 such that E2 jumps to E+

2 after the
impulsive effects, then we have yE+

1
> yE+

2
, yE1 > yE2 . This process continues until there exists

a E+
K ∈ N(K ∈ Z+) satisfying yE+

K
< q. So we obtain a sequence {Ek}k=1,2,...,K of set M1 and

a sequence {E+
k
}k=1,2,...,K of set N satisfying R(Ek−1) = E+

k
∈ N, yE+

k−1 > yE+
k
. In the following,

we will prove the trajectory of system (1.4) with any initiating point of set N which will
ultimately stay in Γ1.

From the vector field of system (1.4), we know the trajectory of system (1.4) with
any initiating point between the points A1 and A2 will be free from impulsive effect and
ultimately will stay in Γ1.

For any point below A2, it must lie between E+
k
and E+

k−1, where k = 2, 3, . . . , K + 1 and
A2 = E+

1 . After k times’ impulsive effects, the trajectory with this initiating point will arrive
at some point of the setN which must be between A1 and A2, and then ultimately stay in Γ1.

The trajectory with any initiating point above A1 will intersect set N at some point
belowA2 with time increasing, so just like the analysis above we obtain that it will ultimately
stay in Γ1.

Now we can summarize the above results as the following theorem.

Theorem 3.4. Assuming that d ≤ ecx0 and δmin < (1 − α)h < d/ec < h ≤ x0, if yA2 < (1 −
β)(r/c) + q < yA1 , there is no periodic solution in system (1.4) and the trajectory with any initiating
point of setN will stay in Γ1.

Case 3 ( 0 < (1 − α)h < d/ec < x0 < h). In this case, denote the intersection of the line L1

and the set N by point B((1 − α)h, r/c), and the intersection of the line L3 and the set M2

by point A(h, rh/cx0) (as shown in Figure 7). Through Lemma 2.8 and qualitative analysis,
there exists a unique closed trajectory Γ2 of system (1.4)which is tangent to the set M2 at the
point A and has minimal value λmin at the line L1. In the light of the different position of the
set N, we consider the following two cases.
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Subcase 3.1 (0 < (1 − α)h < λmin). In this case, there exists a unique trajectory of system (1.4)
which is tangent to the set N at the point B. Set F(B) = P1 ∈ M2, then pulse occurs at point
P1, and the impulsive function transfers the point P1 into P+

1 . Like the analysis of Subcase 2.1,
we can prove there exists an order one periodic solution in system (1.4) in this case.
Subcase 3.2 (λmin < (1 − α)h < x0 < h). In this case, let the closed trajectory Γ2 of system (1.4)
intersect with N at two points A1((1 − α)h, yA1) and A2((1 − α)h, yA2). Like the analysis of
Subcase 2.2 we can prove there exists an order one periodic solution in system (1.4) in this
case; like the analysis of Subcase 2.3, we can prove there is no periodic solution in system
(1.4) and the trajectory with any initiating point of set N will stay in Γ2.

4. Attractiveness of the Order One Periodic Solutions

In this section, under the condition of existence of order one periodic solution to system (1.4)
and the initial value of pest population x(0) ≤ h, we discuss its attractiveness. We focus on
Case 1, and by similar method we can obtain similar results about Cases 2 and 3.
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Theorem 4.1. If system (1.4) satisfies the condition of Theorem 3.1 and yP+
0
< yA, then

(I) there exists an odd number of order one periodic solutions of system (1.4) with initial value
between C and A in the setN

(II) if the periodic solution is unique, then the periodic solution is attractive in region Ω1 =
{(x, y) | x ≥ 0, y ≥ 0, x(0) ≤ h}.

Proof. (I) According to the Subcase 1.3, f(A) < 0 and f(c) > 0 (see Figure 2); the successor
function f(x) is continuous, so there exists an odd number of root satisfying f(x) = 0, then
we can get that there exists an odd number of order one periodic solutions of system (1.4)
with initial value between C and A in the set N.

(II) By the derivation of Theorem 3.1, we know there exists an order one periodic
solution of system (1.4). We assume trajectory P̂+P and segment PP+ formulate a unique
order one periodic solution of system (1.4) with initial point P+ ∈ N (Figure 8).

On the one hand, take a point D+
1 ((1 − α)h, ε) ∈ N satisfying yD+

1
= ε < q and yD+

1
<

yP+ . The trajectory passes through the point D+
1 ((1 − α)h, ε) which intersects set M1 at point

D2(h, yD2), that is, F(D
+
1 ) = D2 ∈ M1, then we have yD2 < yP , thus yD+

2
< yP+ . Since yD+

2
=

(1 − β)yD2 + q > ε, so we obtain f(D+
1 ) = yD+

2
− yD+

1
= yD+

2
− ε > 0; set F(D+

2 ) = D3 ∈ M1,
because yD+

1
< yD+

2
< yP+ ; we know yD2 < yD3 < yP , then we have yD+

2
< yD+

3
< yP+ and
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f(D+
2 ) = yD+

3
− yD+

2
> 0. This process is continuous, then we get a sequence {D+

k}k=1,2... of set
N satisfying

yD+
1
< yD+

2
< · · · < yD+

k
< · · · < yP+ (4.1)

and f(D+
k
) = yD+

k+1
− yD+

k
> 0. Series {yD+

k
}k=1,2,... increase monotonously and have upper

bound, so that limk→∞yD+
k
exists.

Next wewill prove limk→∞yD+
k
= yP+ . Setting limk→∞Dk = D+, we will prove P+ = D+.

Otherwise P+ /=D+, then there is a trajectory passing through the point D+ which intersects
the set M1 at point D̃, then we have yD̃ < yP , yD̃+ < yP+ . Since f(D+) ≥ 0 and P+ /=D+,
according to the uniqueness of the periodic solution, thenwe have f(D+) = yD̃+−yD+ > 0, thus

yD+ < yD̃+ < yP+ hold. Set F(D̃+) = ˜̃D ∈ M1. In view of vector field and disjointness of any two
trajectories, we know yD̃ < y ˜̃D < yP and yD̃+ < y ˜̃D+ < yP+ , then we have f(D̃+) = y ˜̃D+−yD̃+ > 0;
this contradicts the fact that D+ is a limit of sequence {D+

k}k=1,2,..., so we obtain P+ = D+ and
limk→∞yD+

k
= yP+ .

On the other hand, set F(P+
0 ) = C1 ∈ M1, thenC1 jumps toC+

1 ∈ N under the impulsive
effects. Since yP+ < yP+

0
< yA, we have yP < yC1 < yP0 , thus we obtain that yP+ < yC+

1
< yP+

0

and that f(P+
0 ) = yC+

1
− yP+

0
< 0. Set F(C+

1 ) = C2 ∈ M1, then C2 jumps to C+
2 ∈ N under the

impulsive effects. We have yP+ < yC+
2
< yC+

1
, f(C+

1 ) = yC+
2
− yC+

1
< 0; this process is continuous,

and we can obtain a sequence {C+
k
}k=1,2,... of set N satisfying

yP+
0
> yC+

1
> yC+

2
> · · · > yC+

k
> · · · > yP+ (4.2)

and f(C+
k
) = yC+

k+1
−yC+

k
< 0. Series {yC+

k
}k=1,2,... decrease monotonously and have lower bound,

so that limk→∞yC+
k
exists. Similarly, we can prove that limk→∞yC+

k
= y+

P .
Since the trajectory initiating any point of Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x(0) ≤ h} will

certainly intersect with set N, next we only need to prove the trajectory initiating any point
ofN will ultimately tend to be the unique order one periodic solution.

Any point B ∈ N below A must be in some interval
[yC+

k+1
, yC+

k
)k=1,2,..., [yC+

1
, yP+

0
), [yP+

0
, yA), [yD+

k
, yD+

k+1
)k=1,2,.... Without loss of generality, we

assume the point B ∈ [yC+
k+1
, yC+

k
). The trajectory with initiating point B moves between

trajectories ̂C+
kCk+1 and ̂C+

k+1Ck+2 and intersects with M1 at some point between Ck+2

and Ck+1, and under the impulsive effects it jumps to the point of N which is between
[yC+

k+2
, yC+

k+1
), then trajectory Π̃(B, t) continues to move between trajectories ̂C+

k+1Ck+2 and
̂C+
k+2Ck+3. This process can be continued unlimitedly. Since limk→∞yC+

k
= yP+ , the intersection

sequence of trajectory Π̃(B, t) and set N will ultimately tend to point P+. Similarly, if
B ∈ [yD+

k
, yD+

k+1
), we can also get that the intersection sequence of trajectory Π̃(B, t) and setN

will ultimately tend to point P+. Thus the trajectory initiating any point below A ultimately
tends to be the unique order one periodic solution ̂P+PP+.

The trajectory with any initiating point above A of N will intersect with set N at
some point below A with time increasing, so like the analysis above we obtain the trajectory
initiating any point aboveAwill ultimately tend to be the unique order one periodic solution
̂P+PP+.
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From the above analysis, we know the trajectory initiating any point of N will
ultimately tend to be order one periodic solution ̂P+PP+. Therefore, the unique order one
periodic solution is attractive in the region Ω1. This completes the proof.

Remark 4.2. If system (1.4) satisfies the condition of Theorem 3.1 and that yD+
1
< yA < yP+

0
,

then order one periodic solution with initial point between A and P+
0 is unattractive.

Theorem 4.3. If system (1.4) satisfies the condition of Theorem 3.1 and yP+
0
> yP+

1
> yA, there exists

a unique order one periodic solution of system (1.4)which is attractive in the regionΩ1 = {(x, y)/x ≥
0, y ≥ 0, x(0) ≤ h}.

Proof. Through the derivation of Theorem 3.1, we know there exists an order one periodic
solution of system (1.4), whose initial point is between A and P+

0 in set N. We assume
trajectory P̂+P and segment PP+ formulate an order one periodic solution of system (1.4), and
P+ ∈ N is its initial point satisfying f(P+) = 0 (Figure 9). First we will prove the uniqueness
of the order one periodic solution.

We take any two points C1(h, yC1) ∈ N, C2(h, yC2) ∈ N satisfying yC2 > yC1 > yA, then
we obtain two trajectories, whose initiate points are C1 and C2 intersecting with the set M1

and two pointsD1(h, yD1) andD2(h, yD2), respectively (Figure 10). In view of the vector field
of system (1.4) and the disjointness of any two trajectories, we know yD1 > yD2 . Suppose
the points D1 and D2 are subject to impulsive effect to points D+

1 (h, yD+
1
) and D+

2 (h, yD+
2
)

respectively, then we have yD+
1
> yD+

2
and f(C1) = yD+

1
− yC1 , f(C2) = yD+

2
− yC2 , so we get

f(C1)−f(C2) < 0; thus we obtain that the successor function f(x) decreases monotonously on
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interval (yA, yP+
0
) of N, so there is a unique point P+ ∈ N satisfying f(P+) = 0. The trajectory

̂P+PP+ is a unique order one periodic solution of system (1.4).
Next we prove the attractiveness of the order one periodic solution ̂P+PP+ in the

region Ω1.
Denote the first intersection point of the trajectory with initiating point P+

0 and the
impulsive set M1 by P1(h, yP1) and that the corresponding consecutive points are P2(h, yP2),
P3(h, yP3), P4(h, yP4), and so forth, respectively. Consequently, under the effect of impulsive
function I, the corresponding points after pulse are P+

1 (h, yP+
1
), P+

2 (h, yP+
2
), P+

3 (h, yP+
3
), and so

forth. In view of yP+
0
> yP+

1
> yA and disjointness of any two trajectories, we have that

yP+
1
< yP+

3
< · · · < yP+

2k−1 < yP+
2k+1

< · · · < yP+
2k
< yP+

2k−2 < · · · < yP+
2
< yP+

0
(4.3)

so f(P+
2k−1) = yP+

2k
− yP+

2k−1 > 0 and f(P+
2k) = yP+

2k+1
− yP+

2k
< 0 hold. As is proved in Theorem 4.1,

we can prove limk→∞yP+
2k−1 = limk→∞yP+

2k
= yP+ .

Since the trajectory initiating any point of Ω1 will certainly intersect with set N, next
we only need to prove the trajectory initiating any point ofN will ultimately tend to be order
one periodic solution ̂P+PP+.

The trajectory with initiating point between D+
0 and P+

0 will intersect impulsive set N
with time increasing; under the impulsive effects it arrives at a point of N which is between
[yP+

2k−1 , yP+
2k+1

) or [yP+
2k
, yP+

2k−2). Then like the analysis of Theorem 4.1, we know the trajectory
initiating any point betweenD+

0 and P+
0 will ultimately tend to be order one periodic solution

̂P+PP+.
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Assume a point D0 of the set M1 jumps to D+
0 under the impulsive effect. Set R(D0) =

D+
1 ∈ N. Assume a pointD1 of the setM1 jumps toD+

1 under the impulsive effect. SetR(D1) =
D+

2 ∈ N. This process is continuing until there exists a D+
K0

∈ N(K0 ∈ Z+) satisfying yD+
k0
< q.

So we obtain a sequence {Dk}k=0,1,2,...,K0
of the set M1 and a sequence {D+

k
}k=0,1,2,...,K0

of the
set N satisfying R(Dk−1) = D+

k
, yD+

k
< yD+

k−1 . For any point of the set N below D+
0 , it must

lie between D+
k+1 and D+

k where k = 1, 2, . . . , K0. After K0 + 1 times’ impulsive effects, the
trajectory from this initiating point will arrive at some point of the set N which must be
between D+

0 and P+
0 and then will ultimately tend to order one periodic solution ̂P+PP+.

There is no order one periodic solution with the initial point below D+
0 .

The trajectory with any initiating point above P+
0 of N will intersect with the set N at

some point belowU+
0 with time increasing, so the trajectorywith any initiating point above P+

0

will ultimately tend to be order one periodic solution ̂P+PP+. There is no order one periodic
solution with the initial point above P+

0 .
From the above analysis, we know there exists a unique order one periodic solution in

system (1.4) and the trajectory from any initiating point ofN will ultimately tend to be order
one periodic solution ̂P+PP+. Therefore, order one periodic solution ̂P+PP+ is attractive in
the region Ω1. This completes the proof.

5. Conclusion and Numerical Simulations

In this paper, a Holling I predator-prey model with state-dependent impulsive control model
concerning different control methods at different thresholds is proposed to find a newmethod
to study existence and attractive of order one periodic solution of such system. We define
semicontinuous dynamical system and successor function and demonstrate the sufficient
condition that system (1.4) has order one periodic solution with differential geometry theory
and successor function; by means of sequence convergence rules and qualitative analysis,
we prove the attractiveness of the order one periodic solution. These results show that the
state-dependent impulsive effects contribute significantly to the richness of the dynamics
of the model. The methods of the theorems are proved to be new in this paper and these
methods are more efficient and easier to operate than the existing research ones that have
been applied to the models with impulsive state feedback control [12–15], so they deserve
further promotion.

In order to testify the validity of our results, we consider the following example:

dx

dt
= 0.8x − 0.6xy, x ≤ x0, x < h,

dy

dt
= −0.2y + 0.3xy, x ≤ x0, x < h,

dx

dt
= 0.8x − 0.6x0y, x > x0, x < h,

dy

dt
= −0.2y + 0.3x0y, x > x0, x < h,

Δx = −αx, x = h,

Δy = −βy + q, x = h,

(5.1)
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Figure 11: The time series and phase diagram for system (1.4) starting from initial value (0.3, 0.1) (blue),
(0.3, 0.5) (green), (0.3, 0.6) (red), α = 0.5, β = 0.2, q = 0.8, h = 0.6, x0 = 1, h < x∗ < x0.
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Figure 12: The time series and phase diagram for system (1.4) starting from initial value (0.3, 0.2) (blue),
(0.3, 0.1) (green), (0.3, 0.15) (red), α = 0.5, β = 0.2, q = 0.8, h = 1, x0 = 1.5, x∗ < h < x0.

where α, β ∈ (0, 1), q > 0, h > 0. Now, we consider the impulsive effects on the dynamics of
system (5.1).

Example 5.1. Existence and attractiveness of order one periodic solution.
We set h = 0.6, α = 0.5, β = 0.2, q = 0.8, h < x∗ < x0, initiating points are (0.3, 0.6)

(red), (0.3, 0.5) (green), and (0.3, 0.1) (blue), respectively. Figure 11 shows that system (5.1)
has order one periodic solution when the conditions of Theorems 3.1 and 4.1 hold, and the
trajectory from different initiating must ultimately tend to be the order one periodic solution.
Therefore order one periodic solution is attractive.

Example 5.2. Existence and attractiveness of positive periodic solutions.
We set h1 = 1, α = 0.5, β = 0.2, q = 0.8, x0 = 1.5, x∗ < h < x0, initiating points are (0.3, 0.3)

(red), (0.3, 0.2) (green), and (0.3, 0.2.5) (blue), respectively. Figure 12 shows that system (5.1)
has order one periodic solution when the conditions of Theorems 3.2 and 4.1 hold, and the
trajectory from different initiating must ultimately tend to be the order one periodic solution.
Therefore order one periodic solution is attractive.
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Figure 13: The time series and phase diagram for system (1.4) starting from initial value (0.4,0.5), α =
0.5, β = 0.2, q = 0.8, h = 1.5, x0 = 0.8, x∗ < x0 < h.

Example 5.3. Existence and attractiveness of positive periodic solutions.
We set h = 1.5, α = 0.5, β = 0.2, q = 0.8, x0 = 0.8, x∗ < x0 < h; initiating points is

(0.4, 0.5). Figure 13 shows that results of Case 3 are valid.
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