
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 109542, 13 pages
doi:10.1155/2012/109542

Research Article
A Novel Mesh Quality Improvement Method for
Boundary Elements

Hou-lin Liu, Cui Dai, Liang Dong, and Ming-gao Tan

Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang,
Jiangsu 212013, China

Correspondence should be addressed to Liang Dong, edongliang@yahoo.com

Received 18 June 2012; Revised 5 September 2012; Accepted 19 September 2012

Academic Editor: Mehmet Sezer

Copyright q 2012 Hou-lin Liu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

In order to improve the boundary mesh quality while maintaining the essential characteristics
of discrete surfaces, a new approach combining optimization-based smoothing and topology
optimization is developed. The smoothing objective function is modified, in which two functions
denoting boundary and interior quality, respectively, and aweight coefficient controlling boundary
quality are taken into account. In addition, the existing smoothing algorithm can improve the
mesh quality only by repositioning vertices of the interior mesh. Without destroying boundary
conformity, bad elements with all their vertices on the boundary cannot be eliminated. Then,
topology optimization is employed, and those elements are converted into other types of elements
whose quality can be improved by smoothing. The practical application shows that the worst
elements can be eliminated and, with the increase of weight coefficient, the average quality of
boundarymesh can also be improved. Results obtainedwith the combined approach are compared
with some common approach. It is clearly shown that it performs better than the existing approach.

1. Introduction

Numerical simulation is an important component in diverse activities such as medical imag-
ing, engineering design, and cinematic special effects. These simulations routinely rely on
tetrahedral meshes to model the physical domain of interest. The popularity of tetrahedral
meshes stems from their ability to accurately model extremely complex geometries. High
resolution tetrahedral meshes are often particularly desirable, as they can improve numerical
accuracy greatly at previously infeasible scales. Fortunately, the power of modern computing
and data acquisition technologies has enabled the production of tetrahedral models with
enormous size. However, it is normally difficult to acquire mesh in which all the elements
are suitable for numerical computation. Poorly shaped tetrahedra in a mesh can result in
numerical errors and increase the time cost to find a solution [1, 2]. Hence, there is a market
formesh improvement tools which can enhance the quality of tetrahedra for an existingmesh.
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Recently, there are twomain techniques to improve themesh quality. The first modifies
topology by inserting or deleting nodes as well as changing connectivity of nodes [3, 4].
The operations include local face swapping and element or vertex insertion/deletion. The
second, called smoothing method [5, 6], preserves mesh topology by applying appropriate
node placement techniques. Mesh improvement techniques have been shown to be effective
in improving tetrahedral meshes. However, most of them regard the boundary configuration
of a mesh as “untouchable.” For example, vertices on the boundary cannot be smoothed.
Moving the vertices on the boundary of a mesh is fraught with peril. In engineering
applications, the mesh is considered to be noise-free and any change to the surface may
induce some errors in the computational domain. For this, the quality improvement
algorithms usually keep boundary vertices locked in place, which limits their ability to
improve the quality of tetrahedra.

As to improving boundary quality of a surface mesh, considerable research has been
conducted. Garimella et al. [7, 8] proposed an optimization-based vertex repositioning
procedure to improve the quality of a surface mesh containing triangles and quadrilaterals.
It has been shown that the method is capable of keeping the nodes on the original mesh
faces and close to their original locations. Semenova and Savchenko [9] presented two
novel techniques to improve the quality of triangle surface meshes while preserving surface
characteristics as much as possible. Frey and Borouchaki [10] proposed a suitable method for
the construction of an enriched geometric finite element mesh from a given arbitrary surface
triangulation. The initial triangulation is optimized with respect to geometry and element
shape quality. Actually, the surface mesh quality has an important effect on high quality solid
mesh generation. Surface mesh quality improvement algorithms can reduce the difficulty of
generating solid meshes and improving mesh quality. However, when it comes to numerical
simulation, they cannot improve its accuracy efficiently.

In this study, we are more concerned with optimizing boundary vertices to obtain
better quality tetrahedra, rather than surface meshes. However, little research has been done
to improve boundary surface quality in solid meshes. Klingner [11] presented a quadric
smoothing method for smoothing boundary vertices of surfaces in solid meshes. It permits
all surface vertices to move, but they are encouraged to move along the original surface,
and discouraged from making noticeable changes to the shape of the domain. By balancing
tetrahedron quality against a quadric error measured at each vertex, the method controls the
domain shape error. However, it cannot preserve mesh nodes on the original discrete surface
and cannot guarantee boundary conformity in a real sense.

The goal of this paper is to improve the quality of boundary tetrahedra. It should
be noted that, unlike Klingner’s work, surface vertices will not be moved. Topology
optimization technique is adopted for converting elements that have all their vertices on the
boundary into other type of elements, and the optimization-based smoothing algorithm is
used for improving mesh quality. Section 2 briefly describes the overall combined algorithm.
Section 3 introduces the modified optimization-based smoothing algorithm and Section 4
discusses the topology optimization technique. We then present the results of numerical
experiments on several test meshes. Finally, Section 5 concludes the paper.

2. The Overall Combined Optimization Algorithm

Due to inherent defect, the optimization-based smoothing algorithm cannot improve
boundary mesh quality through moving boundary nodes without distorting discrete surface.
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Figure 1: Four kinds of boundary elements.

The boundary conformity cannot be guaranteed when surface nodes are permitted to move.
For example, the elements in Figures 1(a), 1(b), and 1(c) might be improved by moving a
node if the node is an interior one. However, for the element in Figure 1(d), there are no
interior nodes to move to improve its quality. It is called “all boundary element” in the paper.
The quality improvement for this type of elementwith all their nodes on the boundary surface
is beyond the capability of smoothing. Therefore, there are a lot of poor quality elements on
the boundary after performing the optimization-based smoothing algorithm. To address this
problem, a combined optimization algorithm based on optimization-based smoothing and
topology optimization algorithm is proposed. The algorithm can improve the overall and
boundary mesh quality and won’t destroy boundary integrity of the initial mesh.

The overall scheme is presented. Algorithmic details for each of the major steps in this
scheme will be presented later in the paper.

Input: initial mesh, poor quality threshold value γ , iteration number n, objective
function E(Γ), and weight coefficient C.

Output: high quality mesh.

(1) Compute the number of nodes and elements in initial mesh. If the element is a
boundary one, mark the element with the boundary;

(2) calculate the mesh quality of initial mesh based on the quality measure α (see
Section 3.1), and store the nodes of poor quality element in Φ, whose quality is
less than γ ;

(3) in Φ, select a node randomly and determine whether it is a boundary node. If the
node is a boundary one and all its neighboring nodes are on the boundary, go to
Step (4). Otherwise, carry out Step (5).

(4) Apply Topology optimization algorithm (see Section 4) to convert elements that have
all their vertices on the boundary into other type of elements, and go to Step (6).

(5) Apply improved optimization-based smoothing algorithm (see Section 3) to optimize
mesh.

(6) Repeat Steps (3) to (5) until there are no poor quality elements in Φ.

3. The Improved Optimization-Based Smoothing

3.1. Objective Function

Through studying the quality measures and optimization algorithms of tetrahedral meshes,
the error function is derived by means of transforming the measures. The element’ distortion
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is disposed as the error. And the larger the distortion is, the bigger the value of the error. The
maximum value of the error function is infinite, and the minimum is zero. The total error
function of the mesh is the sum of the elements’ errors, and it is adopted as the objective
function of the optimization-based smoothing. The minimum value of objective function is
solved for improving the mesh quality.

Generally speaking, a reasonable quality measure for elements should possess the
following attributes.

(1) It is invariant under translation, rotation, and scaling.

(2) Normalization by an optimal valuewithin a range [0,1], where 1 is for an equilateral
tetrahedron and 0 is for a degenerate tetrahedron.

(3) Ability to detect all possible badly shaped elements.

So an optimal quality measure α is employed, and an error function is derived based
on it:

α =
6
√
6V((∑4

i=1 Si

)
×maxi=1,... ,6Li

) , (3.1)

where V is the volume of tetrahedron, Si is the surface area of a triangular facet, and Li is the
length of any edge i.

The reciprocal of (3.1) is the error function of an element:

e(T) =

(∑4
i=1 Si

)
×maxi=1,...,6Li

6
√
6V

, (3.2)

where T denotes a tetrahedron.
When the element is a regular tetrahedron, the value of the function is 1. As one

element degenerates, the value tends to be infinite. If the element is reverse or the volume is
negative, the value of error is also infinite. The total error function of the mesh is defined as
E(Γ), as shown in the following:

E(Γ) =
∑
T∈Γ

e(T). (3.3)

E(Γ) is the objective function of the optimization-based smoothing. In order to control
the boundary and interior mesh quality simultaneously, the objective function is expressed
as follows:

f(Γ) = (1 − C)
∑
T∈Γ1

e(T) + C
∑
T∈Γ2

e(T). (3.4)

where Γ is the set of all elements, Γ1 is the set of all interior elements, Γ2 is the set of all
boundary elements, and C (0.5 < C < 1) is the weight coefficient which indicates the
proportion of boundary mesh quality with respect to the overall. The same method is
executed for boundary and interior mesh when C = 0.5. Through (3.4), the interior and
boundary mesh quality is considered simultaneously.
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(1) function SOLUTION (f(x),λ0, ε,X0
n,N)

� f(x) = objective function
λ0 = initial step size
ε = desired degree of accuracy
N = iteration number
X0

n = initial coordinate for vertices X
(2) get free vertex H0

n and k = 0
� H0

n = Hessian matrix
k = Iteration number

(3) min f(Xk
n + λkd

k
n)

� dk
n = optimal search direction

(4) compute λ∗
k
using line search algorithm (see Algorithm 2)

� λ∗
k
= optimal step size

(5) Xk+1
n = Xk

n + λ∗
k
dk
n

(6) if |f(Xk+1
n ) − f(Xk

n)| < ε or k > N then
(7) X∗n ← Xk+1

n and break
� X∗n = optimal point coordinate

(8) else ΔXk+1
n = Xk+1

n −Xk+1
n ,Δgk

n = gk+1
n − gk

n

� gk+1
n = f(x) gradient at vertices Xk+1

n

Hk+1
n = (Hk

n + ΔXk
n(ΔXk

n)
T
/(ΔXk

n)
TΔgk

n) + (Hk
nΔgk

n(Δgk
n)

T
Hk

n/(Δgk
n)

T
Hk

nΔgk
n)

dk+1
n = −Hk+1

n gk+1
n , k = k + 1

go to step (3)
(9) end function

Algorithm 1: Nonsmooth optimization algorithm.

3.2. Optimization Algorithm

An efficient and robust solver for the large system of equations presented by the optimization
problem is needed. Better smoothing algorithms are based on numerical optimization
[12, 13]. Early algorithms define a smooth objective function that summarizes the quality
of a group of elements (e.g., the sum of squares of the qualities of all the tetrahedra
adjoining a vertex) and use a numerical optimization algorithm such as steepest descent or
Newton’s method to move a vertex to the optimal location. Freitag et al. [14] proposes a more
sophisticated nonsmooth optimization algorithm, which makes it possible to optimize the
worst tetrahedron in a group, for instance, to maximize the minimum dihedral angle among
the tetrahedra that share a specified vertex. A nonsmooth optimization algorithm is needed
because the proposed objective function is not a smooth function of the vertex coordinates in
this paper. The gradient of this function is discontinuous wherever the identity of the worst
tetrahedron in the group changes. Pseudopodia for nonsmooth optimization algorithm are
presented in Algorithm 1.

It is well known that the line search methods play a pivotal role on optimization
problems. Locating a local minimum in the optimization problem with no constrains are
prepared. All methods have the basic structure in common. In each iteration, a direction
dk
n is chosen from the current location Xn. The next location, Xn+1, is the minimum of the

function along the line that passes through Xn in the direction dk
n. The line search algorithm

is conducted in Algorithm 2. In order to find the minimum of a function f(X) : R → R, we
need to bracket it. To bracket a minimum means fining a triple a, b, c ∈ R, a < b < c, so that
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(1) function LINE SEARCH (ε1, ϕ(f(x), X0
n, h0, α))

� f (x) = objective function
ε1 = allowable error
ϕ(f (x), X0

n, h0, α) = the function for search region
[a1, b1] see below Algorithm 3

(2) compute μ1 = a1 + 0.382(b1 − a1) and ν1 = a1 + 0.618(b1 − a1)
� μ1, ν1 = initial tentative point

Set i = 1
i = iteration number

(3) if |μi − νi| < ε1 then
(4) return λ∗i = (μi + νi)/2 and break

� λ∗i = optimal step size
(5) else if (f (μi) < f (νi)) go to step (7)
(6) else f(μi) � f(νi) go to step (8)
(7) set ai+1 = ai, bi+1 = νi, νi+1 = μi, f (νi) = f (μi)
(8) compute μi+1 = 0.618ai+1 + 0.382bi+1 and f (μi+1)
(9) i = i+1 go to step (3)

Algorithm 2: Line search algorithm.

(1) function SEARCH INTERVAL (f (x), X0
n, h0, α)

� f (x) = objective function
X0

n = initial coordinate for vertices X
h0 = initial step size
α = coefficient larger than 1

(2) compute f0 = f (X0
n) and Set j = 0

� j = iteration number
(3) X

j+1
n = X

j
n + hj and compute f (Xj+1

n )
(4) if f(Xj+1

n ) < f(Xj
n) then go to step (6)

(5) else go to step (7)
(6) hj+1 = αhj , X∗n = X

j
n, X

j
n = X

j+1
n

f (Xj
n) = f (Xj+1

n ), j = j + 1
(7) if j = 0 then hj = −hj , X∗n = X

j
n go to step (3)

(8) else a =min{X∗n, Xj+1
n }, b =max{X∗n, Xj+1

n }
(9) return a and b

Algorithm 3: Interval search algorithm.

f(a) < f(b) and f(b) < f(c). This indicates that the minimum is in the interval [a, c]. The
interval search algorithm is in Algorithm 3.

4. Topology Optimization

Topology optimization algorithm is employed, which converts boundary elements that
have all their nodes on the boundary into other types of boundary elements. Furthermore,
the topology optimization does not necessarily improve the quality of elements, but
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(1) Find all the elements which include the node in the all boundary elements, and E denotes
those elements.

�EG: Initial all boundary elements
(2) Edge removal can be performed if an edge in the EG is shared by three tetrahedra.
(3) Edge Swapping can be performed If an edge in the EG is shared by four or more tetrahedra.
(4) Face Swapping can be performed If a tetrahedron and E share a face
(5) end function

Algorithm 4: Topology optimization algorithm.

B
D

C

E B
D

E

C

A A

Figure 2: Edge removal.

those boundary elements must be eliminated. Pseudopodia for topology optimization are
presented in Algorithm 4.

4.1. Edge Removal

Proposed by George [15], edge removal is a topological transformation that removes a single
edge from the mesh, along with all the tetrahedra that include it. Figure 2 illustrates replacing
three tetrahedra with two. The three tetrahedra (ABCD, ABCE and ACDE) share the edge AC,
and ABCD tetrahedron is all boundary element. When AC is removed, the three tetrahedra in
the region are transformed to two tetrahedra ABDE and BCDE.

4.2. Edge Swapping

Edge swapping is a more complicated procedure [4]. If there are k tetrahedra containing an
interior edge e in the mesh, then e is removed and the original k tetrahedra are replaced with
2k−4 tetrahedra. In Figure 3, the edge TB is perpendicular to the page, and the five tetrahedra
(01BT, 12BT, 23BT, 34BT, and 40BT) originally incident to edge TB can be replaced by six new
tetrahedra: 012T, 021B, 024T, 042B, 234T, and 234B, where 01BT is all boundary element.

4.3. Face Swapping

Face swapping changes the local connectivity of a simplified mesh which converts all
boundary elements into other boundary elements. Each interior face in a tetrahedral
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Figure 3: Edge swapping.

Figure 4: Face swapping configuration of five points in three dimensions.

mesh separates two tetrahedra consisting of a total of five points. A large number of
nonoverlapping tetrahedral configurations can be formedwith these five points, but only two
of them can be reconnected satisfactorily. Figure 4 shows the face swapping configuration of
five points. It is evident that either two or three tetrahedra can be used to fill the convex hull
of a set of five points. Switching from two to three tetrahedra requires an additional edge
interior to the convex hull. So all boundary elements can be converted into other type of
boundary elements.

5. Numerical Experiments

Figure 5 shows the distribution of poor quality elements for an impeller in centrifugal pump
before and after optimization. The quality for the worst element is 0.08 for initial mesh,
0.15 for C = 0.6, and 0.16 for C = 0.8 based on the quality measure α. So the improved
optimization-based smoothing algorithm can improve the quality of the worst elements in
a centrifugal impeller. Furthermore, through increasing the weight coefficient, the quality of
boundary and overall elements is improved.

Figure 6 shows the effect of weight coefficient on optimization time. After increasing
the weight coefficient C, the optimization time for the overall and boundary mesh ascends
dramatically. That is because, to obtain optimal solution of objective function, we need to
reduce the value of objective function through adjusting interior nodes’ locations. So, it needs
more iteration number (i.e., costing more time)when the value of objective function is larger.
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Figure 5: Distribution of poor quality elements.

The conclusion can be drawn that the proposed algorithm can dramatically reduce
the number of poor quality elements in boundary and interior meshes. With the increase of
weight coefficient, the overall and boundary mesh quality rises, while the time consumed
increases rapidly. So in consideration of optimizing effect and efficiency, it is recommended
the weight coefficient lies in the range of 0.7∼0.8.
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Figure 6: Time for different weight coefficients.

Table 1: Statistics of the examples before optimization.

Model
Mesh size Overall mesh quality Boundary mesh quality

Vertex
number Elem# Worst Average Worst Average

Impeller 77710 428049 0.0052 0.5105 0.0052 0.4823
Volute 36994 229101 0.0039 0.5074 0.0039 0.4761

Figure 7 shows two examples to illustrate the effect of different mesh quality
improvement algorithms. In Table 1, the number of nodes and elements in each mesh, and
the initial mesh quality measured by α are given.

In Table 2, the results of each mesh quality improvement technique in terms of
the quality of the overall and boundary mesh after optimization are reported. The time
consuming is also given. It can be seen that, for the two algorithms, the quality of overall and
boundary elements can be improved. And, the combined algorithm performs better in the
quality improvement, while it consumes 1.3 times more time than the improved smoothing
algorithm.

To evaluate our mesh improvement algorithm, comparison with Freitag and Ollivier-
Gooch’s method is made. And two cases of mesh (TIRE and RAND2) come courtesy of
Freitag and Ollivier-Gooch [4]. TIRE is a tire incinerator with 2,570 vertices and 11,099
tetrahedral elements. Its initial mesh quality can be found in Table 3. RAND2 are lazy
triangulations generated by inserting randomly located vertices into a cube one by one. Each
vertex is inserted by splitting one or more tetrahedra into multiple tetrahedra. The random
meshes have horrible quality and poor dihedral angles at both extremes. The RAND2 mesh
has 5,086 vertices and 25,704 tetrahedral elements; its initial quality can be found in Table 3.
Table 3 compares the minimum and maximum dihedral angles reported by Freitag and
Ollivier-Gooch to that achieved by our mesh improvement algorithm. It can be seen that the
mesh quality is bad before optimization, and there are badly shaped elements whose dihedral
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Table 2: Statistics of the examples after optimization.

Model Method Overall mesh quality Boundary mesh quality
Time/s

Worst Aver Worst Aver

Impeller Smoothing 0.0339 0.5760 0.0339 0.5360 122.9
Combined 0.0671 0.5937 0.0671 0.5494 149.8

Volute Smoothing 0.0359 0.5679 0.0359 0.5486 102.8
Combined 0.0593 0.5861 0.0593 0.5603 128.7

(a) Impller (b) Volute

Figure 7: Models for mesh generation.

angles tend to be 0◦ or 180◦. Dihedral angles are improved to be between 14◦ and 160◦ for
Freitag and Ollivier-Gooch’s algorithmwith both swapping and smoothing, and between 23◦

and 141◦ for our proposed algorithm.
The twomesh optimization algorithms have been implemented and tested for RAND2

with the distribution of dihedral angles, as shown in Figure 8. Figure 8(a) shows the initial
RAND2 mesh, and Figures 8(b) and 8(c) show the optimized mesh by Freitag algorithm and
the proposed algorithm, respectively. It can be seen that they can both successfully eliminate
poorly shaped elements from the mesh. Comparing with Freitag algorithm, the proposed
algorithm is more successful in eliminating poor dihedral angles at both extremes.

6. Conclusions

A new combined algorithm based on optimization-based smoothing and topology opti-
mization is proposed for boundary mesh quality improvement. Error functions of elements
determined based on an inverse of measure α compose the objective function of a modified
optimization-based smoothing. In the objective function, the function terms considering
boundary and interior mesh quality are included, and a weight coefficient controlling
boundary mesh quality is added, too. By means of minimizing an error function in local
iterations, the modified smoothing algorithm can eliminate poor quality elements and
improve the overall and boundary mesh quality as much as possible. Topology optimization
is employed, by which those bad elements with all their vertices on the boundary are
converted into other types of elements whose quality can be improved by the modified
smoothing algorithm. Through comparison to Freitag and Ollivier-Gooch’s method with
RAND2 mesh used as example, the combined algorithm is confirmed to be capable of
improving the boundary mesh quality considerably without distorting discrete surface.
With the increase of weight coefficient, the overall and boundary mesh quality rises, while
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Figure 8: Mesh quality improvement for RAND2 with two algorithms.

Table 3: Statistics of the examples before and after optimization.

Model Method Before optimization After optimization
Min Max Min Max

TIRE Freitag 0.66◦ 178.88◦ 13.67◦ 159.82◦

Combined 22.57◦ 141.54◦

RAND2 Freitag 0.10◦ 179.84◦ 7.50◦ 170.09◦

Combined 25.69◦ 132.27◦

the improvement time increases rapidly. To strike a balance between optimizing effect and
time, the weight coefficient is suggested in the range of 0.7∼0.8.
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