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We introduce a new iterative scheme by shrinking projection method for finding a common
element of the set of solutions of generalized mixed equilibrium problems, the set of common
solutions of variational inclusion problems with set-valued maximal monotone mappings and
inverse-strongly monotone mappings, the set of solutions of fixed points for nonexpansive
semigroups, and the set of common fixed points for an infinite family of strictly pseudocontractive
mappings in a real Hilbert space. We prove that the sequence converges strongly to a common
element of the above four sets under some mind conditions. Furthermore, by using the above
result, an iterative algorithm for solution of an optimization problem was obtained. Our results
improve and extend the corresponding results of Martinez-Yanes and Xu (2006), Shehu (2011),
Zhang et al. (2008), and many authors.

1. Introduction

Throughout this paper, we assume thatH is a real Hilbert space with inner product and norm
are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let 2H denote the family of all subsets of H, and
let C be a closed-convex subset of H. Recall that a mapping T : C → C is said to be a k-strict
pseudocontraction [1] if there exists 0 ≤ k < 1 such that

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + k

∥
∥(I − T)x − (I − T)y

∥
∥
2
, ∀x, y ∈ C, (1.1)
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where I denotes the identity operator on C. When k = 0, T : C → C is said to be nonexpansive
[2] if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.2)

And when k = 1, T : C → C is said to be pseudocontraction if

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 +

∥
∥(I − T)x − (I − T)y

∥
∥
2
, ∀x, y ∈ C. (1.3)

Clearly, the class of k-strict pseudocontraction falls into the one between classes of
nonexpansive mappings and pseudocontraction mapping. We denote the set of fixed points
of T by F(T).

A family S = {S(s) : 0 ≤ s < ∞} of mappings of C into itself is called a nonexpansive
semigroup on C if it satisfies the following conditions:

(i) S(0)x = x for all x ∈ C,

(ii) S(s + t) = S(s)S(t) for all s, t ≥ 0,

(iii) ‖S(s)x − S(s)y‖ ≤ ‖x − y‖ for all x, y ∈ C and s ≥ 0,

(iv) for all x ∈ C, s �→ S(s)x is continuous.

We denote by F(S) the set of all common fixed points of S = {S(s) : s ≥ 0}, that is, F(S) =
⋂

s≥0 F(S(s)). It is known that F(S) is closed and convex.
Let A : H → H be a single-valued nonlinear mapping, and let M : H → 2H be a

set-valued mapping. We consider the following variational inclusion problem, which is to find
a point u ∈ H such that

θ ∈ A(u) +M(u), (1.4)

where θ is the zero vector in H. The set of solutions of problem (1.4) is denoted by I(A,M).
Let the set-valued mapping M : H → 2H be a maximal monotone. We define the

resolvent operator JM,λ associate withM and λ as follows:

JM,λ(u) = (I + λM)−1(u), u ∈ H, (1.5)

where λ is a positive number. It is worth mentioning that the resolvent operator JM,λ is single-
valued, nonexpansive, and 1-inverse-strongly monotone ([3, 4]).

Let F be a bifunction of C×C into R, where R is the set of real numbers, letA : C → H
be a mapping, and let ϕ : C → R be a real-valued function. The generalized mixed equilibrium
problem is for finding x ∈ C such that

F
(

x, y
)

+
〈

Ax, y − x
〉

+ ϕ
(

y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.6)
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The set of solutions of (1.6) is denoted by GMEP(F, ϕ,A), that is,

GMEP
(

F, ϕ,A
)

=
{

x ∈ C : F
(

x, y
)

+
〈

Ax, y − x
〉

+ ϕ
(

y
) − ϕ(x) ≥ 0, ∀y ∈ C

}

. (1.7)

If A ≡ 0, then the problem (1.6) is reduced into the mixed equilibrium problem for finding
x ∈ C such that

F
(

x, y
)

+ ϕ
(

y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.8)

The set of solutions of (1.8) is denoted by MEP(F, ϕ). The (generalized) mixed equilibrium
problems include fixed-point problems, variational inequality problems, optimization
problems, Nash equilibrium problems, noncooperative games, economics, and the equi-
librium problem as special cases ([5–15]). In the last two decades, many papers have
appeared in the literature on the existence of solutions of equilibrium problems; see,
for example, [9] and references therein. Some solution methods have been proposed to
solve the mixed equilibrium problems; see, for example, ([7–10, 12–20]) and references
therein.

In 2006, Martinez-Yanes and Xu [21] introduced the following iterative:

x0 ∈ C,

yn = αnx0 + (1 − αn)Txn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 ≤ ‖xn − z‖2 + αn

(

‖x0‖2 + 2〈xn − x0, z〉
)}

,

Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0},

xn+1 = PCn∩Qnx0,

(1.9)

where T is a nonexpansive mapping in a Hilbert space H, and PC is metric projection of H
onto a closed and convex subset C ofH. They proved that if the sequence {αn} of parameters
satisfies appropriate conditions, then the sequence {xn} converges strongly to PF(T)x0.

In 2008, Zhang et al. [4] introduced an iterative scheme for finding a common element
of the set of solutions to the variational inclusion problem with a multivalued maximal
monotone mapping and an inverse-strongly monotone mapping and the set of fixed points
of nonexpansive mapping in Hilbert spaces. The following iterative scheme x0 = x ∈ H
and

yn = JM,λ(xn − λAxn),

xn+1 = αnx + (1 − αn)Syn,
(1.10)

for all n ≥ 0. They proved the strong convergence theorem under some mind condi-
tions.
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Recently, Shehu [19] introduced a new iterative scheme by hybrid method for finding
a common element of the set of common fixed points of infinite family of k-strictly
pseudocontractive mappings, the set of common solutions to a system of generalized mixed
equilibrium problems, and the set of solutions to a variational inequality problem in Hilbert
spaces. Starting with an arbitrary x0 ∈ C, C1,i = C, C1 =

⋂∞
i=1 C1,i, and x1 = PC1x0 define

sequence {xn}, {wn}, {un}, {zn}, and {yn,i} as follows:

zn = T
(F1,ϕ1)
rn (xn − rnAxn),

yn = T
(F2,ϕ2)
λn

(zn − λnBzn),

wn = PC(un − snDun),

yn,i = αn,iwn + (1 − αn,i)Tiwn, n ≥ 1,

Cn+1,i =
{

z ∈ Cn,i :
∥
∥yn,i − z

∥
∥ ≤ ‖xn − z‖}, n ≥ 1,

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = PCn+1x0, n ≥ 1,

(1.11)

where Ti is a ki-strictly pseudocontractive mapping and for some 0 ≤ ki < 1, A,B is
α, β-inverse-strongly monotone mapping of C into H. He proved that if the sequence
{αn,i}, {rn}, {sn}, and {λn} of parameters satisfies appropriate conditions, then {xn} generated
by (1.11) converges strongly to PΩx0.

In this paper, motivated by the above results, we present a new general iterative
scheme for finding a common element of the set of solutions for a system of generalized
mixed equilibrium problems, the set of common solutions of variational inclusion problems
with set-valued maximal monotone mappings and inverse-strongly monotone mappings,
the set of solutions of fixed points for nonexpansive semigroup mappings, and the set
of common fixed points for an infinite family of strictly pseudocontractive mappings
in a real Hilbert space. Then, we prove strong convergence theorem under some mind
conditions. Furthermore, by using the above result, an iterative algorithm for solution of
an optimization problem was obtained. The results presented in this paper extend and
improve the results of Martinez-Yanes and Xu [21], Shehu [19], Zhang et al. [4], and many
authors.

2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉, and let C be a closed-
convex subset ofH. When {xn} is a sequence inH, xn ⇀ xmeans that {xn} converges weakly
to x, and xn → xmeans that {xn} converges strongly to x. In a real Hilbert spaceH, we have

∥
∥x − y

∥
∥
2 = ‖x‖2 − ∥

∥y
∥
∥
2 − 2

〈

x − y, y
〉

, (2.1)

∥
∥λx + (1 − λ)y

∥
∥
2 = λ‖x‖2 + (1 − λ)

∥
∥y

∥
∥
2 − λ(1 − λ)

∥
∥x − y

∥
∥
2
, ∀x, y ∈ H, (2.2)
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and λ ∈ R. For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx,
such that

‖x − PCx‖ ≤ ∥
∥x − y

∥
∥, ∀y ∈ C. (2.3)

PC is called the metric projection of H onto C. It is well known that PC is a nonexpansive
mapping of H onto C and satisfies

〈

x − y, PCx − PCy
〉 ≥ ∥

∥PCx − PCy
∥
∥
2
, ∀x, y ∈ H. (2.4)

Moreover, PCx is characterized by the following properties: PCx ∈ C and

〈

x − PCx, y − PCx
〉 ≤ 0, (2.5)

∥
∥x − y

∥
∥
2 ≥ ‖x − PCx‖2 +

∥
∥y − PCx

∥
∥
2
, ∀x ∈ H, y ∈ C. (2.6)

Recall that a mapping A of H into itself is called α-inverse-strongly monotone if there exists a
positive real number α such that

〈

Ax −Ay, x − y
〉 ≥ α

∥
∥Ax −Ay

∥
∥
2
, ∀, y ∈ H. (2.7)

It is obvious that any α-inverse-strongly monotone mapping A is (1/α)-Lipschitz monotone
and continuous mapping.

In order to prove our main results, we need the following Lemmas.

Lemma 2.1 (see [22]). Let V : C → H be a k-strict pseudocontraction, then

(1) the fixed-point set F(V ) of V is closed convex, so that the projection PF(V ) is well defined;

(2) define a mapping T : C → H by

Tx = tx + (1 − t)Vx, ∀x ∈ C. (2.8)

If t ∈ [k, 1), then T is a nonexpansive mapping such that F(V ) = F(T).

A family of mappings {Vi : C → H}∞i=1 is called a family of uniformly k-strict
pseudocontractions if there exists a constant k ∈ [0, 1) such that

∥
∥Vix − Viy

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + k

∥
∥(I − Vi)x − (I − Vi)y

∥
∥
2
, ∀x, y ∈ C, ∀i ≥ 1. (2.9)
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Let {Vi : C → C}∞i=1 be a countable family of uniformly k-strict pseudocontractions. Let
{Ti : C → C}∞i=1 be the sequence of nonexpansive mappings defined by (2.8), that is,

Tix = tx + (1 − t)Vix, ∀x ∈ C, ∀i ≥ 1, t ∈ [k, 1). (2.10)

Let {Ti} be a sequence of nonexpansive mappings of C into itself defined by (2.10),
and let {μi} be a sequence of nonnegative numbers in [0, 1]. For each n ≥ 1, define a mapping
Wn of C into itself as follows:

Un,n+1 = I,

Un,n = μnTnUn,n+1 +
(

1 − μn

)

I,

Un,n−1 = μn−1Tn−1Un,n +
(

1 − μn−1
)

I,

...

Un,k = μkTkUn,k+1 +
(

1 − μk

)

I,

Un,k−1 = μk−1Tk−1Un,k +
(

1 − μk−1
)

I,

...

Un,2 = μ2T2Un,3 +
(

1 − μ2
)

I,

Wn = Un,1 = μ1T1Un,2 +
(

1 − μ1
)

I.

(2.11)

Such a mapping Wn is nonexpansive from C to C and it is called the W-mapping generated
by T1, T2, . . . , Tn and μ1, μ2, . . . , μn.

For each n, k ∈ N, let the mapping Un,k be defined by (2.11), then we can have the
following crucial conclusions concerning Wn. You can find them in [23]. Now, we only need
the following similar version in Hilbert spaces.

Lemma 2.2 (see [23]). Let C be a nonempty closed-convex subset of a real Hilbert space H. Let
T1, T2, . . . be nonexpansive mappings of C into itself such that

⋂∞
n=1 F(Tn) is nonempty, and let

μ1, μ2, . . . be real numbers such that 0 ≤ μn ≤ b < 1 for every n ≥ 1, then

(1) Wn is nonexpansive and F(Wn) =
⋂n

i=1 F(Ti), ∀n ≥ 1,

(2) for every x ∈ C and k ∈ N, the limit limn→∞Un,kx exists,

(3) a mapping W : C → C defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x, ∀x ∈ C (2.12)

is a nonexpansive mapping satisfying F(W) =
⋂∞

i=1 F(Ti), and it is called the W-mapping generated
by T1, T2, . . . and μ1, μ2, . . ..

Lemma 2.3 (see [24]). Let C be a nonempty closed-convex subset of a Hilbert space H, let {Ti :
C → C} be a countable family of nonexpansive mappings with

⋂∞
i=1 F(Ti)/= ∅, and let {μi} be a real
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sequence such that 0 < μi ≤ b < 1, ∀i ≥ 1. If D is any bounded subset of C, then

lim
n→∞

sup
x∈D

‖Wx −Wnx‖ = 0. (2.13)

Lemma 2.4 (see [25]). Each Hilbert space H satisfies Opials condition, that is, for any sequence
{xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥ (2.14)

holds for each y ∈ H with y /=x.

Lemma 2.5 (see [3]). Let M : H → 2H be a maximal monotone mapping, and let A : H → H be
a monotone mapping, then the mapping S = M +A : H → 2H is a maximal monotone mapping.

Remark 2.6. Lemma 2.5 implies that I(A,M) is closed and convex if M : H → 2H is a
maximal monotone mapping and A : H → H is a monotone mapping.

Lemma 2.7 (see [4]). Let u ∈ H be a solution of variational inclusion (1.4) if and only if u =
JM,λ(u − λAu), ∀λ > 0, that is,

I(A,M) = F(JM,λ(I − λA)), ∀λ > 0. (2.15)

Lemma 2.8 (see [20]). Let C be a nonempty bounded closed-convex subset of a Hilbert spaceH, and
let S = {S(s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C, then for any h ≥ 0,

lim
t→∞

sup
x∈C

∥
∥
∥
∥
∥

1
t

∫ t

0
S(s)xds − S(h)

(

1
t

∫ t

0
S(s)xds

)∥
∥
∥
∥
∥
= 0. (2.16)

Lemma 2.9 (see [26]). Let C be a nonempty bounded closed-convex subset of H, let {xn} be a
sequence in C, and let S = {S(s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C. If the following
conditions are satisfied:

(1) xn ⇀ z,

(2) lim sups→∞lim supn→∞‖S(s)xn − xn‖ = 0, then z ∈ F(S).

For solving the generalized mixed equilibrium problem for F : C × C → R, one gives the
following assumptions for the bifunction F, ϕ and the set C:

(A1) F(x, x) = 0 for all x ∈ C,

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C,

(A3) for each x, y, z ∈ C, limt→ 0F(tz + (1 − t)x, y) ≤ F(x, y),

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous,

(A5) for each y ∈ C, x �→ F(x, y) is weakly upper semicontinuous,



8 Journal of Applied Mathematics

(B1) for each x ∈ H and r > 0, there exist a bounded subset Dx ⊆ C and yx ∈ C such that for
any z ∈ C \Dx,

F
(

z, yx

)

+ ϕ
(

yx

)

+
1
r

〈

yx − z, z − x
〉

< ϕ(z), (2.17)

(B2) C is a bounded set,

then one has the following lemma.

Lemma 2.10 (see [18]). Let C be a nonempty closed-convex subset of H. Let F : C × C → R be a
bifunction that satisfies (A1)–(A5), and let ϕ : C → R ∪ {+∞} be a proper lower semicontinuous
and convex function. Assume that either (B1) or (B2) holds. For r > 0 and x ∈ H, define a mapping
Tr : H → C as follows:

T
(F,ϕ)
r (x) =

{

z ∈ C : F
(

z, y
)

+ ϕ
(

y
)

+
1
r

〈

y − z, z − x
〉 ≥ ϕ(z), ∀y ∈ C

}

, (2.18)

for all z ∈ H, then the following hold:

(1) for each x ∈ H,T
(F,ϕ)
r (x)/= ∅,

(2) T (F,ϕ)
r is single valued,

(3) T (F,ϕ)
r is firmly nonexpansive, that is, for any x, y ∈ H, ‖T (F,ϕ)

r x − T
(F,ϕ)
r y‖2 ≤ 〈T (F,ϕ)

r x −
T
(F,ϕ)
r y, x − y〉,

(4) F(T (F,ϕ)
r ) = MEP(F, ϕ),

(5) MEP(F, ϕ) is closed and convex.

3. Main Result

In this section, we prove a strong convergence theorem for finding a common element of
the set of solutions for a system of generalized mixed equilibrium problems, the set of
common solutions of variational inclusion problems with set-valued maximal monotone
mappings and inverse-strongly monotone mappings, the set of solutions of fixed points for
nonexpansive semigroupmappings, and the set of common fixed points for an infinite family
of strictly pseudocontractive mappings in a real Hilbert space.

Theorem 3.1. Let C be a nonempty closed-convex subset of a real Hilbert Space H. Let F1, F2 be
bifunctions of C × C into real numbers R satisfying (A1)–(A5), and let ϕ1, ϕ2 : C → R ∪ {+∞} be
proper lower semicontinuous and convex functions with assumption (B1) or (B2). Let A,B, E1, E2 be
α, β, η1, η2-inverse-strongly monotone mappings of C into H, respectively, and let M1,M2 : H →
2H be maximal monotone mappings. Let S = {S(s) : 0 ≤ s < ∞} be a nonexpansive semigroup on
C, and let {tn} be a positive real divergent sequence. Let {Vi : C → C}∞i=1 be a countable family of
uniformly k-strict pseudocontractions, let {Ti : C → C}∞i=1 be a countable family of nonexpansive
mappings defined by Tix = tx + (1 − t)Vix, ∀x ∈ C, ∀i ≥ 1, t ∈ [k, 1), and let Wn be the
W-mapping defined by (2.11) and W a mapping defined by (2.12) with F(W)/= ∅. Suppose that
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Θ := F(S)∩F(W)∩GMEP(F1, ϕ1, A)∩GMEP(F2, ϕ2, B)∩ I(E1,M1)∩ I(E2,M2)/= ∅. Let {xn}
be a sequence generated by x0 ∈ C, C1,i = C, C1 =

⋂∞
i=1 C1,i, x1 = PC1x0, and

tn = T
(F1,ϕ1)
rn (xn − rnAxn),

un = T
(F2,ϕ2)
qn

(

tn − qnBtn
)

,

vn = JM1,λ1(un − λ1E1un),

wn = JM2,λ2(vn − λ2E2vn),

yn,i = αn,ix0 + (1 − αn,i)
1
tn

∫ tn

0
S(s)Wnwnds,

Cn+1,i =
{

z ∈ Cn,i :
∥
∥yn,i − z

∥
∥
2 ≤ ‖xn − z‖2 + αn,i

(

‖x0‖2 + 2〈xn − x0, z〉
)}

,

Cn+1 =
∞⋂

i=1

Cn+1,i,

xn+1 = PCn+1x0,

(3.1)

for every n ≥ 0, where {αn,i}∞n=1 ⊂ (0, 1), {rn}, {qn} ⊂ (0,∞), λ1 ∈ (0, 2η1), and λ2 ∈ (0, 2η2) satisfy
the following conditions:

(i) 0 < a ≤ rn ≤ b < 2α,

(ii) 0 < c ≤ qn ≤ d < 2β,

(iii) limn→∞αn,i = 0,

(iv) 0 < e ≤ λ1 ≤ f < 2η1,

(v) 0 < g ≤ λ2 ≤ j < 2η2,

then {xn} converges strongly to PΘx0.

Proof. First, we show that I − λ1E1 and I − λ2E2 are nonexpansive. Indeed, for all x, y ∈ C and
λ1 ∈ (0, 2η1), we obtain

∥
∥(I − λ1E1)x − (I − λ1E1)y

∥
∥
2 =

∥
∥x − y − λ1

(

E1x − E1y
)∥
∥
2

=
∥
∥x − y

∥
∥
2 − 2λ1

〈

x − y, E1x − E1y
〉

+ λ21
∥
∥E1x − E1y

∥
∥
2

≤ ∥
∥x − y

∥
∥
2 − 2λ1η1

∥
∥E1x − E1y

∥
∥
2 + λ21

∥
∥E1x − E1y

∥
∥
2

≤ ∥
∥x − y

∥
∥
2 + λ1

(

λ1 − 2η1
)∥
∥E1x − E1y

∥
∥
2

≤ ∥
∥x − y

∥
∥
2
,

(3.2)
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which implies that the mapping I−λ1E1 is nonexpansive, so is I−λ2E2. Let p ∈ Θ. We observe
that

∥
∥wn − p

∥
∥
2 =

∥
∥JM2,λ2(vn − λ2E2vn) − JM2,λ2

(

p − λ2E2p
)∥
∥
2

≤ ∥
∥(vn − λ2E2vn) −

(

p − λ2E2p
)∥
∥
2

≤ ∥
∥vn − p

∥
∥
2

=
∥
∥JM1,λ1(un − λ1E1un) − JM1,λ1

(

p − λ1E1p
)∥
∥
2

≤ ∥
∥(un − λ1E1un) −

(

p − λ1E1p
)∥
∥
2

=
∥
∥un − p

∥
∥
2
.

(3.3)

Since both I − rnA and I − qnB are nonexpansive for each n ≥ 1, let p ∈ Θ, then p = T
F1,ϕ1
rn (p −

rnAp) and p = T
F2,ϕ2
qn (p − qnBp); by conditions (i) and (ii), we have

∥
∥un − p

∥
∥
2 =

∥
∥
∥T

(F2,ϕ2)
qn

(

I − qnB
)

tn − T
(F2,ϕ2)
qn

(

I − qnB
)

p
∥
∥
∥

2

≤ ∥
∥
(

I − qnB
)

tn −
(

I − qnB
)

p
∥
∥
2

≤ ∥
∥tn − p

∥
∥
2 + qn

(

qn − 2β
)∥
∥Btn − Bp

∥
∥
2

≤ ∥
∥tn − p

∥
∥
2
,

∥
∥tn − p

∥
∥
2 =

∥
∥
∥T

(F1,ϕ1)
rn (I − rnA)xn − T

(F1,ϕ1)
rn (I − rnA)p

∥
∥
∥

2

≤ ∥
∥(I − rnA)xn − (I − rnA)p

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 + rn(rn − 2α)

∥
∥Axn −Ap

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2
.

(3.4)

Therefore, we get

∥
∥un − p

∥
∥ ≤ ∥

∥xn − p
∥
∥. (3.5)

Next, we will divide the proof into five steps.

Step 1. We show that {xn} is well defined. Let n = 1, then C1,i = C is closed and convex for
each i ≥ 1. Suppose that Cn,i is closed convex for some n > 1, then, from the definition of
Cn+1,i, we know that Cn+1,i is closed convex for the same n ≥ 1. Hence, Cn,i is closed convex
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for n ≥ 1 and for each i ≥ 1. This implies that Cn is closed convex for n ≥ 1. Furthermore, we
show that Θ ⊂ Cn. For n = 1,Θ ⊂ C = C1,i. For n ≥ 2, let p ∈ Θ, then

∥
∥yn,i − p

∥
∥
2 =

∥
∥
∥
∥
∥
αn,i

(

x0 − p
)

+ (1 − αn,i)(
1
tn

∫ tn

0
S(s)Wnwnds − p)

∥
∥
∥
∥
∥

2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥
∥
∥
∥

1
tn

∫ tn

0
S(s)Wnwnds − p

∥
∥
∥
∥
∥

2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥wn − p

∥
∥
2

=
∥
∥wn − p

∥
∥
2 + αn,i

(∥
∥x0 − p

∥
∥
2 − ∥

∥wn − p
∥
∥
2
)

≤ ∥
∥xn − p

∥
∥
2 + αn,i

(

‖x0‖2 + 2
〈

xn − x0, p
〉)

,

(3.6)

which shows that p ∈ Cn,i, ∀n ≥ 2, ∀i ≥ 1. Thus, Θ ⊂ Cn,i, ∀n ≥ 1, ∀i ≥ 1. Hence, it follows
that ∅/=Θ ⊂ Cn, ∀n ≥ 1. This implies that {xn} is well defined.

Step 2. We claim that limn→∞‖xn+1 − xn‖ = 0 and limn→∞‖yn,i − xn‖ = 0, for i ≥ 1. Since
xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, ∀n ≥ 1, we have

‖xn − x0‖ ≤ ‖xn+1 − x0‖, ∀n ≥ 1. (3.7)

Also, as Θ ⊂ Cn by (2.1), it follows that

‖xn − x0‖ ≤ ‖z − x0‖, z ∈ Θ, ∀n ≥ 1. (3.8)

Form (3.7) and (3.8), we have that limn→∞‖xn − x0‖ exists. Hence, {xn} is bounded and
so are {yn,i}, ∀i ≥ 1, {wn}, {vn}, {un}, {tn}, {Axn}, {Btn}, {E1un}, {E2vn}, {Wnwn}, and
{(1/tn)

∫ tn
0 S(s)Wnwnds}. For m > n ≥ 1, we have that xm = PCmx0 ∈ Cm ⊂ Cn. By (2.5),

we obtain

‖xm − xn‖2 ≤ ‖xn − x0‖2 − ‖xm − x0‖2. (3.9)

Letting m,n → ∞ and taking the limit in (3.9), we have ‖xm − xn‖ → 0, which shows that
{xn} is Cauchy. In particular,

lim
n→∞

‖xn+1 − xn‖ = 0. (3.10)
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Since {xn} is Cauchy, we assume that xn → z ∈ C. Since xn+1 = PCn+1x0 ∈ Cn+1, then

∥
∥yn,i − xn+1

∥
∥
2 ≤ ‖xn − xn+1‖2 + αn,i

(

‖x0‖2 + 2〈xn − x0, xn+1〉
)

−→ 0, (3.11)

and it follows that

∥
∥yn,i − xn

∥
∥ ≤ ∥

∥yn,i − xn+1
∥
∥ + ‖xn+1 − xn‖. (3.12)

Therefore,

lim
n→∞

∥
∥yn,i − xn

∥
∥ = 0, ∀i ≥ 1. (3.13)

Step 3. We claim that the following statements hold:

(1) limn→∞‖un − tn‖ = 0,

(2) limn→∞‖tn − xn‖ = 0,

(3) limn→∞‖wn − vn‖ = 0,

(4) limn→∞‖vn − un‖ = 0.

For p ∈ Θ, from (3.4), and (3.6), we obtain

∥
∥yn,i − p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥wn − p

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥un − p

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

(∥
∥tn − p

∥
∥
2 + qn

(

qn − 2β
)∥
∥Btn − Bp

∥
∥
2
)

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 + (1 − αn,i)qn

(

qn − 2β
)∥
∥Btn − Bp

∥
∥
2
.

(3.14)

Since 0 < c ≤ qn ≤ d < 2β, we have

(1 − αn,i)qn
(

2β − qn
)∥
∥Btn − Bp

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ∥

∥yn,i − p
∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − yn,i

∥
∥
(∥
∥xn − p

∥
∥ +

∥
∥yn,i − p

∥
∥
)

.

(3.15)

Hence, by condition (iii) and (3.13), we have

lim
n→∞

∥
∥Btn − Bp

∥
∥ = 0. (3.16)
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From (3.6), we have

∥
∥yn,i − p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥wn − p

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥un − p

∥
∥
2
.

(3.17)

On the other hand,

∥
∥un − p

∥
∥
2 =

∥
∥
∥T

(F2,ϕ2)
qn

(

tn − qnBtn
) − T

(F2,ϕ2)
qn

(

p − qnBp
)
∥
∥
∥

2

≤ 〈(

tn − qnBtn
) − (

p − qnBp
)

, un − p
〉

=
1
2

{∥
∥
(

tn − qnBtn
) − (

p − qnBp
)∥
∥
2 +

∥
∥un − p

∥
∥
2

−∥∥(tn − qnBtn
) − (

p − qnBp
) − (

un − p
)∥
∥
2
}

≤ 1
2

{∥
∥tn − p

∥
∥
2 +

∥
∥un − p

∥
∥
2 − ∥

∥
(

tn − qnBtn
) − (

p − qnBp
) − (

un − p
)∥
∥
2
}

≤ 1
2

{∥
∥xn − p

∥
∥
2 +

∥
∥un − p

∥
∥
2 − ‖un − tn‖2 + 2qn

〈

tn − un, Btn − Bp
〉 − s2n

∥
∥Btn − Bp

∥
∥
2
}

,

(3.18)

and hence,

∥
∥un − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ‖un − tn‖2 + 2qn‖tn − un‖

∥
∥Btn − Bp

∥
∥. (3.19)

Putting (3.19) into (3.17), for i ≥ 1, we have

∥
∥yn,i − p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

(∥
∥xn − p

∥
∥
2 − ‖un − tn‖2 + 2qn‖tn − un‖

∥
∥Btn − Bp

∥
∥

)

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − (1 − αn,i)‖un − tn‖2 + 2qn‖tn − un‖

∥
∥Btn − Bp

∥
∥.

(3.20)

It follows that

(1 − αn,i)‖un − tn‖2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ∥

∥yn,i − p
∥
∥
2 + 2qn‖tn − un‖

∥
∥Btn − Bp

∥
∥

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − yn,i

∥
∥
(∥
∥xn − p

∥
∥ +

∥
∥yn,i − p

∥
∥
)

+ 2qn‖tn − un‖
∥
∥Btn − Bp

∥
∥.

(3.21)
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Therefore, from condition (iii), (3.13), and (3.16), we have

lim
n→∞

‖un − tn‖ = 0. (3.22)

Furthermore, from (3.4), and (3.6), we get

∥
∥yn,i − p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥wn − p

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥un − p

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥tn − p

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

{∥
∥xn − p

∥
∥
2 + rn(rn − 2α)

∥
∥Axn −Ap

∥
∥
2
}

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 + (1 − αn,i)rn(rn − 2α)

∥
∥Axn −Ap

∥
∥
2
.

(3.23)

Since 0 < a ≤ rn ≤ b < 2α, we have

(1 − αn,i)rn(2α − rn)
∥
∥Axn −Ap

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ∥

∥yn,i − p
∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − yn,i

∥
∥
(∥
∥xn − p

∥
∥ +

∥
∥yn,i − p

∥
∥
)

.

(3.24)

Then, by condition (iii) and (3.13), we obtain that

lim
n→∞

∥
∥Axn −Ap

∥
∥ = 0. (3.25)

From (3.6), we have

∥
∥yn,i − p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥wn − p

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥un − p

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥tn − p

∥
∥
2
.

(3.26)
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On the other hand, we note that

∥
∥tn − p

∥
∥
2 ≤

∥
∥
∥T

(F1,ϕ1)
rn (xn − rnAxn) − T

(F1,ϕ1)
rn

(

p − rnAp
)
∥
∥
∥

2

≤ 〈

(xn − rnAxn) −
(

p − rnAp
)

, tn − p
〉

=
1
2

{∥
∥(xn − rnAxn) −

(

p − rnAp
)∥
∥
2 +

∥
∥tn − p

∥
∥
2

−∥∥(xn − rnAxn) −
(

p − rnAp
) − (

tn − p
)∥
∥
2
}

≤ 1
2

{∥
∥xn − p

∥
∥
2 +

∥
∥tn − p

∥
∥
2 − ∥

∥(xn − rnAxn) −
(

p − rnAp
) − (

tn − p
)∥
∥
2
}

=
1
2

{∥
∥xn − p

∥
∥
2 +

∥
∥tn − p

∥
∥
2 − ‖tn − xn‖2 + 2rn

〈

xn − tn,Axn −Ap
〉 − r2n

∥
∥Axn −Ap

∥
∥
2
}

,

(3.27)

and hence,

∥
∥tn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ‖tn − xn‖2 + 2rn‖xn − tn‖

∥
∥Axn −Ap

∥
∥. (3.28)

Putting (3.28) into (3.26), we have

∥
∥yn,i − p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

(∥
∥xn − p

∥
∥
2 − ‖tn − xn‖2 + 2rn‖xn − tn‖

∥
∥Axn −Ap

∥
∥

)

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − (1 − αn,i)‖tn − xn‖2 + 2rn‖xn − tn‖

∥
∥Axn −Ap

∥
∥.

(3.29)

It follows that

(1 − αn,i)‖xn − tn‖2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ∥

∥yn,i − p
∥
∥
2 + 2rn‖xn − zn‖

∥
∥Axn −Ap

∥
∥

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − yn,i

∥
∥
(∥
∥xn − p

∥
∥ +

∥
∥yn,i − p

∥
∥
)

+ 2rn‖xn − zn‖
∥
∥Axn −Ap

∥
∥.

(3.30)

Therefore, by condition (iii), (3.13), and (3.25), we have

lim
n→∞

‖xn − tn‖ = 0. (3.31)
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Condition (iii) implies that

∥
∥
∥
∥
∥
yn,i − 1

tn

∫ tn

0
S(s)Wnwnds

∥
∥
∥
∥
∥

2

= αn,i

∥
∥
∥
∥
∥
x0 − 1

tn

∫ tn

0
S(s)Wnwnds

∥
∥
∥
∥
∥
−→ 0. (3.32)

It follows that

∥
∥
∥
∥
∥
xn − 1

tn

∫ tn

0
S(s)Wnwnds

∥
∥
∥
∥
∥
≤ ∥
∥xn − yn,i

∥
∥ +

∥
∥
∥
∥
∥
yn,i +

1
tn

∫ tn

0
S(s)Wnwnds

∥
∥
∥
∥
∥
−→ 0. (3.33)

From (3.6), we have

∥
∥yn,i − p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥wn − p

∥
∥
2

= αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥JM2,λ2(vn − λ2E2vn) − JM2,λ2(p − λ2E2p)

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥(vn − λ2E2vn) − (p − λ2E2p)

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

(∥
∥vn − p

∥
∥
2 + λ2

(

λ2 − 2η2
)∥
∥E2vn − E2p

∥
∥
2
)

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 + (1 − αn,i)λ2

(

λ2 − 2η2
)∥
∥E2vn − E2p

∥
∥
2
.

(3.34)

Since 0 < g ≤ λ2 ≤ j < 2η2, we have

(1 − αn,i)λ2
(

2η2 − λ2
)∥
∥E2vn − E2p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ∥

∥yn,i − p
∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − yn,i

∥
∥
(∥
∥xn − p

∥
∥ +

∥
∥yn,i − p

∥
∥
)

.

(3.35)

Then, by condition (iii) and (3.13), we obtain that

lim
n→∞

∥
∥E2vn − E2p

∥
∥ = 0. (3.36)
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From (3.6), we have

∥
∥yn,i − p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥wn − p

∥
∥
2
. (3.37)

On the other hand, we note that

∥
∥wn − p

∥
∥
2 ≤ ∥

∥JM2,λ2(vn − λ2E2vn) − JM2,λ2

(

p − λ2E2p
)∥
∥
2

≤ 〈(vn − λ2E2vn) −
(

p − λ2E2p
)

, wn − p〉

=
1
2

{∥
∥(vn − λ2E2vn) −

(

p − λ2E2p
)∥
∥
2 +

∥
∥wn − p

∥
∥
2

−∥∥(vn − λ2E2vn) −
(

p − λ2E2p
) − (

wn − p
)∥
∥
2
}

≤ 1
2

{∥
∥vn − p

∥
∥
2 +

∥
∥wn − p

∥
∥
2 − ∥

∥(vn − λ2E2vn) − (p − λ2E2p) − (wn − p)
∥
∥
2
}

≤ 1
2

{∥
∥xn − p

∥
∥
2 +

∥
∥wn − p

∥
∥
2 − ‖wn − vn‖2 + 2λ2〈vn −wn, E2vn − E2p〉

−λ22
∥
∥E2vn − E2p

∥
∥
2
}

,

(3.38)

and hence,

∥
∥wn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ‖wn − vn‖2 + 2λ2‖vn −wn‖

∥
∥E2vn − E2p

∥
∥. (3.39)

Putting (3.39) into (3.37),

∥
∥yn,i − p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

(∥
∥xn − p

∥
∥
2 − ‖wn − vn‖2 + 2λ2‖vn −wn‖

∥
∥E2vn − E2p

∥
∥

)

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − (1 − αn,i)‖wn − vn‖2 + 2λ2‖vn −wn‖

∥
∥E2vn − E2p

∥
∥,

(3.40)

this implies that

(1 − αn,i)‖wn − vn‖2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ∥

∥yn,i − p
∥
∥
2 + 2λ2‖wn − vn‖

∥
∥E2vn − E2p

∥
∥

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − yn,i

∥
∥
(∥
∥xn − p

∥
∥ +

∥
∥yn,i − p

∥
∥
)

+ 2λ2‖wn − vn‖
∥
∥E2vn − E2p

∥
∥.

(3.41)
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Therefore, by condition (iii), (3.13), and (3.36), we have

lim
n→∞

‖wn − vn‖ = 0. (3.42)

Furthermore, from (3.6), we have

∥
∥yn,i − p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥wn − p

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥vn − p

∥
∥
2

= αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥JM1,λ1(un − λ1E1un) − JM1,λ1(p − λ1E1p)

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥(un − λ1E1un) − (p − λ1E1p)

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

(∥
∥un − p

∥
∥
2 + λ1

(

λ1 − 2η1
)∥
∥E1un − E1p

∥
∥
2
)

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 + (1 − αn,i)λ1

(

λ1 − 2η1
)∥
∥E1un − E1p

∥
∥
2
.

(3.43)

Since 0 < e ≤ λ1 ≤ f < 2η1, we have

(1 − αn,i)λ1
(

2η1 − λ1
)∥
∥E1un − E1p

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ∥

∥yn,i − p
∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − yn,i

∥
∥
(∥
∥xn − p

∥
∥ +

∥
∥yn,i − p

∥
∥
)

.

(3.44)

Then, by condition (iii) and (3.13), we obtain that

lim
n→∞

∥
∥E1un − E1p

∥
∥ = 0. (3.45)

From (3.6), we have

∥
∥yn,i − p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥wn − p

∥
∥
2

≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

∥
∥vn − p

∥
∥
2
.

(3.46)
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On the other hand, we note that

∥
∥vn − p

∥
∥
2 ≤ ∥

∥JM1,λ1(un − λ1E1un) − JM1,λ1(p − λ1E1p)
∥
∥
2

≤ 〈

(un − λ1E1un) −
(

p − λ1E1p
)

, vn − p
〉

=
1
2

{∥
∥(un − λ1E1un) −

(

p − λ1E1p
)∥
∥
2 +

∥
∥vn − p

∥
∥
2

−∥∥(un − λ1E1un) −
(

p − λ1E1p
) − (

vn − p
)∥
∥
2
}

≤ 1
2

{∥
∥un − p

∥
∥
2 +

∥
∥vn − p

∥
∥
2 − ∥

∥(un − λ1E1un) −
(

p − λ1E1p
) − (

vn − p
)∥
∥
2
}

≤ 1
2

{∥
∥xn − p

∥
∥
2 +

∥
∥vn − p

∥
∥
2 − ‖vn − un‖2 + 2λ1

〈

un − vn, E1un − E1p
〉

−λ21
∥
∥E1un − E1p

∥
∥
2
}

,

(3.47)

and hence,

∥
∥vn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ‖vn − un‖2 + 2λ1‖un − vn‖

∥
∥E1un − E1p

∥
∥. (3.48)

Putting (3.48) into (3.46),

∥
∥yn,i − p

∥
∥
2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 + (1 − αn,i)

(∥
∥xn − p

∥
∥
2 − ‖vn − un‖2 + 2λ1‖un − vn‖

∥
∥E1un − E1p

∥
∥

)

≤ αn,i
∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − (1 − αn,i)‖vn − un‖2 + 2λ1‖un − vn‖

∥
∥E1un − E1p

∥
∥,

(3.49)

this implies that

(1 − αn,i)‖vn − un‖2 ≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ∥

∥yn,i − p
∥
∥
2 + 2λ1‖vn − un‖

∥
∥E1un − E1p

∥
∥

≤ αn,i

∥
∥x0 − p

∥
∥
2 +

∥
∥xn − yn,i

∥
∥
(∥
∥xn − p

∥
∥ +

∥
∥yn,i − p

∥
∥
)

+ 2λ1‖vn − un‖
∥
∥E1un − E1p

∥
∥.

(3.50)

Therefore, by condition (iii), (3.13), and (3.45), we have

lim
n→∞

‖vn − un‖ = 0. (3.51)

Step 4. We show that z ∈ Θ := F(S)∩F(W)∩GMEP(F1, ϕ1, A)∩GMEP(F2, ϕ2, B)∩I(E1,M1)∩
I(E2,M2). Since {wni} is bounded, there exists a subsequence {wnij

} of {wni}which converges
weakly to z ∈ C. Without loss of generality, we can assume that wni ⇀ z.



20 Journal of Applied Mathematics

(1) First, we prove that z ∈ F(S). From (3.22), (3.31), (3.33), (3.42), and (3.51), we get

lim
n→∞

∥
∥
∥
∥
∥
wn − 1

tn

∫ tn

0
S(s)Wnwnds

∥
∥
∥
∥
∥
= 0. (3.52)

Since {Wnwn} is bounded and from Lemma 2.8 for all s ≥ 0, we have

lim
n→∞

∥
∥
∥
∥
∥

1
tn

∫ tn

0
S(s)Wnwnds − S(s)

(

1
tn

∫ tn

0
S(s)Wnwnds

)∥
∥
∥
∥
∥
= 0, (3.53)

and since

‖wn − S(s)wn‖ ≤
∥
∥
∥
∥
∥
wn − 1

tn

∫ tn

0
S(s)Wnwnds

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

1
tn

∫ tn

0
S(s)Wnwnds − S(s)

1
tn

∫ tn

0
S(s)Wnwnds

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
S(s)

1
tn

∫ tn

0
S(s)Wnwnds − S(s)wn

∥
∥
∥
∥
∥

≤ 2

∥
∥
∥
∥
∥
wn − 1

tn

∫ tn

0
S(s)Wnwnds

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

1
tn

∫ tn

0
S(s)Wnwnds − S(s)

1
tn

∫ tn

0
S(s)Wnwnds

∥
∥
∥
∥
∥
.

(3.54)

It follows from (3.52) and (3.53) that

lim
n→∞

‖wn − S(s)wn‖ = 0. (3.55)

Indeed, from Lemma 2.9 and (3.55), we get z ∈ F(S), that is, z = S(s)z, ∀s ≥ 0.
(2) Next, we show that z ∈ F(W) =

⋂∞
n=1 F(Wn), where F(Wn) =

⋂n
i=1 F(Ti), ∀n ≥ 1,

and F(Wn+1) ⊂ F(Wn). Assume that z /∈ F(W), then there exists a positive integer m such
that z /∈ F(Tm), and so z /∈ ⋂m

i=1 F(Ti). Hence, for any n ≥ m, z /∈ ⋂n
i=1 F(Ti) = F(Wn), that

is, z/=Wnz. This together with z = S(s)z, ∀s ≥ 0 shows that z = S(s)z/=S(s)Wnz, ∀s ≥ 0;
therefore, we have z/= (1/tn)

∫ tn
0 S(s)Wnzds, ∀n ≥ m. It follows from the Opial’s condition
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and (3.52) that

lim inf
i→∞

‖wni − z‖ < lim inf
i→∞

∥
∥
∥
∥
∥
wni −

1
tni

∫ tni

0
S(s)Wnizds

∥
∥
∥
∥
∥

≤ lim inf
i→∞

(∥
∥
∥
∥
∥
wni −

1
tni

∫ tni

0
S(s)Wniwnids

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

1
tni

∫ tni

0
S(s)Wniwnids −

1
tni

∫ tni

0
S(s)Wnizds

∥
∥
∥
∥
∥

)

≤ lim inf
i→∞

‖wni − z‖,

(3.56)

which is a contradiction. Thus, we get z ∈ F(W).
(3) Now, we prove that z ∈ GMEP(F1, ϕ,A). Since tn = T

(F1,ϕ1)
rn (xn − rnAxn), n ≥ 1, we

have for any y ∈ C that

F1
(

tn, y
)

+ ϕ1
(

y
) − ϕ1(tn) + 〈Axn, y − tn〉 + 1

rn
〈y − tn, tn − xn〉 ≥ 0, ∀y ∈ C. (3.57)

From (A2), we also have

ϕ1
(

y
) − ϕ1(tn) + 〈Axn, y − tn〉 + 1

rn
〈y − tn, tn − xn〉 ≥ F1

(

y, tn
)

, ∀y ∈ C. (3.58)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)z. Since y ∈ C and z ∈ C, we have yt ∈ C.
Then, we have

〈yt − tni , Ayt〉 ≥ 〈yt − tni , Ayt〉 − ϕ1
(

yt

)

+ ϕ1(tni) − 〈yt − tni , Axni〉

−
〈

yt − tni ,
tni − xni

rni

〉

+ F1
(

yt, tni

)

= 〈yt − tni , Ayt −Atni〉 + 〈yt − tni , Atni −Axni〉 − ϕ1
(

yt

)

+ ϕ1(tni)

−
〈

yt − tni ,
tni − xni

rni

〉

+ F1
(

yt, tni

)

.

(3.59)

Since ‖tni − xni‖ → 0, we have ‖Atni − Axni‖ → 0. Furthermore, from the inverse-strongly
monotonicity ofA, we have 〈yt − tni , Ayt −Atni〉 ≥ 0. So, from (A4), (A5), and the weak lower
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semicontinuity of ϕ1, (tni − xni)/rni → 0 and tni ⇀ z, we have at the limit

〈yt − z,Ayt〉 ≥ −ϕ1
(

yt

)

+ ϕ1(z) + F1
(

yt, z
)

, (3.60)

as i → ∞. From (A1), (A4), and (3.60), we also get

0 = F1
(

yt, yt

)

+ ϕ1
(

yt

) − ϕ1
(

yt

)

≤ tF1
(

yt, y
)

+ (1 − t)F1
(

yt, z
)

+ tϕ1
(

y
) − (1 − t)ϕ1(z) − ϕ

(

yt

)

= t
[

F1
(

yt, y
)

+ ϕ1
(

y
) − ϕ1

(

yt

)]

+ (1 − t)
[

F1
(

yt, z
)

+ ϕ1(z) − ϕ1
(

yt

)]

≤ t
[

F1
(

yt, y
)

+ ϕ1
(

y
) − ϕ1

(

yt

)]

+ (1 − t)
〈

yt − z,Ayt

〉

= t
[

F1
(

yt, y
)

+ ϕ1
(

y
) − ϕ1

(

yt

)]

+ (1 − t)t〈y − z,Ayt〉,

(3.61)

and hence,

0 ≤ F1
(

yt, y
)

+ ϕ1
(

y
) − ϕ1

(

yt

)

+ (1 − t)〈y − z,Ayt〉. (3.62)

Letting t → 0, we have, for each y ∈ C,

F1
(

z, y
)

+ ϕ1
(

y
) − ϕ1(z) +

〈

y − z,Az
〉 ≥ 0. (3.63)

This implies that z ∈ GMEP(F1, ϕ,A). By following the same arguments, we can show that
z ∈ GMEP(F2, ϕ, B).

(4) At last, we show that z ∈ I(E2,M2). Infact, since E2 is η2-inverse-strongly
monotone, this implies that E2 is(1/η2)-Lipschitz continuous monotone mapping and
domain of E2 equal to H. It follows from Lemma 2.5 that M2 + E2 is a maximal monotone.
Let (y, g) ∈ G(M2 + E2), that is, g − E2y ∈ M2(y). Since wni = JM2,λ2(vni − λ2E2vni), we have
vni − λ2E2vni ∈ (I + λ2M2)(wni), that is,

1
λ2

(vni −wni − λ2E2vni) ∈ M2(wni). (3.64)

Since M2 + E2 is a maximal monotone, we have

〈

y −wni , g − By − 1
λ2

(vni −wni − λ2E2vni)
〉

≥ 0, (3.65)
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and so

〈y −wni , g〉 ≥
〈

y −wni , E2y +
1
λ2

(vni −wni − λ2E2vni)
〉

=
〈

y −wni , E2y − E2wni + E2wni − E2vni +
1
λ2

(vni −wni)
〉

≥ 0 +
〈

y −wni , E2wni − E2vni

〉

+
〈

y −wni ,
1
λ2

(vni −wni)
〉

.

(3.66)

It follows from ‖vn −wn‖ → 0, ‖E2vn − E2wn‖ → 0, and wni ⇀ z that

lim
i→∞

〈y −wni , g〉 = 〈y −w, g〉 ≥ 0. (3.67)

It follows from the maximal monotonicity of M2 + E2 that 0 ∈ (M2 + E2)(z), that is, z ∈
I(E2,M2). By following the same arguments, we can show that z ∈ I(E1,M1). Hence, by
(1)–(4), we have z ∈ Θ.

Step 5. Noting that xn = PCnx0, by (2.5), we have

〈x0 − xn, y − xn〉 ≤ 0, ∀y ∈ Cn. (3.68)

Since Θ ⊂ Cn and by the continuity of inner product, we obtain from the above inequality
that

〈x0 − z, y − z〉 ≤ 0, ∀y ∈ C. (3.69)

By (2.5) again, we conclude that z = PΘx0. This completes the proof.

Using Theorem 3.1, we obtain the following corollaries.

Corollary 3.2. Let C be a nonempty closed-convex subset of a real Hilbert Space H. Let F1,F2 be
bifunctions of C × C into real numbers R satisfying (A1)–(A5), and let ϕ1, ϕ2 : C → R ∪ {+∞} be
proper lower semicontinuous and convex functions with assumption (B1) or (B2). Let A,B,E1,E2 be
α, β, η1, η2-inverse-strongly monotone mappings of C into H, respectively. Let S = {S(s) : 0 ≤ s <
∞} be a nonexpansive semigroup on C, and let {tn} be a positive real divergent sequence. Let {Vi :
C → C}∞i=1 be a countable family of uniformly k-strict pseudocontractions, let {Ti : C → C}∞i=1 be a
countable family of nonexpansive mappings defined by Tix = tx+ (1− t)Vix, ∀x ∈ C, ∀i ≥ 1, t ∈ [k, 1),
and let Wn be the W-mapping defined by (2.11) and W a mapping defined by (2.12) with F(W)/= ∅.
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Suppose thatΘ := F(S)∩F(W)∩GMEP(F1, ϕ1, A)∩GMEP(F2, ϕ2, B)∩V I(C,E1)∩V I(C,E2)/= ∅.
Let {xn} be a sequence generated by x0 ∈ C, C1,i = C, C1 =

⋂∞
i=1 C1,i, x1 = PC1x0, and

tn = T
(F1,ϕ1)
rn (xn − rnAxn),

un = T
(F2,ϕ2)
qn

(

tn − qnBtn
)

,

vn = PC(un − λ1E1un),

wn = PC(vn − λ2E2vn),

yn,i = αn,ix0 + (1 − αn,i)
1
tn

∫ tn

0
S(s)Wnwnds,

Cn+1,i =
{

z ∈ Cn,i :
∥
∥yn,i − z

∥
∥
2 ≤ ‖xn − z‖2 + αn,i

(

‖x0‖2 + 2〈xn − x0, z〉
)}

,

Cn+1 =
∞⋂

i=1

Cn+1,i,

xn+1 = PCn+1x0,

(3.70)

for every n ≥ 0, where {αn,i}∞n=1 ⊂ (0, 1), {rn}, {qn} ⊂ (0,∞), λ1 ∈ (0, 2η1), and λ2 ∈ (0, 2η2) satisfy
the following conditions:

(i) 0 < a ≤ rn ≤ b < 2α,

(ii) 0 < c ≤ qn ≤ d < 2β,

(iii) limn→∞αn,i = 0,

(iv) 0 < e ≤ λ1 ≤ f < 2η1,

(v) 0 < g ≤ λ2 ≤ j < 2η2,

then {xn} converges strongly to PΘx0.

Proof. From Theorem 3.1, put M = ∂δC, then JM,λ1 = PC and JM,λ2 = PC. So we have vn =
PC(un − λ1E1un) and wn = PC(vn − λ2E2vn). The conclusion of Corollary 3.2 can be obtained
from Theorem 3.1 immediately.

4. Applications

In this section, we study a kind of multiobjective optimization problem by using the result
of this paper. We will give an iterative algorithm of solution for the following optimization
problem with nonempty set of solutions:

min h1(x)

min h2(x)

x ∈ C,

(4.1)
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where h(x) is a convex and lower semicontinuous functional, and define C as a closed-
convex subset of a real Hilbert space H. We denote the set of solutions of (4.1) by M(h1)
and M(h2). Let Fi : C × C → R be a bifunction defined by Fi(x, y) = hi(y) − hi(x). We
consider the equilibrium problem, and it is obvious that EP(Fi) = M(hi), i = 1, 2. Therefore,
from Theorem 3.1, we obtain the following Corollaries.

Corollary 4.1. Let C be a nonempty closed-convex subset of a real Hilbert Space H. Let h1, h2 : C →
R∪{+∞} be proper lower semicontinuous and convex functions. Let E1,E2 be η1, η2-inverse-strongly
monotone mappings of C into H, respectively, and let M1,M2 : H → 2H be maximal monotone
mappings. Let S = {S(s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C, and let {tn} be a
positive real divergent sequence. Let {Vi : C → C}∞i=1 be a countable family of uniformly k-strict
pseudocontractions, let {Ti : C → C}∞i=1 be a countable family of nonexpansive mappings defined by
Tix = tx+(1−t)Vix, ∀x ∈ C, ∀i ≥ 1, t ∈ [k, 1), and let Wn be the W-mapping defined by (2.11) and
W a mapping defined by (2.12) with F(W)/= ∅. Suppose that Θ := F(S) ∩ F(W) ∩M(h1) ∩M(h2) ∩
I(E1,M1)∩I(E2,M2)/= ∅. Let {xn} be a sequence generated by x0 ∈ C,C1,i = C, C1 =

⋂∞
i=1 C1,i, x1 =

PC1x0, and

h1(t) − h1(tn) +
1
rn
〈t − tn, tn − xn〉 ≥ 0, ∀t ∈ C,

h2(u) − h2(un) +
1
qn

〈u − un, un − tn〉 ≥ 0, ∀u ∈ C,

vn = JM1,λ1(un − λ1E1un),

wn = JM2,λ2(vn − λ2E2vn),

yn,i = αn,ix0 + (1 − αn,i)
1
tn

∫ tn

0
S(s)Wnwnds,

Cn+1,i =
{

z ∈ Cn,i :
∥
∥yn,i − z

∥
∥
2 ≤ ‖xn − z‖2 + αn,i

(

‖x0‖2 + 2〈xn − x0, z〉
)}

,

Cn+1 =
∞⋂

i=1

Cn+1,i,

xn+1 = PCn+1x0,

(4.2)

for every n ≥ 0, where {αn,i}∞n=1 ⊂ (0, 1), {rn}, {qn} ⊂ (0,∞), λ1 ∈ (0, 2η1), and λ2 ∈ (0, 2η2) satisfy
the following conditions:

(i) lim infn→∞rn > 0,

(ii) lim infn→∞qn > 0,

(iii) limn→∞αn,i = 0,

(iv) 0 < e ≤ λ1 ≤ f < 2η1,

(v) 0 < g ≤ λ2 ≤ j < 2η2,

then {xn} converges strongly to PΘx0.
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Proof. From Theorem 3.1, put F1(tn, t) = h1(t) − h1(tn), F2(un, u) = h2(u) − h2(un), and
A,B, ϕ1, ϕ2 ≡ 0. The conclusion of Corollary 4.1 can be obtained from Theorem 3.1
immediately.

Corollary 4.2. Let C be a nonempty closed-convex subset of a real Hilbert Space H. Let h1, h2 : C →
R∪{+∞} be proper lower semicontinuous and convex functions. Let E1,E2 be η1, η2-inverse-strongly
monotone mappings of C into H, respectively, and let M1,M2 : H → 2H be maximal monotone
mappings. Let S = {S(s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C, and let {tn} be a
positive real divergent sequence. Let {Vi : C → C}∞i=1 be a countable family of uniformly k-strict
pseudocontractions, let {Ti : C → C}∞i=1 be a countable family of nonexpansive mappings defined by
Tix = tx+(1−t)Vix, ∀x ∈ C, ∀i ≥ 1, t ∈ [k, 1), and letWn be the W-mapping defined by (2.11) and
W a mapping defined by (2.12) with F(W)/= ∅. Suppose that Θ := F(S) ∩ F(W) ∩M(h1) ∩M(h2) ∩
V I(C,E1)∩V I(C,E2)/= ∅. Let {xn} be a sequence generated by x0 ∈ C,C1,i = C,C1 =

⋂∞
i=1 C1,i, x1 =

PC1x0, and

h1(t) − h1(tn) +
1
rn
〈t − tn, tn − xn〉 ≥ 0, ∀t ∈ C,

h2(u) − h2(un) +
1
qn

〈u − un, un − tn〉 ≥ 0, ∀u ∈ C,

vn = PC(un − λ1E1un),

wn = PC(vn − λ2E2vn),

yn,i = αn,ix0 + (1 − αn,i)
1
tn

∫ tn

0
S(s)Wnwnds,

Cn+1,i =
{

z ∈ Cn,i :
∥
∥yn,i − z

∥
∥
2 ≤ ‖xn − z‖2 + αn,i

(

‖x0‖2 + 2〈xn − x0, z〉
)}

,

Cn+1 =
∞⋂

i=1

Cn+1,i,

xn+1 = PCn+1x0,

(4.3)

for every n ≥ 0, where {αn,i}∞n=1 ⊂ (0, 1), {rn}, {qn} ⊂ (0,∞), λ1 ∈ (0, 2η1), and λ2 ∈ (0, 2η2) satisfy
the following conditions:

(i) lim infn→∞rn > 0,

(ii) lim infn→∞qn > 0,

(iii) limn→∞αn,i = 0,

(iv) 0 < e ≤ λ1 ≤ f < 2η1,

(v) 0 < g ≤ λ2 ≤ j < 2η2,

then {xn} converges strongly to PΘx0.
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