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On utilising the spectral representation of selfadjoint operators in Hilbert spaces, some trapezoidal
inequalities for various classes of continuous functions of such operators are given.

1. Introduction

In classical analysis a trapezoidal type inequality is an inequality that provides upper and/or
lower bounds for the quantity

f(a) + f(b)
2

(b − a) −
∫b

a

f(t)dt, (1.1)

that is, the error in approximating the integral by a trapezoidal rule, for various classes of
integrable functions f defined on the compact interval [a, b].

In order to introduce the reader to some of the well-known results and prepare the
background for considering a similar problem for functions of selfadjoint operators in Hilbert
spaces, we mention the following inequalities.

The case of functions of bounded variation was obtained in [1] (see also [1, p. 68]):

Theorem 1.1. Let f : [a, b] → � be a function of bounded variation. One has the inequality
∣∣∣∣∣
∫b

a

f(t)dt − f(a) + f(b)
2

(b − a)

∣∣∣∣∣ ≤
1
2
(b − a)

b∨
a

(
f
)
, (1.2)



2 Abstract and Applied Analysis

where ∨b
a(f) denotes the total variation of f on the interval [a, b]. The constant 1/2 is the best

possible one.

This result may be improved if one assumes the monotonicity of f as follows (see [1,
p. 76]).

Theorem 1.2. Let f : [a, b] → � be a monotonic nondecreasing function on [a, b]. Then one has
the inequalities

∣∣∣∣∣
∫b

a

f(t)dt − f(a) + f(b)
2

(b − a)

∣∣∣∣∣ ≤
1
2
(b − a)

[
f(b) − f(a)

] −
∫b

a

sgn
(
t − a + b

2

)
f(t)dt

≤ 1
2
(b − a)

[
f(b) − f(a)

]
.

(1.3)

The above inequalities are sharp.

If the mapping is Lipschitzian, then the following result holds as well [3] (see also [1,
p. 82]).

Theorem 1.3. Let f : [a, b] → � be an L-Lipschitzian function on [a, b], that is, f satisfies the
condition

∣∣f(s) − f(t)
∣∣ ≤ L|s − t| for any s, t ∈ [a, b]

(
L > 0 is given

)
. (L)

Then one has the inequality

∣∣∣∣∣
∫b

a

f(t)dt − f(a) + f(b)
2

(b − a)

∣∣∣∣∣ ≤
1
4
(b − a)2L. (1.4)

The constant 1/4 is best in (1.4).

If we would assume absolute continuity for the function f , then the following
estimates in terms of the Lebesgue norms of the derivative f ′ hold ([1, p. 93]).

Theorem 1.4. Let f : [a, b] → � be an absolutely continuous function on [a, b]. Then one has

∣∣∣∣∣
∫b
a

f(t)dt − f(a) + f(b)
2

(b − a)

∣∣∣∣∣

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
4
(b − a)2

∥∥f ′∥∥
∞ if f ′ ∈ L∞[a, b],

1

2
(
q + 1

)1/q (b − a)1+1/q
∥∥f ′∥∥

p
if f ′ ∈ Lp[a, b], p > 1,

1
p
+
1
q
= 1,

1
2
(b − a)

∥∥f ′∥∥
1,

(1.5)
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where ‖ · ‖p(p ∈ [1,∞]) are the Lebesgue norms, that is,

∥∥f ′∥∥
∞ = ess sup

s∈[a,b]

∣∣f ′(s)
∣∣,

∥∥f ′∥∥
p
:=
(∫b

a

∣∣f ′(s)
∣∣ds)1/p, p ≥ 1.

(1.6)

The case of convex functions is as follows [4].

Theorem 1.5. Let f : [a, b] → � be a convex function on [a, b]. Then one has the inequalities

1
8
(b − a)2

[
f ′
+

(
a + b

2

)
− f ′

−

(
a + b

2

)]
≤ f(a) + f(b)

2
(b − a) −

∫b

a

f(t)dt

≤ 1
8
(b − a)2

[
f ′
−(b) − f ′

+(a)
]
.

(1.7)

The constant 1/8 is sharp in both sides of (1.7).

For other scalar trapezoidal type inequalities, see [2].

2. Trapezoidal Operator Inequalities

In order to provide some generalizations for functions of selfadjoint operators of the above
trapezoidal inequalities, we need some concepts as results as follows.

LetA be a selfadjoint linear operator on a complex Hilbert space (H ; 〈·, ·〉). The Gelfand
map establishes a ∗-isometrically isomorphism Φ between the set C(Sp(A)) of all continuous
functions defined on the spectrum of A, denoted Sp(A), and the C∗-algebra C∗(A) generated
by A and the identity operator 1H onH as follows (see for instance [5, page 3]):

For any f, g ∈ C(Sp(A)) and any α, β ∈ � we have

(i) Φ(αf + βg) = αΦ(f) + βΦ(g);

(ii) Φ(fg) = Φ(f)Φ(g) and Φ(f) = Φ(f)∗;

(iii) ‖Φ(f)‖ = ‖f‖ := supt∈Sp(A)|f(t)|;
(iv) Φ(f0) = 1H and Φ(f1) = A, where f0(t) = 1 and f1(t) = t, for t ∈ Sp(A).

With this notation we define

f(A) := Φ
(
f
) ∀f ∈ C

(
Sp(A)

)
(2.1)

and we call it the continuous functional calculus for a selfadjoint operator A.
IfA is a selfadjoint operator and f is a real-valued continuous function on Sp(A), then

f(t) ≥ 0 for any t ∈ Sp(A) implies that f(A) ≥ 0, for example f(A) is a positive operator on H .
Moreover, if both f and g are real-valued functions on Sp(A) then the following important
property holds:

f(t) ≥ g(t) for any t ∈ Sp(A) implies that f(A) ≥ g(A) (P)

in the operator order of B(H).
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For a recent monograph devoted to various inequalities for continuous functions of
selfadjoint operators, see [5] and the references therein.

For other recent results see [6–12].
Let U be a selfadjoint operator on the complex Hilbert space (H, 〈·, ·〉) with the

spectrum Sp(U) included in the interval [m,M] for some real numbersm < M and let {Eλ}λ
be its spectral family. Then for any continuous function f : [m,M] → � , it is well-known that
we have the following spectral representation in terms of the Riemann-Stieltjes integral:

〈
f(U)x, y

〉
=
∫M

m−0
f(λ)d

(〈
Eλx, y

〉)
, (2.2)

for any x, y ∈ H . The function gx,y(λ) := 〈Eλx, y〉 is of bounded variation on the interval
[m,M] and

gx,y(m − 0) = 0, gx,y(M) =
〈
x, y
〉

(2.3)

for any x, y ∈ H . It is also well-known that gx(λ) := 〈Eλx, x〉 is monotonic nondecreasing and
right continuous on [m,M].

With the notations introduced above, we consider in this paper the problem of
bounding the error

f(M) + f(m)
2

· 〈x, y〉 − 〈f(A)x, y
〉

(2.4)

in approximating 〈f(A)x, y〉 by the trapezoidal type formula ((f(M) + f(m))/2) · 〈x, y〉,
where x, y are vectors in the Hilbert space H ,f is a continuous functions of the selfadjoint
operator A with the spectrum in the compact interval of real numbers [m,M]. Applications
for some particular elementary functions are also provided.

3. Some Trapezoidal Vector Inequalities

The following result holds.

Theorem 3.1. Let A be a selfadjoint operator in the Hilbert space H with the spectrum Sp(A) ⊆
[m,M] for some real numbers m < M and let {Eλ}λ be its spectral family. If f : [m,M] → � is a
continuous function of bounded variation on [m,M], then one has the inequality

∣∣∣∣f(M) + f(m)
2

· 〈x, y〉 − 〈f(A)x, y
〉∣∣∣∣

≤ 1
2

max
λ∈[m,M]

[
〈Eλx, x〉1/2

〈
Eλy, y

〉1/2 + 〈(1H − Eλ)x, x〉1/2
〈
(1H − Eλ)y, y

〉1/2]M∨
m

(
f
)

≤ 1
2
‖x‖∥∥y∥∥Mm (f)

(3.1)

for any x, y ∈ H .
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Proof. If f, u : [m,M] → � are such that the Riemann-Stieltjes integral
∫b
a
f(t)du(t) exists,

then a simple integration by parts reveals the identity

∫b

a

f(t)du(t) =
f(a) + f(b)

2
[u(b) − u(a)] −

∫b
a

[
u(t) − u(a) + u(b)

2

]
df(t). (3.2)

If we write the identity (3.2) for u(λ) = 〈Eλx, y〉, then we get

∫M

m−0
f(λ)d

(〈
Eλx, y

〉)
=
f(m) + f(M)

2
· 〈x, y〉 −

∫M

m−0

(〈
Eλx, y

〉 − 1
2
〈
x, y
〉)

df(λ)
(3.3)

which, by (2.2), gives the following identity of interest in itself

f(m) + f(M)
2

· 〈x, y〉 − 〈f(A)x, y
〉
=
1
2

∫M

m−0

[〈
Eλx, y

〉
+
〈
(Eλ − 1H)x, y

〉]
df(λ), (3.4)

for any x, y ∈ H .
It is well-known that if p : [a, b] → � is a continuous function and v : [a, b] → � is of

bounded variation, then the Riemann-Stieltjes integral
∫b
a
p(t)dv(t) exists and the following

inequality holds:

∣∣∣∣∣
∫b

a

p(t)dv(t)

∣∣∣∣∣ ≤ max
t∈[a,b]

∣∣p(t)∣∣ b∨
a

(v), (3.5)

where ∨b
a(v) denotes the total variation of v on [a, b].

Utilizing the property (3.5), we have from (3.4) that

∣∣∣∣f(m) + f(M)
2

· 〈x, y〉 − 〈f(A)x, y
〉∣∣∣∣ ≤ 1

2
max

λ∈[m,M]

∣∣〈Eλx, y
〉
+
〈
(Eλ − 1H)x, y

〉∣∣M∨
m

(
f
)

≤ 1
2

[
max

λ∈[m,M]

[∣∣〈Eλx, y
〉∣∣ + ∣∣〈(1H − Eλ)x, y

〉∣∣]]M∨
m

(
f
)
.

(3.6)

If P is a nonnegative operator on H , that is, 〈Px, x〉 ≥ 0 for any x ∈ H , then the following
inequality is a generalization of the Schwarz inequality in the Hilbert spaceH :

∣∣〈Px, y〉∣∣2 ≤ 〈Px, x〉〈Py, y〉, (3.7)

for any x, y ∈ H .
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On applying the inequality (3.7) we have

∣∣〈Eλx, y
〉∣∣ ≤ 〈Eλx, x〉1/2

〈
Eλy, y

〉1/2 ,
∣∣〈(1H − Eλ)x, y

〉∣∣ ≤ 〈(1H − Eλ)x, x〉1/2
〈
(1H − Eλ)y, y

〉1/2
,

(3.8)

which, together with the elementary inequality for a, b, c, d ≥ 0

ab + cd ≤
(
a2 + c2

)1/2(
b2 + d2

)1/2
(3.9)

produce the inequalities

∣∣〈Eλx, y
〉∣∣ + ∣∣〈(1H − Eλ)x, y

〉∣∣
≤ 〈Eλx, x〉1/2

〈
Eλy, y

〉1/2 + 〈(1H − Eλ)x, x〉1/2
〈
(1H − Eλ)y, y

〉1/2

≤ (〈Eλx, x〉 + 〈(1H − Eλ)x, x〉)1/2
(〈
Eλy, y

〉
+
〈
(1H − Eλ)y, y

〉)1/2
= ‖x‖∥∥y∥∥

(3.10)

for any x, y ∈ H .
On utilizing (3.6) and taking the maximum in (3.10) we deduce the desired result

(3.1).

The case of Lipschitzian functions may be useful for applications.

Theorem 3.2. Let A be a selfadjoint operator in the Hilbert space H with the spectrum Sp(A) ⊆
[m,M] for some real numbers m < M and let {Eλ}λ be its spectral family. If f : [m,M] → � is
Lipschitzian with the constant L > 0 on [m,M], then one has the inequality

∣∣∣∣f(M) + f(m)
2

· 〈x, y〉 − 〈f(A)x, y
〉∣∣∣∣

≤ 1
2
L

∫M

m−0

[
〈Eλx, x〉1/2

〈
Eλy, y

〉1/2 + 〈(1H − Eλ)x, x〉1/2
〈
(1H − Eλ)y, y

〉1/2]
dλ

≤ 1
2
(M −m)L‖x‖∥∥y∥∥

(3.11)

for any x, y ∈ H .
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Proof. It is well-known that if p : [a, b] → � is a Riemann integrable function and v : [a, b] →
� is Lipschitzian with the constant L > 0, that is,

|v(s) − v(t)| ≤ L|s − t| for any t,s ∈ [a, b], (3.12)

then the Riemann-Stieltjes integral
∫b
a p(t)dv(t) exists and the following inequality holds:

∣∣∣∣∣
∫b

a

p(t)dv(t)

∣∣∣∣∣ ≤ L

∫b

a

∣∣p(t)∣∣dt. (3.13)

Now, on applying this property of the Riemann-Stieltjes integral, we have from the
representation (3.4) that

∣∣∣∣f(m) + f(M)
2

· 〈x, y〉 − 〈f(A)x, y
〉∣∣∣∣ ≤ 1

2
L

∫M

m−0

∣∣〈Eλx, y
〉
+
〈
(Eλ − 1H)x, y

〉∣∣dλ,

≤ 1
2
L

∫M

m−0

[∣∣〈Eλx, y
〉∣∣ + ∣∣〈(1H − Eλ)x, y

〉∣∣]dλ,
(3.14)

for any x, y ∈ H .
Further, integrating (3.10) on [m,M] we have

∫M

m−0

[∣∣〈Eλx, y
〉∣∣ + ∣∣〈(1H − Eλ)x, y

〉∣∣]dλ

≤
∫M

m−0

[
〈Eλx, x〉1/2

〈
Eλy, y

〉1/2 + 〈(1H − Eλ)x, x〉1/2
〈
(1H − Eλ)y, y

〉1/2]
dλ

≤ (M −m)‖x‖
∥∥y∥∥

(3.15)

which together with (3.14) produces the desired result (3.11).

4. Other Trapezoidal Vector Inequalities

The following result provides a different perspective in bounding the error in the trapezoidal
approximation.
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Theorem 4.1. Let A be a selfadjoint operator in the Hilbert space H with the spectrum Sp(A) ⊆
[m,M] for some real numbers m < M and let {Eλ}λ be its spectral family. Assume that f :
[m,M] → � is a continuous function on [m,M]. Then one has the inequalities

∣∣∣∣f(M) + f(m)
2

· 〈x, y〉 − 〈f(A)x, y
〉∣∣∣∣

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
λ∈[m,M]

∣∣∣∣
〈
Eλx − 1

2
x, y

〉∣∣∣∣
M∨
m

(
f
)

if f is of bounded variation,

L

∫M

m−0

∣∣∣∣
〈
Eλx − 1

2
x, y

〉∣∣∣∣dλ if f is L Lipschitzian,

∫M

m−0

∣∣∣∣
〈
Eλx − 1

2
x, y

〉∣∣∣∣df(λ) if f is nondecreasing,

≤ 1
2
‖x‖∥∥y∥∥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M∨
m

(
f
)

if f is of bounded variation,

L(M −m) if f is L Lipschitzian,
(
f(M) − f(m)

)
if f is nondecreasing

(4.1)

for any x, y ∈ H .

Proof. From (3.6) we have that

∣∣∣∣f(m) + f(M)
2

· 〈x, y〉 − 〈f(A)x, y
〉∣∣∣∣ ≤ 1

2
max

λ∈[m,M]

∣∣〈Eλx, y
〉
+
〈
(Eλ − 1H)x, y

〉∣∣M∨
m

(
f
)

= max
λ∈[m,M]

∣∣∣∣
〈
Eλx − 1

2
x, y

〉∣∣∣∣
M∨
m

(
f
)

(4.2)

for any x, y ∈ H .
Utilizing the Schwarz inequality in H and the fact that Eλ are projectors we have

successively

∣∣∣∣
〈
Eλx − 1

2
x, y

〉∣∣∣∣ ≤
∥∥∥∥Eλx − 1

2
x

∥∥∥∥∥∥y∥∥

=
[
〈Eλx, Eλx〉 − 〈Eλx, x〉 + 1

4
‖x‖2
]1/2∥∥y∥∥

=
1
2
‖x‖∥∥y∥∥

(4.3)

for any x, y ∈ H , which proves the first branch in (4.1).
The second inequality follows from (3.14).



Abstract and Applied Analysis 9

From the theory of Riemann-Stieltjes integral is well-known that if p : [a, b] → � is of
bounded variation and v : [a, b] → � is continuous and monotonic nondecreasing, then the
Riemann-Stieltjes integrals

∫b
a p(t)dv(t) and

∫b
a |p(t)|dv(t) exist and

∣∣∣∣∣
∫b

a

p(t)dv(t)

∣∣∣∣∣ ≤
∫b

a

∣∣p(t)∣∣dv(t). (4.4)

From the representation (3.4) we then have

∣∣∣∣f(m) + f(M)
2

· 〈x, y〉 − 〈f(A)x, y
〉∣∣∣∣ ≤ 1

2

∫M

m−0

∣∣〈Eλx, y
〉
+
〈
(Eλ − 1H)x, y

〉∣∣df(λ)

=
∫M

m−0

∣∣∣∣
〈
Eλx − 1

2
x, y

〉∣∣∣∣df(λ)
(4.5)

for any x, y ∈ H , from which we obtain the last branch in (4.1).

We recall that a function f : [a, b] → � is called r-H-Hölder continuous with fixed
r ∈ (0, 1] andH > 0 if

∣∣f(t) − f(s)
∣∣ ≤ H |t − s|r for any t, s ∈ [a, b]. (4.6)

We have the following result concerning this class of functions.

Theorem 4.2. Let A be a selfadjoint operator in the Hilbert space H with the spectrum Sp(A) ⊆
[m,M] for some real numbers m < M and let {Eλ}λ be its spectral family. If f : [m,M] → � is
r −H-Hölder continuous on [m,M], then one has the inequality

∣∣∣∣f(m) + f(M)
2

· 〈x, y〉 − 〈f(A)x, y
〉∣∣∣∣ ≤ 1

2r
H(M −m)r

M∨
m

(〈
E(·)x, y

〉)

≤ 1
2r

H(M −m)r‖x‖∥∥y∥∥
(4.7)

for any x, y ∈ H .

Proof. We start with the equality

f(M) + f(m)
2

· 〈x, y〉 − 〈f(A)x, y
〉
=
∫M

m−0

[
f(M) + f(m)

2
− f(λ)

]
d
(〈
Eλx, y

〉)
(4.8)

for any x, y ∈ H , that follows from the spectral representation (2.2).
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Since the function 〈E(·)x, y〉 is of bounded variation for any vector x, y ∈ H , by
applying the inequality (3.5) we conclude that

∣∣∣∣f(m) + f(M)
2

· 〈x, y〉 − 〈f(A)x, y
〉∣∣∣∣ ≤ max

λ∈[m,M]

∣∣∣∣f(M) + f(m)
2

− f(λ)
∣∣∣∣
M∨
m

(〈
E(·)x, y

〉)

(4.9)

for any x, y ∈ H .
As f : [m,M] → � is r-H-Hölder continuous on [m,M], then we have

∣∣∣∣f(M) + f(m)
2

− f(λ)
∣∣∣∣ ≤ 1

2
∣∣f(M) − f(λ)

∣∣ + 1
2
∣∣f(λ) − f(m)

∣∣

≤ 1
2
H
[
(M − λ)r + (λ −m)r

] (4.10)

for any λ ∈ [m,M].
Since, obviously, the function gr(λ) := (M − λ)r + (λ −m)r , r ∈ (0, 1] has the property

that

max
λ∈[m,M]

gr(λ) = gr

(
m +M

2

)
= 21−r(M −m)r , (4.11)

then by (4.9)we deduce the first part of (4.7).
Now, if d : m = t0 < t1 < · · · < tn−1 < tn = M is an arbitrary partition of the interval

[m,M], then we have by the Schwarz inequality for nonnegative operators that

M∨
m

(〈
E(·)x, y

〉)
= sup

d

{
n−1∑
i=0

∣∣〈(Eti+1 − Eti)x, y
〉∣∣
}

≤ sup
d

{
n−1∑
i=0

[
〈(Eti+1 − Eti)x, x〉1/2

〈
(Eti+1 − Eti)y, y

〉1/2]} := I.

(4.12)

By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers we also have
that

I ≤ sup
d

⎧⎨
⎩
[
n−1∑
i=0

〈(Eti+1 − Eti)x, x〉
]1/2[n−1∑

i=0

〈
(Eti+1 − Eti)y, y

〉]1/2
⎫⎬
⎭

≤ sup
d

⎧⎨
⎩
[
n−1∑
i=0

〈(Eti+1 − Eti)x, x〉
]1/2

sup
d

[
n−1∑
i=0

〈
(Eti+1 − Eti)y, y

〉]1/2
⎫⎬
⎭

=

[
M∨
m

(〈
E(·)x, x

〉)]1/2[M∨
m

(〈
E(·)y, y

〉)]1/2
= ‖x‖∥∥y∥∥

(4.13)

for any x, y ∈ H . These prove the last part of (4.7).



Abstract and Applied Analysis 11

5. Applications for Some Particular Functions

It is obvious that the results established above can be applied for various particular functions
of selfadjoint operators. We restrict ourselves here to only two examples, namely, the
logarithm and the power functions.

(1) If we consider the logarithmic function f : (0,∞) → �, f(t) = ln t, then we can
state the following result.

Proposition 5.1. Let A be a selfadjoint operator in the Hilbert space H with the spectrum Sp(A) ⊆
[m,M] for some real numbers with 0 < m < M and let {Eλ}λ be its spectral family. Then for any
x, y ∈ H one has∣∣∣〈x, y〉 ln√mM−〈lnAx, y

〉∣∣∣

≤ ln
(
M

m

)
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

max
λ∈[m,M]

[
〈Eλx, x〉1/2

〈
Eλy, y

〉1/2 +〈(1H−Eλ)x, x〉1/2
〈
(1H−Eλ)y, y

〉1/2]

max
λ∈[m,M]

∣∣∣∣
〈
Eλx− 1

2
x, y

〉∣∣∣∣

≤ 1
2
‖x‖∥∥y∥∥ ln

(
M

m

)
,

∣∣∣〈x, y〉 ln√mM−〈lnAx, y
〉∣∣∣

≤ 1
m

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

∫M

m−0

[
〈Eλx, x〉1/2

〈
Eλy, y

〉1/2 +〈(1H−Eλ)x, x〉1/2
〈
(1H−Eλ)y, y

〉1/2]
dλ

∫M

m−0

∣∣∣∣
〈
Eλx− 1

2
x, y

〉∣∣∣∣dλ

≤ 1
2
‖x‖∥∥y∥∥

(
M

m
−1
)
,

∣∣∣〈x, y〉 ln√mM−〈lnAx, y
〉∣∣∣ ≤

∫M

m−0

∣∣∣∣
〈
Eλx− 1

2
x, y

〉∣∣∣∣λ−1dλ

≤ 1
2
‖x‖∥∥y∥∥ ln

(
M

m

)
.

(5.1)

The proof is obvious from Theorems 3.1, 3.2, and 4.1 applied for the logarithmic
function. The details are omitted.

(2) Consider now the power function f : (0,∞) → �, f(t) = tp with p ∈ (−∞, 0) ∪
(0,∞). In the case when p ∈ (0, 1), the function is p-H-Hölder continuous with H = 1 on
any subinterval [m,M] of [0,∞). By making use of Theorem 4.2 we can state the following
result.
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Proposition 5.2. Let A be a selfadjoint operator in the Hilbert space H with the spectrum Sp(A) ⊆
[m,M] for some real numbers with 0 ≤ m < M and let {Eλ}λ be its spectral family. Then for
p ∈ (0, 1) one has

∣∣∣∣m
p +Mp

2
· 〈x, y〉 − 〈Apx, y

〉∣∣∣∣ ≤ 1
2p

(M −m)p
M∨
m

(〈
E(·)x, y

〉)

≤ 1
2p

(M −m)p‖x‖∥∥y∥∥,
(5.2)

for any x, y ∈ H .

The case of powers p ≥ 1 is embodied in the following.

Proposition 5.3. Let A be a selfadjoint operator in the Hilbert space H with the spectrum Sp(A) ⊆
[m,M] for some real numbers with 0 ≤ m < M and let {Eλ}λ be its spectral family. Then for
p ≥ 1 and for any x, y ∈ H one has

∣∣∣∣m
p +Mp

2
· 〈x, y〉−〈Apx, y

〉∣∣∣∣

≤ (Mp−mp) ×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2

max
λ∈[m,M]

[
〈Eλx, x〉1/2

〈
Eλy, y

〉1/2

+〈(1H−Eλ)x, x〉1/2
〈
(1H−Eλ)y, y

〉1/2]

max
λ∈[m,M]

∣∣∣∣
〈
Eλx− 1

2
x, y

〉∣∣∣∣

≤ 1
2
‖x‖∥∥y∥∥(Mp−mp),

(5.3)

∣∣∣∣m
p +Mp

2
· 〈x, y〉 − 〈Apx, y

〉∣∣∣∣

≤ pMp−1 ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

∫M

m−0

[
〈Eλx, x〉1/2

〈
Eλy, y

〉1/2 + 〈(1H − Eλ)x, x〉1/2
〈
(1H − Eλ)y, y

〉1/2]
dλ

∫M

m−0

∣∣∣∣
〈
Eλx − 1

2
x, y

〉∣∣∣∣dλ

≤ 1
2
p‖x‖∥∥y∥∥Mp−1,

(5.4)

∣∣∣∣m
p +Mp

2
· 〈x, y〉 − 〈Apx, y

〉∣∣∣∣ ≤ p

∫M

m−0

∣∣∣∣
〈
Eλx − 1

2
x, y

〉∣∣∣∣λp−1dλ

≤ 1
2
‖x‖∥∥y∥∥(Mp −mp).

(5.5)
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The proof is obvious from Theorems 3.1, 3.2, and 4.1 applied for the power function
f : (0,∞) → �, f(t) = tp with p ≥ 1. The details are omitted.

The case of negative powers is similar. The details are left to the interested reader.
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[11] B. Mond and J. E. Pečarić, “Classical inequalities for matrix functions,” Utilitas Mathematica, vol. 46,
pp. 155–166, 1994.
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