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The existence of the solution for a new system of generalized nonlinear mixed quasi variational
inclusions with H-monotone operators is proved by using implicit resolvent technique, and the
sensitivity analysis of solution in Hilbert spaces is given. Our results improve and generalize some
results of the recent ones.

1. Introduction

Sensitivity analysis of solution for variational inequalities and variational inclusions has been
studied by many authors via quite different technique. (See [1-7] and the reference therein).

In 2004, Agarwal et al. [1] introduced and studied the following problem which is
called the system of parametric generalized nonlinear mixed quasi variational inclusions.

Let # be a real Hilbert space endowed with the product (-,-) and norm | -||,
respectively. Let Q and A be two nonempty open subsets of & in which the parametric w
and A take values. Let M : # x Q — 2% and N : £ x A — 2% be two maximal monotone
mappings with respect to the first argument. H;,S : # x Q — Hand Hp, T : X x A — H
be nonlinear single-valued mappings. The system of parametric generalized nonlinear mixed
quasi variational inclusions problem [1] is to find (x,y) € H# x H such that

Oex-y+p(Hi(y,w),S(y,w)) +pM(x,w),

1.1
0cy—x+y(Ha(x, 1) +T(x, 1)) +YN(y, 1), (D

where p > 0 and y > 0 are two constants.
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In this paper, we introduce a new system of parametric generalized nonlinear mixed
quasi variational inclusions problem.
Foreachw € Q, A € A, find x = x(w, 1), y = y(w, A) such that
0 f(x,y,w)+p(F(x,y,w) + M(x,w)),

0€g(xy\)+p2(G(x,y,A) + N(y, 1)),

(1.2)

where f,F : A xHxQ — H,5,G: HxHxA — H arenonlinear single-valued mappings,
M:HAxQ — 2% N:HxA — 2% are multivalued mappings, p1 > 0, p» > 0 are constants.
By using implicit resolvent equations technique of H-monotone operator, the existence of
solution is proved and the sensitivity analysis of solution for the problem (1.2) is given. Our
results improve and generalize the known results of [1, 2, 8, 9].

2. Preliminaries
Let # be a real Hilbert space, Q, A be two nonempty open subsets of .

Definition 2.1 (see [1]). (i) A mapping T : # x Q — H is said to be monotone with
respect to the first argument if

(T(x,w)-T(y,w),x-y)>0, V(x,w),(y,w)eHxQ. (2.1)

(ii) T is said to be k-strongly monotone with respect to the first argument if there exists
a constant x > 0 such that

2 V(xw), (yw) €L xQ. (2.2)

(T(x,w) -T(y,w),x~y) 2x|lx -y

(iii) T is said to be (¢, )-Lipschitz continuous if there exist ¢ > 0,7 > 0 such that
IT(x, 1) =T (y,w2)|| < &||lx =y +nllwr —wall, Y(x,w1), (y,w:) € H x Q. (2.3)

Definition 2.2 (see [1]). A mapping F : H x H x Q — H is said to be (¢,7,{)-Lipschitz
continuous if there exist ¢ >0, 7 >0, ¢ > 0 such that

Fx/ , W —Fx,y,w
|F (x1,y1,01) = F(x2, yo2, 02) || 24

<¢llxer = 2l + l|y1 — v2|| + Cllwr —wall, V(o1 yr,w1), (%2, Y2, w2) € H x H x Q.

Definition 2.3 (see [1]). A mapping F : # x H x Q — H is said to be a-strongly monotone
with respect to H in the first argument if there exists a > 0 such that

(F(x1,y,w) = F(x2,y,w), Hx1 — Hxp) > at||oxq — x|, V(x1,y,w), (x2,y,w) € H x H xQ.
(2.5)
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In a similar way, we can define the strong monotonicity of F with respect to H in the second
argument.

Definition 2.4 (see [9]). Let H : H x Q — H be a single-valued mappingand M : H# x Q —
2% be a multi-valued mapping. M is said to be H-monotone if M is monotone with respect
to the first argument and (H (-, w) + pM (-, w))(HK) = H holds for all p > 0 and w € Q.

Definition 2.5 (see [9]). Let H : #xQ — H be a strictly monotone mapping and M : A xQ —
2% be an H-monotone mapping. The resolvent operator | ﬁ(' W H — His defined by

Ty, (W) = (H () + pM(,w)) (1), Yue k. (2.6)

Lemma 2.6 (see [9]). Let Hy : H x Q — H be yy-strongly monotone with respect to the first
argument, Hy : H x A — H be y,-strongly monotone with respect to the first arqument, and
M : H xQ — 2% be Hy-monotone, andN : H x A — 2% be Hy-monotone. Then for any fixed
w € Q,\ € A, the resolvent operator | JI\_/Ifl(‘rw),Pl and | II\?E V., 1€ Lipschitz continuous:

1
780 = T @) < =l Vo€,
(2.7)

“ TNy (1 /\)P2( )||<—||u o, Yu,ved,

where y; > 0, yo > 0 are constants.

Lemma 2.7. Let M : H x Q — 2% be Hy-monotone and N : # x A — 2% be Hy-monotone. For
any fixed (w,A) € Q x A. (x(w, ), y(w, X)) is a solution of (1.2) if and only if

x(w,\) = ( e (Hi(x(w, ), w) = f(x(w, 1), y(w, ), w) — p1F(x(w, L), y(w, \), w))
£ T(x,y,w,),
(2.81)
Y@, 1) = I3y 0 (Ha(y(w, 1), 4) = g (x(w, 1), y(w, 1), 1) = p2G(x(w, 1),y (w, 1), 1)) 08
)

£ S(x,y,w,\),

here x = x(w, A), y = y(w, X).

Proof. Assume that (x(w, A) y(w, \)) satisfies relations (2. 81) and (2.8;), since ] M) =
(Hi(,w) + p1 M, w)) 7}, = (Hy(-,w) +p2N(~,w)) , then (2.81) and (2.8;) holds if
and only if

M( W) P2

0€ f(x(w,\),y(w,\),w) + p1F(x(w, ), y(w, L), w) + ptM(x(w, ), w), 29)
0€ g(x(w,\),y(w,X), L) + prG(x(w, L), y(w, L), L) + paN(y(w, L), L), .

and hence (x(w, 1)), y(w, L) is a solution of (2.81) and (2.8,). O
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3. Main Results

Lemma3.1. LetT : HxH — H,S: HxH — H be two continuous mappings. If there exist ©,
0,,0< 0Oy, ©, <1, such that

IT (21, y1) = T(x2,y2) || + [|S(x1, 1) = S(x2, 12) ||

(3.1)
<Ox1 - x|l + o\l — 2|, V1, x2, 11,12 € K.
then there exist x*,y* € H such that
x*=T(x%y*), vy =S(x%y"). (3.2)

Proof. For any xo,y0 € H, let xyp1 = T(Xx, Yn), Ynr1 = S(xn,yu), n = 0,1,2,..., then by
(3.1), for all x1,x2, ..., Xn, Xn1, Y1, Y2, - - -, Yn, Y1 € H,we have

%041 = Xull + || Y1 = Y| < O1ll2xn = Xa | + ©2 ||y — Y ||

(3.3)
< e(llxn = Xp-1]| + ”yn — Yn-1 ”)r
where © = max{©1,0,}. Let a = ||x1 — x0l| + [ly1 — yol|, then
||xn+1 - xn” + ”yn+1 - ]/n” < e(”xn - xn—l” + ”yn - yn—1||)
<O (Ixn-1 = Xnall + [|yn-1 = Yn2]|) (3.4)
< <O ([l = xoll + |ly1 — yo|) = ©"a,
and hence,
0 < lxps1 — xall £ ©"a,
(3.5)

0 < [yns1 =yl < ©"a.

Since 0 < © = max{©;,0,} < 1, (3.5) implies that {x,} and {y,} are both cauchy sequences.
Therefore, there exist x*, y* € H# such that x, — x*, y, — y*(n — o). By continuity of T
and S, x* =T (x*,y*), y* = S(x*,y*). O

Theorem 3.2. Let Hy : H x Q — H be (&, 11)-Lipschitz continuous and Hp : H x A — H be
(&, 1m2)-Lipschitz continuous. Let f : H x H x Q — H be (5,15, {r)-Lipschitz continuous and
yg-strongly monotone with respect to H in the first argument, F : H x H x Q — H be (¢r, 1F, ¢F)-
Lipschitz continuous, g : H#H x H x A — H be (&, Mg, &g)-Lipschitz continuous and yg-strongly
monotone with respect to Hy in the second arqument, G : K x H x A — H be (¢c,1c, c)-Lipschitz
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continuous. Suppose that M : K xQ — 2% is Hy-monotone and N : K x A — 2% is Hy-monotone

If

1 ‘§g + p2éc
=— =2y +¢ + <1,
v (\/ Yf P1§F> -
/7 n +P171F
( Tt ﬂg ’ pmG) : T L

[

(3.6)

then, for each w, A € Q x A, the problem (1.2) has an unique solution (x*(w, A), y*(w, 1)).

Proof. Let x1 = x1(w, A), x2 = x2(w,\), y1 = y1(w, ), y2 = y2(w, ). By defining (2.81) of T
and Lemma 2.6, we have
1
T (x1, y1, w0, L) = T (22, 2,0, 1) || < " | Hi(x1, w) = f (x1,y1,w) = prF(x1, 31, w) — Hi(x2, w)
+f (%2, y2,w) + prF (x2, 2, w) |
1
< E”Hl(xlfw) - Hl(x.?./w) - f(xlryllw) + f(x21y2/w>”

1
+ —pllF (@) = Fra e, @)
(3.7)

Since f is (&r,1y,¢f)-Lipschitz continuous and yy-strongly monotone with respect to Hj in
the first argument, F is (¢, 7, ¢r)-Lipschitz continuous, we have

|| Hi(x1, w) — Hy(x2,w) = f(x1,y1,w) + f(x2,y2,w) ||
< || Hi (o1, w) = Hi(xz, ) = f(x1,y1,w) + f(x2, y1,0) || + || f (x2, y1, ) = f (22, y2, 0) ||

<8 -2y + &llxi — xll+ nyllys - vl

(3.8)
[|F (21, y1, w) = F(x2,y2,w) || < éellar = xal + 1 || y1 — w2 |- (3.9)
Combining (3.7)—(3.9), we have
1 2 2
T (1, y1,00,4) =T (x2, y2, 0, V) || < —<\/§1 —2yp 45+ P1§F> 1 = 2|
" (3.10)

nf + pinr
+ L Iy,

o -2-
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By defining (2.8,) of S and Lemma 2.6, we have

1
IS(x1,y1,w,4) = S(x2, 92,0, 1) || < 5 | H2(y1,4) = g (1, 11, 4) = p2G (1, 11, 4)
~Hs(y2, 1) + g (%2, y2,A) + p2G (2, y2, 1) ||
1
< | H2(y1,4) = Ha(y2,A) = g(x1,y1,4) + g (x2, g2, V)|

+%nc<xhym> ~G(x2 2, V).
(3.11)

Since g is (&g, ¢, Gg)-Lipschitz continuous and y,-strongly monotone with respect to H; in
the second argument, G is (¢g, 116, g )-Lipschitz continuous. We have

| H2(y1,4) = Ha(y2, ) = g(x1, 1, 4) + g(x2, 2, L) ||
< || Ha2(y1,A) = Ha(y2,A) = g (1, y1,4) + g (31,2, V)| + (|8 (31,2, 4) = g (22, 12, V) ||

<& =21 + 2|y - 2l + &gl - xall,

(3.12)
G Cxr,y1,4) = G, o, M) || < écllaer = xall + 716 || y1 - w2 |- (3.13)
Combining (3.11)—(3.13), we have
1
I5Cet91,0,1) = S, 20, D1 € = (V& =295 025 + pone )l - v
(3.14)
gg p2§G
—x1 - x|
12
By (3.10) and (3.14), we have
T (x1, 1,00, 8) =T (22, 2,0, 1) || + [|S (1, y1, w0, 1) = S(x2, y2, 0, V) |
1 g + P28
< [ﬁ (\/éf =2y + ¢ +P1§F> J - ]lel - x|
(3.15)

1 "¢+ p1Yr
+ [g<\/§§ — 2y + 13 +P2716) + fy—] ly1 - vl

= O1]lx1 = 2/l + 2|1 — w2 |-

By (3.6) and Lemma 3.1, there exist x* = x*(w,\), ¥v* = y*(w, ). (x*,y*) such that x* =
T(x*y*,w,\), y* = S(x*,y*,w,\). By Lemma 2.7, (x*,y*) is a solution of (1.2). From (3.15),
we easily see that the solution of (1.2) is unique. O
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Assumption 1. For implicit resolvent operator ] Mw)pr” ]N g , there are two constants ¢ > 0
and 7 > 0 such that
750 08 = Tatt 2y o @) < 0 = 01,
(3.16)
H,
“]N (e =T 5 @) Yu,v € H.

Theorem 3.3. Suppose that the mappings Hi, f,F,M,H>,g,G, and N are the same as in
Theorem 3.2, and for any fixed x,y € H, the mappings w — Hi(x,w), w — f(x,y,w), w —
F(x,y,w)\ — Hy(y\A),A — gy A),r — G(x,y,A) are continuous (or Lipschitz
continuous.) If Assumption 1 and condition (3.6) hold, then the solution (x(ew, ),y (w, \)) for the
problem (1.2) is continuous (or Lipschitz continuous).

Proof. Suppose that w,w € Q, J\,X € Asuchthatw — w,\ — A. From Theorem 3.2, we know
that the problem (1.2) has solution (x(w, 1), y(w, 1)), x(w,/\_),y(m, X)), (x(w, ), y(w, X)) and
(x(w, 1), y(w, ).

(A) Estimate ||x(w, L) — x(w, )| and ||y(w, L) — y(w, 1)||. By Lemma 2.7,we have

x(w,\) = (Hi(x(w,\), w) = f(x(w, L), y(w, ), w) — p1F(x(w, \), y(w, L), w))

( W) p1
M( w),p1 (»),

(w )L) M (-,w),p1 (Hl(X(w,)L),w) _f(x(w/)‘)/y(w/)‘)/w) _plp(x(w/)‘)/y(wﬂ\)/w))

M( @) 0 (@)
(3.17)
It follows from Assumption 1, Lemmas 2.6 and 2.7 that
(e, ) = x@, V1l = | 735y () = Tatt oy (@) ||
<Trt i ) = Titar o @ |+ [Tty (9) = Tt 0 (@) || —llp=all + &l ~ .
(3.18)

Since f is (¢f, 77, Gr)-Lipschitz continuous, y; -strongly monotone with respect to H; in the
first argument and F is (¢r, 77r, ¢r)-Lipschitz continuous, we conclude

P - 4ll = |Hi(x(w, 1), w) = f(x(w, 1), y(w, 1), w) = p1F (x(w, 1), y(w, 1), w)
~Hi(x(@, 1), @) + f (x(@, ), y(@, 1), w) + prF (x(@, ), y(@, 1), @) ||
< | Hi(x(w, 1), w) = Hi(x(@, L), w) = f (x(w, 1), y(w, 1), w) + f(x(@, 1), y(w, 1), w) |
+ | Hi(x(@, 1), w) - Hi(x(@, 1), @)]|
+ [ f (x@, 1), y(w, 1), w) = f(x(@, 1), y(@, 1), w)|
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I f (2@, 4), y(@, 1), ) = f (x(@, 1), y (@, 1), @) |
+pr|[F (x(w, 1), y(w, 1), w) = F(x(@, 1), y(@, 1), w) |
+p|[F(x(@, 1), y(@, ), w) = F(x(@, ), y(@, 1), w) |

<A/é1 = 2rf + & llx(w, V) - x(@, V)| + | Hi (x(@, 1), w) = Hi(x(@, 1), w)]|

15[y, 1) =y @ D]+ [|f (x(@, 1), y (@, 1), @) - f(x(@, 1), y(@, 1), @)]|
+ prérllx(w, A) = x(@, V| + prne ||y (w, 1) -y (@, V)|

+p1||F(x(@, 1), y(@, 1), w) = F(x(@, L), y(@, L), @)||.
(3.19)

It follows from (3.18) and (3.19) that
_ _ 1 _
lIx(w, ) = x(w, V|| < 61|x(w, A) - x(w, V)| + H(ﬂf +pintr) [y (w, 1) — y(@, V)|
1 _ o —
+ ﬁllHl (x(w, .)L),(,U) - Hl (x(a), )‘)Iw)”

. %Ilf(x@,n,y@,n,w) @, ),y (@, ), @) |

+ %IIF(x(w,A),y(w,A),w) - F(x(@, ), y(@,\),w)|| +¢llw - @],

(3.20)
that is,
Je(eo, 1) - x(@, V)| < ’Z{f—g’f)’ﬁuy(wm —y@ )|
- g { 3 I G@ ) w) - i (@, ), D)
(@), (@, 0,0) = f (@, 1), 9@ 0, ) |
+ ENP @), y@,0,0) - Fe@,2), 3@, 2),)|
e},
(3.21)
where
0= (VB =20+ + k), (*
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By Lemma 2.7, we have
y(w,\) = ]ﬁimpz (Ha(y(w,\), 1) — g(x(w, L), y(w, ), L) = pG(x(w, N), y(w, L), 1))
N( 0,:(8),
y(@,)) = JNz.,A),pz (Ha(y(@,1),1) - g (x(@, 1), (@, 1), 1) - p2G(x(@, 1), y(@, 1), 1))
Ntyon (-
(3.22)
It follows from Assumption 1, Lemmas 2.6 and 2.7 that
ly(eo,2) = y@, V| = |7 1),.() = T 0 0| < —||s ~ . (3.23)

Since g is (&g, g, 6¢)-Lipschitz continuous and y,-strongly monotone with respect to Hy in
the second argument and G is (&g, 716, {c)-Lipschitz continuous,we conclude

lIs = £l = || H2 (y(w, 1), 1) = g (x(w, 1), y(w, 1), 1) = p2G(x(w, L), y(w, 1), L)
—Hy(y(@, 1), 1) + g(x(@, 1), y(@,1),1) + p,G(x(@, 1), y (@, 1), \)
< |Hz2(y(w, 1), 4) = Ha(y(@, 1), 1) = g (x(w, ), y(w, 1), 1) + g (x(w, 1), y(@, 1), 1) |
+[lg(x(w, 1), y(@,4),4) - g(x(@, 1), y@, 1), )|
+p2|| G (x(w, 1), y(w, 1), 4) = G(x(@, 1), y(@, 1), 1) |

<VE =215 + i lly(w, V) -y (@, V|| + &gllx(w, L) = x(@, V)|

+padcllx(w, ) = x(@, V)| + panc ||y (w, A) = y(@, V) |-
(3.24)

It follows from (3.23) and (3.24) that

ly(w,2) -~ y@, )| < %(\/éi —2yg g+ Pznc) ly(w, 1) —y@, 1|

1 (3.25)
+ " (&5 + p2éc) Ix(w, ) = x(w, V).

That is,

ly(@,2) - y(@, D]l < 1= ezi@g + o) x (e, 1) = x(@, V), (3.26)
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where

1
6= (Va-2r e+ pznc)- ()

By combining (3.21) and (3.26), we derive

(117 + panr) (&g + paéc)
(1-01)(1-62)1172

g I @), )~ H (<@ ),

[lx(ew, 1) = x(c0, V)] < lx(w, 1) = x (@, L)l

+ %Ilf (x(w, V), y(w, L), w) = f(x(w, L), y(w,L),w)]

+ %”F(x(ﬁ,l),y(ﬁ,i),w) — F(x(@, 1), y(@, 1), @) ||

+¢||w —EHS}.
(3.27)

That is,

0, ) = @, DI € T g { S IH (@ ), 0) = Hi(x@,2), D)

+ %Ilf (x(w, 1), y(@, 1), w) - f(x(@, L), y(w,1),w)||
+ TP (@), y @), 0) ~ F(x@,2), y @, 2, 9)|

+lw —wn},

(3.28)

§g+P2§G 1 1
(1—62)}”21—1(1—61

”y(w,/\) - ]/(5, -)L)” < {%”Hl(x(w,l),w) — Hl(x(w,)L),w)”
L (6@ ),y @ ) )

~f (x(@, 1), y @, 1),@)||
! %”F(x(w, 1), y(w, L), w)
1

—F(x(w/ )‘)l ]/(5/ A)/E) ”

Hjew —wu},
(3.29)
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where
_ (7 + pinir) (8¢ + p2go) (5% %)
(1-6)(1-02)11y2
By (3.6),
1 1
1-61> E(gg +p2dc), 1-6,> ﬁ(ﬂf +pinE), (3.30)
and hence
o< et HPe) i et (331)

(1-01)(1-62)1172

(B) Estimate ||y (@, A) — y(@, \)|| and ||x (@, X) — x(@, ).
By Lemma 2.7, we have

y(@1) =I5 (Ha(0(@ 1)) = (x(@.) (@), ) -G (x(@.2) y(@ ). 1))

= Tty
y(@,X) = Iy o (o (y(@,4), 1) - g(x(@, 1), y(@,1),4) = p2G(x(@, 1), y(@, 1), 1))
1}\’% A, Pz( )-
(3.32)
It follows from Assumption 1, Lemmas 2.6 and 2.7 that
||y<5,1> (0, )L)” H]N( )L)p m) - N( J\)Pz(n)
<[ om0 =T 639

< Ellm = nll+ | =X

Since g is (&g, ¢, G)-Lipschitz continuous and y,-strongly monotone with respect to H; in
the second argument and G is (&g, 716, {c)-Lipschitz continuous,we conclude

|lm—n| = ”H2<y<w,x>,x> —g(x(ﬁ,l),y(@,i),l) —p2G<x<w,X>,y<5,X>,X>
~Hy (y(w, 1), 1) + g(x(@, 1), y(@,1), 1) + pG(x(@, 1), y (@, 1), 1) |
< (o (.3).3) - (v .)

~g(x(@2),y(@,7),1) - g(x(@1), y(@ ), 1) ||
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+ || (y@,2),3) - Ha(y(@, 1), 1)
+]|s(x(@ 1), y@,0),7) - g(x(@,2),y @, 1)
+ |8 (2@, 0, y@,2),7) - g(x@, 1), y@, 1), 1)
+p2|G(x(@,7),y(@,1),1) - G(x@, 1), y@, 1), 1) |
+ p2||G<x(w,z\), y(@, 1), %) - G(x(@, 1), y (@, 1), ) n
<8 -2+ |y (@7) - y@, 1) + &]|x (@ 1) - x@, )|
+on (el (07) 5@ 0 +ne (@) -vi@. 0]
+ g (x@ 0, y@,0),1) - g(x(@, 1), y(@, ), )|,
+ || (y@,0),7) - Ha (y@, 1),0)||

+ 2| G (x@, 1), y(@, 1), ) = G(x(@, 1), y@, 1), V)|

(3.34)
It follows from (3.33) and (3.34) that
Jv(@1) -y@ )| < ffjgjf; (@, %) - x@, )|
" 1—1—92{% |F(v@. 0, %) - Fa(y@, ), 1)
+ %Hg(x(w,x),y(w,x),X)
~g(x(@, 1), y(@, 1), 1) || (3.35)

+ ’%”G(x(&,A),y(E,A),X)

~G(x(@, 1), y(@, 1), )|

a1

where 60, defined by (**).
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By Lemma 2.7, we have

(57) = P (11 (x(0.7).2) - (x(@7)9(5.3).0) - (@) (@7).))

x(w,\) = JH (Hl(x(w L), w) - f(x(w,\), y(w, ), w) - p1F(x(w,\), y(w,\),w)).

M(w),p
(3.36)
As the proof of (3.25),we have
] (@, 7) - x@, )| < <—\ [&-2p+ & +p1§p> (@, %) - x@, )|
(3.37)
+ E(’lf o) |y (@ 1) - y@, )|,
that is,
@) @] T @) vmal, o
where 60, is defined by (x).
Therefore
lv(@3) ~y@ 0| < 72 92{ | 2 (v@, 1,3) - Ha(y@, ), 1)
o= s(x@ 0.v@ 0,.3)
—g(X(E, J\), y(wr )‘)/ )‘) ”
(3.39)

+ %“G(x(w, 1), y@,1),1)

-G (x(@, 1), y(@, ), )|

a3
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: ?{jgll)nyj - —192 { %”HZ (v@,0),%) - Ha(y(@,),0)||

-
lel@n @)
—g(x(@, 1), y(@, 1), )|
N %“G(x(w,x),y@l)fX)
~G(x(@@,\), y(@,1), )]

-1}

(3.40)

where « is defined by (* * *).

(C) Prove that the conclusion of Theorem 3.3.

From (3.28) and (3.40), by the assumptions for Hj, f, F, H», g, and G in Theorem 3.3
and relation

”x(w,/\) - x(w,X) || < lx(w, 1) — x(@, 1) + Hx(w, 1) - x(@,x) , (3.41)

we know that x(w, A) is continuous (or Lipschitz continuous).
From (3.29) and (3.39), by the assumptions for H, f, F, Hp, ¢ and G in Theorem 3.3
and relation

|, -y(@D)|| < ly@ ) -y@ v+ |[y@n-y@I)| G2
we know that y(w, A) is continuous (or Lipschitz continuous). O
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