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A new approximate method for solving the nonlinear Duffing-van der pol oscillator equation
is proposed. The proposed scheme depends only on the two components of homotopy series,
the Laplace transformation and, the Padé approximants. The proposed method introduces an
alternative framework designed to overcome the difficulty of capturing the behavior of the solution
and give a good approximation to the solution for a large time. The Runge-Kutta algorithm was
used to solve the governing equation via numerical solution. Finally, to demonstrate the validity
of the proposed method, the response of the oscillator, which was obtained from approximate
solution, has been shown graphically and compared with that of numerical solution.

1. Introduction

Considerable attention has been directed toward the solution of oscillator equations since
they play crucial role in applied mathematics, physics, and engineering problems. In gen-
eral, the analytical approximation to solution of a given oscillator problem is more difficult
than the numerical solution approximation. Many powerful methods for solving nonlinear
oscillator problems were appeared in open literature, such as variational iteration method
[1–3], homotopy perturbation method [4–6], Hamiltonian method [7], Lindstedt-Poincare
method [8], Variational method [9, 10], parameter-expansion method [11], max-min ap-
proach [12], iterative harmonic balance method [13] and differential transformation method
[14].
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Our main concern in this paper is to study the dynamics of approximate solution for
the Duffing-van der pol oscillator equation of the form [15–17]

ü +
(
α + βu2

)
u̇ − γu + λu3 = 0. (1.1)

With initial conditions

u(0) = a, u̇(0) = b, (1.2)

where the overdot denotes differentiation with respect to time, α, β, γ , and λ are arbitrary
parameters. Equation (1.1) is an autonomous equation which describes the propagation of
voltage pulses along a neural axon. Some progress was made on the integrability of the
Duffing-van der pol equation (1.1) until Chandrasekar and coworkers [15] established the
complete integrability of this equation and derived a general solution for a specific choice of
arbitrary parameters α, β, γ , given by

α =
4
β
, γ =

−3
β2

(1.3)

and taking λ = 1. Under the specific choice of parameters (1.3) and using a special transfor-
mation, Chandrasekar et al. were able to find the solution of this equation.

Mukherjee and colleagues [16] employed the differential transformation method to
solve the Duffing-van der pol equation (1.1). Since there are some limitations in using the
differential transformation method together with the fact that this method gives the solution
in a very small region, developing the method for different applications is very difficult.

In the present study, we used a modified version of homotopy perturbation method
which is based on two components of homotopy series. In order to improve the accuracy of
the solution, we first apply the Laplace transformation, then convert the transformed series
into a meromorphic function by forming the Padé approximants, and finally adopt an inverse
Laplace transform to obtain an analytic solution.

Next, Runge-Kutta’s RK algorithm has been introduced to solve the governing
equation (1.1). Finally, numerical examples are given to demonstrate the validity of the
proposed method, and the effect of parameters on the accuracy of the method is investigated.
Here, we also point out that for α = −ε, γ = ε, β = ε, and λ = 0, (1.1) reduces to a classical van
der pol equation

ü + ε
(
u2 − 1

)
u̇ + u = 0. (1.4)

2. Analysis of New Homotopy Perturbation Method

Let us consider the nonlinear differential equation:

A(u) = f(z), z ∈ Ω, (2.1)
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whereA is operator, f is a known function, and u is a sought function. Assume that operator
A can be written as

A(u) = L(u) +N(u), (2.2)

where L is the linear operator and N is the nonlinear operator. Hence, (2.1) can be rewritten
as follows:

L(u) +N(u) = f(z), z ∈ Ω. (2.3)

We define an operator H as

H(
v; p

) ≡ (
1 − p

)
(L(v) − L(u0)) + p

(A(v) − f
)
, (2.4)

where p ∈ [0, 1] is an embedding or homotopy parameter, v(z; p) : Ω × [0, 1] → R, and u0 is
an initial approximation of solution of the problem in (2.4) which can be written as

H(
v; p

) ≡ L(v) − L(u0) + pL(u0) + p
(N(v) − f(z)

)
= 0. (2.5)

Clearly, the operator equations H(v, 0) = 0 and H(v, 1) = 0 are equivalent to the equations
L(v)−L(u0) = 0 andA(v)−f(z) = 0 , respectively. Thus, a monotonous change of parameter
p from zero to one corresponds to a continuous change of the trivial problemL(v)−L(u0) = 0
to the original problem. Operator H(v, p) is called a homotopy map. Next, we assume that
the solution of equation H(v, p) can be written as a power series in embedding parameter p,
as follows:

v = v0 + pv1. (2.6)

Now let us write (2.5) in the following form:

L(v) = u0(z) + p
(
f −N(v) − u0(z)

)
. (2.7)

By applying the inverse operator, L−1, to both sides of (2.7), we have

v = L−1 u0(z) + p
(
L−1 f − L−1 N(v) − L−1 u0(z)

)
. (2.8)

Suppose that the initial approximation of (2.1) has the form

u0(z) =
∑∞

n=0
anPn(z), (2.9)
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where an, n = 0, 1, 2, . . .. are unknown coefficients and Pn(z), n = 0, 1, 2, . . .. are specific func-
tions on the problem. By substituting (2.6) and (2.9) into (2.8), we get

v0 + pv1 = L−1
(∑∞

n=0
anPn(z)

)
+ p

(
L−1f − L−1

(∑1

n=0
vnp

n
)
− L−1

(∑∞
n=0

anPn(z)
))

.

(2.10)

Equating the coefficients of like powers of p, we get following set of equations:

p0 : v0 = L−1
(∑∞

n=0
anPn(z)

)
,

p : v1 = L−1(f) +L−1
(∑∞

n=0
vnp

n
)
− L−1N(v0).

(2.11)

Now, if we solve these equations in such a way that v1(z) = 0. Therefore, the approximate
solution may be obtained as

u(z) = v0(z) = L−1
(∑∞

n=0
anPn(z)

)
. (2.12)

3. Implementation of the Method

To obtain the solution of (1.1) by NHPM, we construct the following homotopy:

(
1 − p

)(
Ü − u0(t)

)
+ p

(
Ü +

(
α + βU2

)
U̇ − γU + λU3

)
= 0. (3.1)

Applying the inverse operator, L−1(•) = ∫ t
0

∫s
0 (•)dξ ds to both sides of (3.1), we obtain

U(t) = U(0) + tU̇(0) +
∫ t

0

∫ s

0
u0(ξ)dξ ds − p

∫ t

0

∫s

0

(
u0(ξ) +

(
α + βU2

)
U̇ − γU + λU3

)
dξ ds.

(3.2)

The solution of (1.1) is to have the following form:

U(t) = U0(t) + pU1(t). (3.3)

Substituting (3.3) in (3.2) and equating the coefficients of like powers of p, we get following
set of equations:

U0(t) = U(0) + tU̇(0) +
∫ t

0

∫s

0
u0(ξ)dξ ds,

U1(t) =
∫ t

0

∫ s

0

(
−u0(ξ) −

(
α + βU2

0

)
U̇0 + γU0 − λU3

0

)
dξ ds.

(3.4)
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Assuming u0(t) =
∑8

n=0anPn, Pk = tk, as well as solving the above equation for U1(t), leads to
the following result:

U1(t) =

(
−a0

2
− bα

2
− bβa2

2
+
aγ

2
− λa3

2

)
t2

+

(
−a1

6
− a0α

6
− a0βa

2

6
− βab2

3
+
bγ

6
− λa2b

2

)
t3

+

(
−a2

12
− a1α

24
− a1βa

2

24
− βaa0b

4
− βb3

12
+
a0γ

24
− λa0a

2

8
− λab2

4

)
t4 + · · · .

(3.5)

With vanishing U1(t), we have the following coefficients: ai, i = 0, 1, . . . , 8,

a0 = −bα − bβa2 + aγ − λa3,

a1 = bα2 − 2βab2 + 2αβba2 + β2ba4 + bγ − aαγ − a3βγ − 3λa2b + a3αλ + a5βλ, . . . .
(3.6)

Therefore, we obtain the solutions of (3.4) as

u(t) = a + bt + a0t
2 + a1t

3 + a2t
4 + · · · . (3.7)

The solution of (1.1) does not exhibit behavior for a large region. In order to improve the
accuracy of the two-component solution, we implement the modification as follows.

Applying the Laplace transform to the series solution (3.7) yields

L[u(t)] =
a

s
+

b

s2
+
a0

s3
+
a1

s4
+
a2

s5
+ · · · . (3.8)

For simplicity, let s = 1/t; then,

L[u(t)] = at + bt2 + a0t
3 + a1t

3 + a2t
4 + · · · . (3.9)

On applying [m,n] Padé approximation,

L[u(t)][m,n] =
at +A1t

2 +A2t
3 + · · ·

1 + B1t + B2t2 + B3t3 + · · · . (3.10)

Recalling t = 1/s, we obtain [m,n] Padé approximation in terms of s. By using the inverse
Laplace transform to the [m,n] Padé approximant, we obtain the desired approximate solu-
tion of the Duffing-van der pol equation.

4. Numerical Solutions

In order to verify the procedure of the method, we consider the following particular cases
and comparison will be made with RK4 method as well as [16].
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Table 1: Comparison between the RK4, DTM [16], and present solution.

t uRK uPresent uDTM

0 −0.28868000000 −0.28868000000 −0.28868000000
0.01 −0.28748349253 −0.28748347499 −0.28748522585
0.02 −0.28629387437 −0.28629385687 −0.28630661206
0.03 −0.28511109904 −0.28511108168 −0.28514428684
0.04 −0.28393510355 −0.28393508631 −0.28399838456
0.05 −0.28276582565 −0.28044716121 −0.28286904593
0.06 −0.28160320408 −0.27929767140 −0.28175641828
0.07 −0.28044717833 −0.27814565867 −0.28066065588
0.08 −0.27929768854 −0.27701806494 −0.27951892013
0.09 −0.27815467572 −0.27815465866 −0.27852037991
0.1 −0.27701808173 −0.27701806494 −0.27747621187

Numerical Experiment 1

Consider the Duffing-van der pol equation [16] by taking β = 3, λ = 1:

ü +
(
4
3
+ 3u2

)
u̇ +

1
3
u + u3 = 0. (4.1)

With initial conditions,

u(0) = −0.28868, u̇(0) = 0.12. (4.2)

The approximate analytical solution of (4.1) with conditions (4.2) can be obtained by
applying the procedure mentioned in previous section as

u(t) = −0.000026166e−4.09188t − 0.00212777e−2.16516t − 0.0266831e−1.06495t − 0.259843e−0.334316t.
(4.3)

In Table 1, the results of proposedmethod are compared to DTM and the fourth-order Runge-
Kutta method. For comparison, the displacements of the oscillator corresponding to the four
different methods are depicted in Figures 1(a)–1(d) for the same values of the parameters. It
is clearly seen from Figure 1(d) that the DTM solution converges in a small region.

Numerical Experiment 2

Consider the Duffing-van der pol equation taking α = −0.1, β = 0.1, γ = 1, and λ = 0.4:

ü + 0.1
(
u2 − 1

)
u̇ + u + 0.4u3 = 0. (4.4)
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Figure 1: Plots of the Duffing-van der pol equation: (a) RK4, (b) Chandrasekar et al. [15], (c) present
method, and (d) DTM [16].
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Figure 2: Plots of the Duffing-van der pol equation: (a) RK4, (b) present method.

With initial conditions,

u(0) = 1, u̇(0) = 0. (4.5)

The solution of (4.1) with conditions (4.5) exhibits the periodic behavior that is the charac-
teristic of the oscillatory system. A comparison between the approximate solution and the
solution that is obtained by the fourth-order Runge-Kutta method in Figures 2(a) and 2(b)
shows that it converges in a wider region. Figures 3(a) and 3(b) represent approximate shape
of the Duffing-van der pol limit cycle.
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Figure 3: Comparisons for u versus u̇ trajectory of the Duffing-van der pol equation (a) RK4, (b) present
method.

5. Closing Remarks

In this work, the modified NHPM has been employed to analyze the force-free Duffing-
van der pol oscillator with strong cubic nonlinearity. The results obtained from this method
have been compared with those obtained from numerical method using RK algorithm and
[15, 16]. This comparison shows excellent agreement between these methods. The presented
scheme provides concise and straightforward solution to approach reliable results, and it
overcomes the difficulties that have been arisen in conventional methods. Unlike the ADM,
VIM, and HPM [17–20], the modified HPM [21] is free from the need to use the Adomian
polynomials, the Lagrange multiplier, correction functional, stationary conditions, and cal-
culating integrals. The present method is very simple method, leading to high accuracy of
the obtained results.
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