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This paper introduces multiresolution analyses with composite dilations (AB-MRAs) and ad-
dresses frame multiresolution analyses with composite dilations in the setting of reducing sub-
spaces of L2(�n) (AB-RMRAs). We prove that an AB-MRA can induce an AB-RMRA on a given
reducing subspace L2(S)∨. For a general expansive matrix, we obtain the characterizations for a
scaling function to generate an AB-RMRA, and the main theorems generalize the classical results.
Finally, some examples are provided to illustrate the general theory.

1. Introduction

As well known, multiresolution analyses (MRAs) play a significant role in the construction
of wavelets for L2(�) [1, 2]. Up to now, different characterizations of the scaling function for
an MRA have been presented. It is shown in [1] that a function ϕ ∈ L2(�) is a generator for
an MRA if and only if

(1)
∑

k∈�|ϕ̂(ξ + k)|2 = 1, a.e. ξ ∈ [−1/2, 1/2];
(2) limj→+∞|ϕ̂(2−j ξ)|2 = 1, a.e. ξ ∈ �;
(3) there existsm0 ∈ L2([0, 1]) such that ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ), a.e. ξ ∈ �.
If condition (2) is replaced by � =

⋃
j∈�2

j supp(ϕ̂) or another condition that the
function F(x, y) = (1/(y − x)) ∫yx |ϕ̂(ω)|2dω is dyadicaly away from zero at the origin, then
the two different characterizations of the scaling functions for MRAs are obtained in [3, 4],
respectively.
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Similarly, under certain conditions, wavelet with composite dilations can be con-
structed by AB-MRAs which is the generalized definition of MRAs and permits the existence
of fast implementation algorithm [5]. Given an n × n invertible matrix a, f ∈ L2(�n), and
k ∈ �n, we define the dilation operatorD and the shift operator Tk on L2(�n) by

Daf(·) := |deta|1/2f(a·), Tkf(·) := f(· − k). (1.1)

The affine system with composite dilations is defined by AAB(Ψ) = {DaDbTkΨ : k ∈ �n, b ∈
B, a ∈ A} where Ψ = {ψ1, ψ2, . . . , ψL} ⊂ L2(�n ). By choosing Ψ, A, and B appropriately, we
can make AAB(Ψ) an orthonormal basis or, more generally, a Parseval frame (PF) for L2(�n )
[5–7]. In this case, Ψ is called an AB-multiwavelet or a PF AB-multiwavelet, respectively.
Since not all of the AB-multiwavelet come from AB-MRAs, we only focus on the AB-
multiwavelet which come from AB-MRAs. For convenience, we denote the operator DbTk
by B.

Before proceeding, we need some conventions. We denote by Tn = [−1/2, 1/2]n the
n-dimensional torus. For a Lebesgue measurable set E in �n , we denote by |E| its measure,
denote by χE the characteristic function of E, and define E∼ := E + �n. An n × n matrix A is
called an expansive matrix if it is an integer matrix with all its eigenvalues greater than 1 in
the module. G denotes the set of all expansive matrices. We denote by GLn(�) the set {a : a
is an n × n integral matrix and |deta|/= 0}, by S̃Ln(�) the set {a : a is an n × n integral matrix
and |deta| = 1}, and by B the set of the subgroups of S̃Ln(�), respectively. For a Lebesgue
measurable function f , we define its support by

supp
(
f
)
:=

{
x ∈ �n : f(x)/= 0

}
. (1.2)

The Fourier transform of f ∈ L1(�n) ∩ L2(�n) is defined by

f̂(ξ) :=
∫

�n
f(x)e−i2π〈ξ,x〉dx (1.3)

on �n , where 〈ξ, x〉 denotes the inner product in �n . Let S be a Lebesgue nonzero measurable
set in �n . We denote by L2(S)∨ the closed subspace of L2(�n ) of the form

L2(S)∨ :=
{
f ∈ L2(�n ) : supp

(
f̂
)
⊆ S

}
. (1.4)

Definition 1.1 (see [8, 9]). The sequence {xk,l}k,l in a separable Hilbert space H is called a
semiorthogonal PF forH if {xk,l}k,l is a PF forH and satisfies 〈xk1 ,l1 , xk2,l2〉 = 0 for any k1, k2 ∈
Λ1, l1, l2 ∈ Λ2, and k1 /=k2, where Λ1, Λ2 are two countable index sets. In particular, if {xk,l}k,l
is a semiorthogonal PF for span{xk,l}k,l, it is called a semiorthogonal sequence.

Definition 1.2 (see [4, 10]). A closed subspace X of L2(�n) is called a reducing subspace if
DaX = X and TkX = X for any k ∈ �n, a ∈ G.

The following proposition provides a characterization of reducing subspace.



Abstract and Applied Analysis 3

Proposition 1.3 (see [4, 10]). A closed subspace X of L2(�n ) is a reducing subspace if and only if

X =
{
f ∈ L2(�n) : supp

(
f̂
)
⊆ S

}
(1.5)

for some measurable set S ⊆ �n with ãS = S. So, to be specific, one denotes a reducing subspace by
L2(S)∨ instead of X. In particular, L2(�n) is a reducing subspace of L2(�n ).

Definition 1.4 (see [5–7]). Let B ��n be a subgroup of the integral affine group S̃Ln(�)��n

(the semidirect product of S̃Ln and �n). The closed subspace V of L2(�n ) is called a B � �n

invariant subspace if BV = V for any (b, k) ∈ B ��n.

Definition 1.5 (see [2–4]). Let B be a countable subset of S̃Ln(Z) and A = {ai : i ∈ �}where
a ∈ GLn(�). We say that a sequence {Vj}j∈�of closed subspaces of L2(�n ) is an AB-MRA if
the following holds:

(1) V0 is a B ��n invariant space;

(2) for each j ∈ �,Vj ⊂ Vj+1, and Vj = Dj
aV0;

(3)
⋃
j∈�Vj = L

2(�n);

(4)
⋂
j∈�Vj = {0};

(5) there exists ϕ ∈ V0 such that ΦB = {DbTkϕ : b ∈ B, k ∈ �n} is a semiorthogonal PF
for V0.

The space V0 is called an AB scaling space, and the function ϕ is an AB scaling function
for V0 or a generator of AB-MRA.

Similarly, we say that a sequence {Vj}j∈�is an AB-RMRA if it is an AB-MRA on L2(S)∨,

that is, conditions (1), (2), (4), (5), and (3)′
⋃
j∈�Vj = L

2(S)∨ are satisfied.
The fact that an AB-MRA can induce an AB-RMRA will be demonstrated by the

obvious following results.

Proposition 1.6. Let I be a countable index set and P the orthogonal projection operator from a
Hilbert spaceH to its proper subspace K. If Ψ = {ψi : i ∈ I} is a Parseval frame onH , then P(Ψ) =
{P(ψi) : i ∈ I} is a Parseval frame onK.

Proposition 1.7. Let P be the orthogonal projection operator from a Hilbert space H to its reducing
subspace K. Then P can commutate with the shift and dilation operators Tk and Da, respectively.

Theorem 1.8. Suppose that {ϕ;Vj} is an AB-MRA, then {ϕ̃; Ṽj} is an AB-RMRA for L2(S)∨, where
ϕ̃ := Pϕ, Ṽ0 := span{DbTkϕ̃ : b ∈ B, k ∈ �n}, Ṽj := span{DajDbTkϕ̃ : b ∈ B, k ∈ �n}, and P is
the orthogonal projection operator from L2(�n) to L2(S)∨.

The rest of this paper is organized as follows. Theorem 1.8 and some properties of
an AB-RMRA will be proved in Section 2. In Section 3, the characterization of the generator
for an AB-RMRA will be established, which is the main purpose of this paper. Finally, some
examples are provided to illustrate the general theory.
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2. Preliminaries

In this section, we will firstly prove Theorem 1.8 as follows.
We can easily prove that {DbTkϕ̃ : b ∈ B, k ∈ �n} is a Parseval frame sequence by

Propositions 1.6 and 1.7. Naturally, {DbTkϕ̃ : b ∈ B, k ∈ �n} is a semi-Parseval frame for Ṽ0.
Let ϕ ∈ V0 ⊂ L2(�n). Thus Pϕ = ϕ1. For any f ∈ Ṽ0, we have

f =
∑

b

∑

k

〈
f,DbTkϕ̃

〉
DbTkϕ̃ =

∑

b

∑

k

〈
f,DbTkϕ1

〉
DbTkϕ1,

Db′Tk′f =
∑

b

∑

k

〈
f,DbTkϕ1

〉
ϕ1

(
b′bx − bk′ − k) =

∑

b

∑

k

〈
f,DbTkϕ1

〉
ϕ1(bx − k),

(2.1)

namely, Db′Tk′f ∈ Ṽ0. So Ṽ0 is a B ��n invariant space. On the other hand,

f =
∑

b

∑

k

〈
f,DbTkPϕ

〉
DbTkPϕ =

∑

b

∑

k

〈
Pf,DbTkϕ

〉
PDbTkϕ

=
∑

b

∑

k

〈
f,DbTkϕ

〉
P
∑

b′

∑

k′

〈
DbTkϕ,DaDbTkϕ

〉
DaDb′Tk′ϕ

=
∑

b

∑

k

cb,kDaDbTkϕ̃ ∈ Ṽ1.

(2.2)

So Ṽ0 ⊂ Ṽ1. Notice that Ṽi = Daj Ṽ0. Then Ṽi ⊂ Ṽi+1. Thus, conditions (1), (2), and (5) in
Definition 1.5 have been proved. However, condition (3)′ is the natural consequence of the
later Lemma 3.1 in Section 3. Therefore, we complete the proof of Theorem 1.8.

Some properties of AB-RMRA, which were not discussed in [5–7], will be presented.
The first one can be obtained obviously by the definition of AB-RMRA as follows.

Proposition 2.1. Suppose that {Vj}j∈� is an AB-RMRA. Then

(1) for each j ∈ �, {Dj
aDbTkϕ : b ∈ B, k ∈ �n} is a semiorthogonal PF on Vj ;

(2) V0 is a B ��n invariant subspace, while Vj is a B � a−j�n invariant subspace.

Condition (5) of AB-RMRA can be characterized by the following proposition.

Proposition 2.2. Let ϕ ∈ L2(S)∨. Then ΦB = {DbTkϕ : b ∈ B, k ∈ �n} is a semiorthogonal PF
sequence if and only if

(1)
∑

k∈�n |ϕ̂(ξ + k)|2 = χF(ξ), a.e., where F = {ξ ∈ Tn ∩Ω : ϕ̂(ξ + k)/= 0, k ∈ �n};

(2)
∑

k∈�n ϕ̂(ξ + k)ϕ̂(b̃−1(ξ + k)) = 0, a.e. ξ ∈ Ω, for each b ∈ B and b /= In.

Proof. Necessity. For any f(x) ∈ span{Tkϕ : k ∈ �n}, we have

f(x) =
∑

b,k

〈
f,Bϕ〉Bϕ(x) =

∑

k

〈
f, Tkϕ

〉
Tkϕ(x) +

∑

b /= In

∑

k

〈
f,Bϕ〉Bϕ(x) =

∑

k

〈
f, Tkϕ

〉
Tkϕ(x).

(2.3)



Abstract and Applied Analysis 5

By Theorem 1.6 in [1] and Theorem 7.2.3 in [8], conclusion (1) holds clearly. Using Parseval
theorem, we can deduce

〈
Tkϕ,DbTk′ϕ

〉
=

∫

Ω
ϕ(x − k)ϕ(bx − k′)dx

=
∫

Ω
ϕ̂(ξ)ϕ̂(b̃−1ξ)e−2πi(k−b̃

−1k′)·ξdξ

=
∫

Ω

∑

l

ϕ̂(ξ + l)ϕ̂(b̃−1(ξ + l))e−2πi(k−k1)·ξdξ,

(2.4)

where k1 = b̃−1k′. Note that for any k, k′ ∈ �n, b /= b′ ∈ B, 〈DbTkϕ,Db′Tk′ϕ〉 = 0 if and only if
for any b ∈ B and b /= In,

〈
Tkϕ,DbTk′ϕ

〉
= 0. (2.5)

Then, we have

∑

l

ϕ̂(ξ + l)ϕ̂(b̃−1(ξ + l)) = 0, a.e. ξ ∈ Ω. (2.6)

Sufficiency. By Theorem 7.2.3 in [8] and conclusion (1), {Tkϕ : k ∈ �n} is a PF sequence. So is
{DbTkϕ : k ∈ �n} for any b ∈ B. It follows from (2.4), (2.5), and conclusion (2) that for any
k, k′ ∈ �n, b, b′ ∈ B, and b /= b′, we get 〈DbTkϕ,Db′Tk′ϕ〉 = 0. Thus, for any f(x) ∈ span{DbTkϕ :
b ∈ B, k ∈ �n}, there exists b ∈ B and fb(x) ∈ span{DbTkϕ : k ∈ �n} such that

∥
∥f

∥
∥2 =

∑

b∈B

∥
∥fb

∥
∥2 =

∑

b∈B

∑

k∈�n

∣
∣
〈
fb,DbTkϕ

〉∣
∣2 =

∑

b∈B

∑

k∈�n

∣
∣
〈
f,DbTkϕ

〉∣
∣2. (2.7)

By Theorem 1.6 in [1], the proof of Proposition 2.2 is completed.

Proposition 2.3. Let {Vj}j∈�be a sequence of closed subspace of L2(S)∨, where

Vj := span
{
D
j
aDbTkϕ : b ∈ B, k ∈ �n

}
. (2.8)

If conditions (1), (2), and (5) of AB-RMRA are satisfied, then one has the following.

(1) There exists {cb,k} ∈ l2(B × �n) such that

ϕ(x) =
∑

b

∑

k

cb,k|deta|1/2ϕ(bax − k). (2.9)
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(2) There exists {hb(ξ)}b∈B ⊆ L∞(Tn) such that

ϕ̂(ξ) =
∑

b

hb

[

(̃ba)
−1
ξ

]

ϕ̂

[

(̃ba)
−1
ξ

]

, (2.10)

for any b ∈ B, where hb(ξ) = |deta|−1/2 ∑k cb,ke
−2πik·ξ.

Proof. By conditions (2) and (5) of AB-RMRA and the fact that ϕ ∈ V0 ⊂ V1, we obtain

ϕ(x) =
∑

b,k

〈
ϕ,DaBϕ

〉
DaBϕ(x) =

∑

b

∑

k∈�n
cb,k |deta|1/2ϕ(bax − k), (2.11)

where cb,k = 〈ϕ,DaBϕ〉 and {cb,k} ∈ l2(B×�n). Therefore (2.9) holds. Taking Fourier transform
on both sides of (2.9), we obtain (2.10), where for any b ∈ B, hb(ξ) = |deta|−1/2 ∑k cb,ke

−2πik·ξ.
In what follows, we will only prove {hb(ξ)}b∈B ⊆ L∞(Tn). Indeed, for a ∈ GLn(�), ã�n is a
subgroup of �n and the quotient group �n/ã�n has orderM = |deta|. Thus, we can choose a
complete set of representatives of�n/ã�n, that is, the set {α0, α1, . . . , αM−1} so that each k ∈ �n
can be uniquely expressed in the form k = ãk′ + αi with k′ ∈ �n, 0 ≤ i ≤ M − 1. For simplicity,

we denote (̃ba)
−1

and�(b′a)
−1

by b∗ and b∗1, respectively. Then we have

∑

k

∣
∣ϕ̂(ξ + k)

∣
∣2 =

∑

k∈�n

∣
∣
∣
∣
∣

∑

b

hb[b∗(ξ + k)]ϕ̂[b∗(ξ + k)]

∣
∣
∣
∣
∣

2

=
∑

k∈�n

∑

b,b1

hb[b∗(ξ + k)]hb1[b
∗
1(ξ + k)]ϕ̂[b

∗(ξ + k)]ϕ̂[b∗1(ξ + k)]

=
M−1∑

i=0

∑

k′,b,b1

hb[b∗(ξ + αi)]hb1[b
∗
1(ξ + αi)]ϕ̂

[
b∗(ξ + αi) + b̃−1k′

]

× ϕ̂[b∗1(ξ + αi) + b̃1
−1
k′]

(2.12)

=
M−1∑

i=0

∑

b,b1

hb[b∗(ξ + αi)]hb1[b
∗
1(ξ + αi)]

×
∑

k′∈�n
ϕ̂
[
b∗(ξ + αi) + b̃−1k′

]
ϕ̂[b∗1(ξ + αi) + b̃1

−1
k′]

=
M−1∑

i=0

∑

b

|hb[b∗(ξ + αi)]|2
∑

k′∈�n

∣
∣
∣ϕ̂

[
b∗(ξ + αi) + b̃−1k′

]∣
∣
∣
2
,

(2.13)

where (2.12) is obtained by the periodicity of function sequence {hb(ξ)}b and (2.13) is proved
by conclusion (2) in Proposition 2.2. In addition, using Proposition 2.2 again and (2.13) above,
for any ξ ∈ F, we get

∑
k∈�n |ϕ̂(ξ + k)|2 =

∑M−1
i=0

∑
b |hb[b∗ξ + b∗αi)]|2 = 1. Then, for ξ ∈ �n ,

|hb(ξ)|2 ≤ 1, so hb(ξ) ∈ L∞(Tn). Therefore, the proof of Proposition 2.3 is completed.
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3. Characterization of the Generator for an AB-RMRA

In this section, we will characterize the scaling function of AB-RMRA which will determine
a multiresolution structure and AB-wavelets and the obtained results can be easily extended
to the whole space L2(�n ).

Lemma 3.1. Let {Vj}j∈� be a sequence of closed subspaces of L2(S)∨ and defined by (2.8). Assume
that conditions (1), (2), and (5) in an AB-RMRA are satisfied. Then the following results are
equivalent:

(1)
⋃
j∈�Vj = L

2(S)∨;

(2) limj→+∞
∑

b |ϕ̂[�(baj)
−1
ξ]|

2
= 1, a.e. ξ ∈ �n .

Proof. Theorems 1.7 and 5.2 in [1] imply that for any f ∈ L2(�n), limj→+∞‖Pjf‖2 = ‖f‖2 is
equivalent to

⋃
j∈�Vj = L

2(�n). Thus, for any f ∈ L2(S)∨, limj→+∞‖Pjf‖2 = ‖f‖2 is equivalent
to

⋃
j∈�Vj = L2(S)∨. Hence, we have to prove that limj→+∞‖Pjf‖2 = ‖f‖2 is equivalent to

limj→+∞
∑

b |ϕ̂[�(baj)
−1
ξ]|

2
= 1, a.e. ξ ∈ Ω. First, we prove (1)⇒(2) For any f ∈ L2(S)∨, f =

Pjf+Qjf , whereQj : L2(�) → (Vj)
⊥ is the orthogonal projection operator. Set f̂(ξ) = χTn∩S(ξ).

Then, when j is large enough, we have

∥
∥Pjf

∥
∥2 =

∑

b

∑

k

∣
∣
∣
〈
f,D

j
aDbTkϕ

〉∣
∣
∣
2

=
∑

b

∑

k

∣
∣
∣
∣
∣

∫

�n

∣
∣detaj

∣
∣−1/2f̂(ξ)ϕ̂

[
�(baj

)−1
ξ

]

e2πik·
�(baj)

−1
ξdξ

∣
∣
∣
∣
∣

2

=
∣
∣detaj

∣
∣
∑

b

∑

k

∣
∣
∣
∣
∣

∫

�(baj )
−1
Tn
ϕ̂(ξ)e2πik·ξ

∣
∣
∣
∣
∣

2

dξ

=
∣
∣detaj

∣
∣
∑

b

∫

Tn

∣
∣
∣
∣χ�(baj )

−1
Tn
(ξ)ϕ̂(ξ)

∣
∣
∣
∣

2

dξ

=
∑

b

∫

Tn

∣
∣
∣
∣ϕ̂

[
�(baj

)−1
(ξ)

]∣
∣
∣
∣

2

dξ

=
∫

Tn

∑

b

∣
∣
∣
∣ϕ̂

[
�(baj

)−1
(ξ)

]∣
∣
∣
∣

2

dξ.

(3.1)

Before proving the equivalence, we need to prove two assertions as follows:

(i)
∑

b |ϕ̂[�(baj)
−1
ξ]|

2
∈ L1(Tn);

(ii) limj→+∞
∑

b |ϕ̂[�(baj)
−1
ξ]|

2
makes sense.
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Since

∫

Tn

∑

b

∣
∣
∣
∣ϕ̂

[
�(baj

)−1
ξ

]∣
∣
∣
∣

2

dξ =
∑

b

∫

Tn

∣
∣
∣
∣ϕ̂

[
�(baj

)−1
ξ

]∣
∣
∣
∣

2

dξ

=
∣
∣detaj

∣
∣
∑

b

∫

�(baj )
−1
Tn

∣
∣ϕ̂(ξ)

∣
∣2dξ

=
∣
∣detaj

∣
∣
∫

⋃
b
�(baj )

−1
Tn

∣
∣ϕ̂(ξ)

∣
∣2dξ

≤ ∣
∣detaj

∣
∣
∫

�n

∣
∣ϕ̂(ξ)

∣
∣2dξ <∞,

(3.2)

it follows that (i) holds.

For (ii), we will only prove that {∑b |ϕ̂[�(baj )
−1
ξ]|

2
}j∈� is a monotonic bounded

sequence when ξ(∈ S) is fixed. Indeed, by the orthogonality, for each b /= b′ ∈ B, we have

supp(ϕ̂(b̃−1ξ)) ∩ supp(ϕ̂(b̃′
−1
ξ)) = ∅. In addition, we deduce from (2.10) that, for any b ∈ B,

ϕ̂

[
�(baj)

−1
ξ

]

=
∑

b′∈B
hb′

[
�(b′a)

−1
�(baj)

−1
ξ

]

ϕ̂

[
�(b′a)

−1
�(baj)

−1
ξ

]

=
∑

b′∈B
hb′

(

b̃′
−1
b̃−1ãj+1

−1ξ
)

ϕ̂

(

b̃′
−1
b̃−1ãj+1

−1ξ
)

.

(3.3)

Set b∗ = b̃−1ãj+1
−1. Then by the orthogonality and Proposition 2.3, we obtain

∑

b∈B

∣
∣
∣
∣ϕ̂

[
�(baj

)−1
ξ

]∣
∣
∣
∣

2

=
∑

b∈B

∣
∣
∣
∣
∣

∑

b′∈B
hb′

(

b̃′
−1
b∗ξ

)

ϕ̂

(

b̃′
−1
b∗ξ

)∣
∣
∣
∣
∣

2

=
∑

b∈B

∑

b1∈B
hb1

(

b̃1
−1
b∗ξ

)

ϕ̂

(

b̃1
−1
b∗ξ

)∑

b2∈B
hb2

(

b̃2
−1
b∗ξ

)

ϕ̂

(

b̃2
−1
b∗ξ

)

=
∑

b∈B

∣
∣
∣
∣hb

(
�(baj+1

)−1
ξ

)

ϕ̂

(
�(baj+1

)−1
ξ

)∣
∣
∣
∣

2

≤
∑

b∈B

∣
∣
∣
∣ϕ̂

(
�(
baj+1

)−1
ξ

)∣
∣
∣
∣

2

.

(3.4)

Hence, {∑b∈B |ϕ̂(�(baj )
−1
ξ)|2}j∈� is a monotonic sequence when ξ is fixed. On the other hand,

by the property of B, we deduce that DbTkϕ(x) = ϕ(bx − k) = ϕ(b(x − b−1k)) = ϕ(b(x − k′)) =
Tk′Dbϕ(x). Note that {DbTkϕ : k ∈ �n} is a PF for span{DbTkϕ : k ∈ �n} for any b ∈ B.
Then {Tk′Dbϕ : k′ ∈ �n} is a PF on span{DbTkϕ : k ∈ �n}, which implies that there exists
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a set Mb such that
∑

k |ϕ̂(b̃−1ξ + k)|
2
= χMb(ξ). By the orthogonality,

∑
b

∑
k |ϕ̂(b̃−1ξ + k)|

2
=

χ⋃
b Mb (ξ), consequently

⋃
b Mb = F. Hence,

∑
b |ϕ̂(b̃−1ξ)|

2 ≤ 1 holds for ξ ∈ S. So

limj→+∞
∑

b∈B |ϕ̂(�(baj )
−1
ξ)|

2
exists. Now we have proved the two assertions. By the Lebesgue

dominant convergence theorem, we get limj→+∞‖Pjf‖2 =
∫
Tn limj→+∞

∑
b |ϕ̂[�(baj)

−1
ξ]|

2
dξ =

‖f‖2 = |Tn| = 1. Thus, limj→+∞
∑

b∈B |ϕ̂[�(baj)
−1
ξ]|

2
= 1, a.e. ξ ∈ �n .

Next, we prove (2)⇒(1). Let D be the class of all functions f ∈ L2(�n ) such that f̂ ∈
L∞(�n ) and f̂ is compactly supported in �n \ {0}. If we can show that limj→+∞‖Pjf‖2 = ‖f‖2

for all f ∈ D, then, by Lemma 1.10 in [1], the proof is finished. Indeed, denoting �(baj)
−1

by
b∗, we have

∥
∥Pjf

∥
∥2 =

∑

b

∑

k

∣
∣
∣
〈
f,DajDbTkϕ

〉∣
∣
∣
2

=
∑

b

∑

k

∣
∣
∣
∣

∫

�n

∣
∣detaj

∣
∣−1/2f̂(ξ)ϕ̂(b∗ξ)e2πik·b

∗ξdξ
∣
∣
∣
∣

2

=
∑

b

∑

k

∣
∣
∣
∣
∣

∑

m

∫

ãjTn

∣
∣detaj

∣
∣−1/2f̂

(
ξ + ãjm

)
ϕ̂
[
b∗

(
ξ + ãjm

)]
e2πik·b

∗ξdξ

∣
∣
∣
∣
∣

2

=
∑

b

∑

k

∣
∣
∣
∣
∣

∫

ãj Tn

∣
∣detaj

∣
∣−1/2

∑

m

f̂
(
ξ + ãjm

)
ϕ̂
[
b∗

(
ξ + ãjm

)]
e2πik·b

∗ξdξ

∣
∣
∣
∣
∣

2

=
∑

b

∫

ãjTn

∣
∣
∣
∣
∣

∑

m

f̂
(
ξ + ãjm

)
ϕ̂
[
b∗

(
ξ + aTj m

)]
∣
∣
∣
∣
∣

2

dξ

=
∑

b

∫

ãjTn

∑

m

f̂
(
ξ + ãjm

)
ϕ̂[b∗(ξ + ãjm)]

∑

n

f̂(ξ + ãjn)ϕ̂
[
b∗

(
ξ + ãjn

)]
dξ

=
∑

b

∑

m

∫

ãj Tn+m

∑

p

f̂
(
η
)
f̂(η + ãjp)ϕ̂

[
b∗η + b̃p

]
ϕ̂(b∗η)dη

=
∑

b

∫

�n

∑

p

f̂
(
η
)
f̂(η + ãjp)ϕ̂

(
b∗η + b̃p

)
ϕ̂(b∗η)dη

=
∫

�n

∣
∣
∣f̂

(
η
)∣∣
∣
2∑

b

∣
∣
∣ϕ̂

(
b̃−1ãjη

)∣
∣
∣
2
dη + Rf ,

(3.5)

where Rf =
∑

b

∑
p /= 0

∫
�n
f̂(η)f̂(η + ãjp)ϕ̂(b∗η + b̃p)ϕ̂(b∗η)dη. Since f has compact support,
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when j is large enough, supp(f̂(η)) ∩ supp(f̂(η + ãjp)) = ∅, consequently, Rf = 0. Thus,
taking j → +∞ in (3.5), we obtain

lim
j→+∞

∥
∥Pjf

∥
∥2 = lim

j→+∞

∑

b

∑

k

∣
∣
∣
〈
f,DajDbTkϕ

〉∣
∣
∣
2

= lim
j→+∞

∑

b

∫

�n

∣
∣
∣f̂

(
η
)∣∣
∣
2∑

b

∣
∣
∣ϕ̂

(
b̃−1ãj

−1η
)∣
∣
∣
2
dη

=
∫

�n

∣
∣
∣f̂

(
η
)∣∣
∣
2
lim
j→+∞

∑

b

∣
∣
∣ϕ̂

(
b̃−1ãj

−1η
)∣
∣
∣
2
dη

=
∫

�n

∣
∣
∣f̂

(
η
)∣∣
∣
2
dη =

∥
∥f

∥
∥2
.

(3.6)

Lemma 3.2. Let a ∈ G, ϕ ∈ L2(�n) satisfy (2.10), and let {Vj}j∈�be defined by (2.8). Then

⋃

j∈�
Vj = L2(S)∨, (3.7)

where S =
⋃
j∈�

⋃
b∈B ãj b̃ supp(ϕ̂).

Proof. By the definition of {Vj}j∈�, we have DaVj = Vj+1 for any j ∈ �. It follows that

Da(
⋃
j∈�Vj) =

⋃
j∈�Vj . Note thatDa is a unitary operator. HenceDa(

⋃
j∈�Vj) = Da(

⋃
j∈�Vj) =

⋃
j∈�Vj . It is obvious to see that Vj = {f : f̂ =

∑
b Fb[�(baj )

−1
ξ]ϕ̂[�(baj)

−1
ξ]}, where {Fb}b ∈

L2(Tn). Then, for any f ∈ V0, we have f̂(ξ) =
∑

b Fb(b̃
−1ξ)ϕ̂(b̃−1ξ), Fb ∈ L2(Tn). Notice that for

any b ∈ B, ϕ̂(b̃−1ξ) = ∑
b hb(b̃

−1ã−1ξ)ϕ̂(b̃−1ã−1ξ). Thus

f̂(ξ) =
∑

b1

Fb1

(
b−T1 ξ

)∑

b2

hb2

(

b̃2
−1
ã−1ξ

)

ϕ̂

(

b̃2
−1
ã−1ξ

)

=
∑

b1

∑

b2

Fb1

(

b̃1
−1
ξ

)

hb2

(

b̃2
−1
ã−1ξ

)

ϕ̂

(

b̃2
−1
ã−1ξ

)

.

(3.8)

Put Hb2(b̃
−1ã−1ξ) =

∑
b1
Fb1(b̃1

−1
ξ)Mb2(b̃2

−1
ã−1ξ). Then, we obtain f̂(ξ) =

∑
b2
Hb2(b̃2

−1
ã−1ξ)ϕ̂(b̃2

−1
ã−1ξ). Recalling that Fb(ξ) ∈ L2(Tn) and hb(ξ) ∈ L∞(Tn), we

have Mb2(ξ) ∈ L2(Tn), so f(x) ∈ V1. Thus, for any f(x), we get V0 ⊂ V1, so Vj ⊂ Vj+1.
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Therefore, for any f(x) ∈ ⋃
j∈�Vj , we can choose jf > 0 such that f(x) ∈ Vjf , that is,

f(x) =
∑

b

∑
k cb,kϕ(bajf x − k). Hence, for anym ∈ �n, we have

Tmf(x) =
∑

b

∑

k

cb,kϕ
(
bajf (x −m) − k

)

=
∑

b

∑

k

cb,kϕ
(
bajf x − bajfm − k

)

=
∑

b

∑

k

cb,kϕ
(
bajf x − k

)
,

(3.9)

which implies Tm(
⋃
j∈�Vj) ⊆ ⋃

j∈�Vj . Thus, Tm(
⋃
j∈�Vj) =

⋃
j∈�Vj holds. Note that Tk is

also a unitary operator. Hence, Tm(
⋃
j∈�Vj) = Tm(

⋃
j∈�Vj) =

⋃
j∈�Vj . By Proposition 1.3,

⋃
j∈�Vj is a reducing subspace. We notate

⋃
j∈�Vj = L2(S)∨. Next we have to prove S =

⋃
j∈�

⋃
b ãj b̃ supp(ϕ̂). By ϕ(baj ·) ∈ Vj , we have supp(ϕ̂(�(baj)

−1
ξ)) ⊂ S. Obviously, we will

only prove that S \ ⋃
j∈�

⋃
b ãj b̃ supp(ϕ̂) is a zero measurable set. If S \ ⋃

j∈�
⋃
b ãj b̃ supp(ϕ̂)

is a set with nonzero measure, then a contradiction is led. In fact, choosing a set M ⊂
S \⋃

j∈�
⋃
b ãj b̃ supp(ϕ̂) with 0 < |M| < +∞ and using Plancherel theorem, we have

∥
∥Pjf

∥
∥2 =

〈
Pjf, Pjf

〉
=

〈
f, Pjf

〉
=

〈
f̂ , f̂ ′

j

〉
, (3.10)

for any f ∈ L2(�n ), where f ′
j := Pjf . In particular, setting f̂(ξ) = χM(ξ) and taking j → +∞ in

(3.10), we get ‖Pjf‖2 = 〈f̂ , f̂ ′
j〉 = 0, but ‖f‖2 = |M| > 0, and this is a contradiction. Therefore,

we complete the proof of Lemma 3.2.

By Lemmas 3.1 and 3.2 and Theorems 1.7 and 5.2 in [1], we characterize the density
condition of AB-RMRA as follows.

Theorem 3.3. Let a ∈ G and {Vj}j∈�be defined by (2.8). If conditions (1), (2), and (5) of AB-RMRA
are satisfied, then the following results are equivalent:

(1)
⋃
j∈�Vj = L

2(S)∨;

(2) limj→+∞‖Pjf‖2 = ‖f‖2, where Pj : L2(�n ) → Vj denotes an orthogonal projection
operator;

(3) limj→+∞
∑

b∈B |ϕ̂(�(baj )
−1
ξ)|

2
= 1, a.e. ξ ∈ S;

(4) S =
⋃
j∈�

⋃
b ãj b̃ supp ϕ̂.

It is well known that
⋂
j∈�Vj = {0} can be deduced by the other conditions of MRA.

Similarly, the condition
⋂
j∈�Vj = {0} of AB-RMRA can be also deduced by the others. Thus,

using Proposition 2.2 and Theorem 3.3, we can get the main theorem as follows.

Theorem 3.4. Let a ∈ G, and let B be a subgroup of S̃Ln(�) with aBa−1 ⊆ B. Suppose that ϕ ∈
L2(S)∨ and {Vj}j∈� is defined by (2.8). Then ϕ is a generator of AB-RMRA if and only if
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(1) there exists {hb(ξ)}b∈B ⊂ L∞(Tn) such that

ϕ̂(ξ) =
∑

b

Mb

(
b̃−1ã−1ξ

)
ϕ̂
(
b̃−1ã−1ξ

)
; (3.11)

(2)
∑

k |ϕ̂(ξ + k)|2 = χF(ξ), a.e., where F = {ξ ∈ Tn ∩ S : ϕ̂(ξ + k)/= 0, k ∈ �n};

(3) for any b ∈ B and b /= In,
∑

k ϕ̂(ξ + k)ϕ̂(b̃−1(ξ + k)) = 0, a.e. ξ ∈ S;
(4) S =

⋃
j∈�

⋃
b ãj b̃ supp(ϕ̂).

Remarks 1. (1) Condition (4) in Theorem 3.4 can be replaced by any one of conditions in
Theorem 3.3.

(2) If S = �n in Theorem 3.4, then we obtain the characterization of generator of AB-
MRA.

(3) If n = 1, a = (2), and B = (1) in Theorem 3.4, then we obtain the characterization of
{Vj}j∈�as a generator of MRA on L2(�).

Corollary 3.5. Let a ∈ G, and let B be a subgroup of S̃Ln(�)with aBa−1 ⊆ B. Suppose that E is a
bounded nonzero measurable set satisfying ã−1E ⊂ E with S =

⋃
j∈�

⋃
b ãj b̃E. Define ϕ̂(ξ) = χE(ξ)

and F = {ξ ∈ Tn ∩Ω : ϕ̂(ξ + k)/= 0, k ∈ �n}. Then ϕ generates an AB-RMRA if and only if

(1) F =
⋃
k∈�n(E + k) with |E ∩ (E + k)| = 0, |bTE ∩ b′TE| = 0 (b /= b′);

(2) there exists b ∈ B such that (̃ba)
−1
E ⊂ E and [(̃ba)

−1
E]∼ ∩ E = (̃ba)

−1
E;

(3) Tkχ(̃ba)
−1
E
(ξ) = χ

(̃ba)
−1
E
(ξ) on (̃ba)

−1
E ∩ [(̃ba)

−1
E + k]/= ∅ for k ∈ �n \ {0}.

4. Some Examples

Three examples are provided to illustrate the general theory in this section.

Example 4.1. Let ϕ̂(ξ) = χI(ξ), where I = I+ ∪ I−, I− = {ξ ∈ �2 | −ξ ∈ I+}, and I+ is a triangle
region with vertices (0, 0), (α, 0), (α, α). Let a =

(
2 0
0 2

)
, B = {( 1 i

0 1

)
: i ∈ �}, S0 = {(ξ1, ξ2) ∈

�2 : 0 ≤ ξ1 ≤ α, ξ2 ∈ �}, Sj = (ãj)S0. Define Vj = L2(Sj)∨. Then by Corollary 3.5, we get the
following:

(1) when α ≤ 1, ϕ(x) is a generator for an AB-RMRA;

(2) when α > 1, ϕ(x) is not a generator.

Example 4.2. Given k ∈ �, let E = [0, β0]2 ∪ (
⋃−1
j=−k[2

jα, 2jβ]2), where 0 < β0 ≤ 2−kα, α < β ≤
min{2α, 2k+1β0, 2}. If ϕ̂ = χE(·), then ϕ generates an AB-RMRA, where S = {(x, y) : x ≥ 0, y ≥
0}, a =

( 0 2
2 0

)
.

Example 4.3. Let E = [0, 1/4]2 ∪ [3/8, 3/8 + ε]2, where 0 < ε ≤ 1/16. Assume that ϕ̂ = χE(·).
Then ϕ generates an AB-RMRA, where S = {(x, y) : x ≥ 0, y ≥ 0}, a =

(
2 0
0 2

)
.
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