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The objective of this study is to present a brief survey on the geometrically nonlinear free
vibrations of the Bernoulli-Euler, the Rayleigh, shear, and the Timoshenko beams with simple end
conditions using the Homotopy Analysis Method (HAM). Expressions for the natural frequencies,
the transverse deflection, postbuckling load-deflection relation to, and critical buckling load are
presented. The results of nonlinear analysis are validated with the published results, and excellent
agreement is observed. The effects of some parameters, such as slender ratio, the rotary inertia,
and the shear deformation, are examined as other parameters are fixed.

1. Introduction

Many structures, such as bridges, buildings, and spacecraft arms can be modeled as flexible
beams. Most phenomena in these structures are essentially nonlinear and are described by
nonlinear equations. Therefore, the study of nonlinear effects on vibration analysis of beam
structures is of great importance for engineers working in the field of aerospace, mechanical,
and civil engineering.

Although the nonlinear free vibrations of classical Bernoulli-Euler’s beams have been
investigated bymany researchers [1–5], only a few publications have been devoted to include
the effects of shear deformation and rotary inertia [6, 7].

Azrar et al. [1] have developed a semianalytical approach to the nonlinear dynamic
response problem based on Lagrange’s principle and the harmonic balance method. An
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Figure 1: A schematic of a simple ends’ beam.

analytical method for determining the vibration modes of geometrically nonlinear beams
under various edge conditions has been presented by Qaisi [2]. Nonlinear modal analysis
approach based on invariant manifold method is utilized to obtain the nonlinear normal
modes of a clamped-clamped beam for large amplitude displacements by Xie et al. [3].
Singh et al. [4] have developed a spline-based differential quadrature method based on
sextic cardinal spline functions. Guo and Zhong [5] have investigated nonlinear vibrations of
thin beams based on sextic cardinal spline functions, a spline-based differential quadrature
method.

Rao et al. [6] have studied the large-amplitude free vibrations of slender beams using
the continuum and finite element methods. The large-amplitude free-vibration behavior of
the beams with central point-concentrated masses has investigated by Rao et al. [7].

The main purpose of this survey is to present the analytical expressions for
geometrically nonlinear vibration of Bernoulli-Euler’s, Rayleigh’s, shear, and Timoshenko’s
beams with simple end conditions. First it is obtained nonlinear differential equations of
motion on the basis of the four engineering beam theories. It is assumed that only the
fundamental mode is excited and the governing nonlinear partial differential equation is
reduced to a single nonlinear ordinary differential equation. These equations have been
solved analytically in time domain using HAM. Finally, some numerical examples are shown
for the nonslender and slender beams to signify the differences among the beam models.

2. Problem Formulation

2.1. Timoshenko’s Beam Model

Consider a straight Timoshenko’s beam of length L, a uniform cross-sectional area A, the
mass per unit length ofm, the moment of area of the cross-section I, Young’s modulus E, and
shear modulus G that is subjected to an axial force of magnitude N̂ as shown in Figure 1. We
assume that the beam is made of a homogenous and isotropic material.

The kinetic energy T and the potential energy U of the vibrating beam can be written
as

T =
1
2

∫L
0
m
(
ŵ2
,t̂
+ û2

,t̂
+ r2ψ2

,t̂

)
dx̂,

U =
1
2

∫L
0

(
Mψ,x̂ + V γ + N̂x̂ε

)
dx̂ =

1
2

∫L
0

(
EIψ2

,x̂ + kAGγ
2 + EAε2

)
dx̂,

(2.1)
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where γ represents the shear angle (γ = ŵ,x̂ − ψ), û, ŵ, and ψ are axial, transverse
displacements, and the cross-section rotation due to the bending moment, x̂ is the axial
coordinate of the beam, r is the radius of gyration (

√
I/A), and k is beam’s cross-sectional

shape factor. AlsoM, V , and N̂x̂ are the bendingmoment, shear, and axial forces, respectively.
Comma denotes differentiate with respect to x̂ or t̂.

The strain-displacement relation of the Von-Karman type is used:

ε = û,x̂ +
ŵ2
,x̂

2
. (2.2)

Applying Hamilton’s principle, the governing equations of motion and boundary conditions
are obtained as follows:

mŵ,t̂t̂ −
[
kAG

(
ŵ,x̂ − ψ

)]
,x̂ −
[
EA

(
û,x̂ +

ŵ2
,x̂

2

)
ŵ,x̂

]
,x̂

= 0, (2.3)

mû,t̂t̂ −
[
EA

(
û,x̂ +

ŵ2
,x̂

2

)
ŵ,x̂

]
,x̂

= 0, (2.4)

mr2ψ,t̂t̂ − kAG
(
ŵ,x̂ − ψ

) − (EIψ,x̂),x̂ = 0, (2.5)

(Mδψ)L0 = 0, (N̂x̂δû)
L

0 = 0, (Vδŵ + N̂x̂ŵ,x̂δŵ)
L

0 = 0. (2.6)

Upon neglecting the axial inertia, (2.3)-(2.4) can be combined to get the first type of
differential equations which is coupled as follows:

mŵ,t̂t̂ −
[
kAG(ŵ,x̂ − ψ)

]
,x̂ + N̂x̂w,x̂x̂ = 0, (2.7)

mr2ψ,t̂t̂ − kAG
(
ŵ,x̂ − ψ

) − (EIψ,x̂),x̂ = 0, (2.8)

where the axial force N̂x̂ is given by

N̂x̂ = N̂ − EA

2L

∫L
0
ŵ2
,x̂dx̂ (2.9)

In the next step, (2.7)-(2.8) can be combined to arrive at the following decoupled equation of
motion:

EIŵ,x̂x̂x̂x̂ +mŵ,t̂t̂ −
(
mr2 +

mEI

kAG

)
ŵ,x̂x̂t̂t̂ +

mr2

kAG
ŵ,t̂t̂t̂t̂

+Nx̂

(
ŵ,x̂x̂ +

mr2

kAG
ŵ,x̂x̂t̂t̂ −

EI

kAG
ŵ,x̂x̂x̂x̂

)
+
mr2

kAG
N̂x̂,t̂t̂ŵ,x̂x̂ = 0.

(2.10)
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It may be noted that the equation of motion governing the rotation of the cross-section ψ can
be obtained using the same procedures to derive an equation similar to (2.10) with w being
replaced by ψ.

2.2. Shear Beam Model

This model neglects the effect of rotary inertia in Timoshenko’s beam model. Therefore, the
kinetic energy can only be rewritten as

T =
1
2

∫L
0
m
(
ŵ2
,t̂
+ û2

,t̂

)
dx̂. (2.11)

Applying the same process mentioned in Timoshenko’s beammodel, the decoupled equation
of motion is given by

EIŵ,x̂x̂x̂x̂ +mŵ,t̂t̂ −
mEI

kAG
ŵ,x̂x̂t̂t̂ + N̂x̂

(
ŵ,x̂x̂ − EI

kAG
ŵ,x̂x̂x̂x̂

)
= 0, (2.12)

and the boundary conditions are as listed in (2.6).

2.3. Rayleigh’s Beam Model

In the Rayleigh beam model, the effect of shear deformation is neglected in Timoshenko’s
beam model. Unlike the Timoshenko and Shear beam models, there is only one dependent
variable for the Rayleigh beam. Therefore, the potential and kinetic energies can be rewritten
as

T =
1
2

∫L
0
m
(
ŵ2
,t̂
+ û2

,t̂
+ r2ŵ2

,x̂t̂

)
dx̂,

U =
1
2

∫L
0

(
Mŵ,x̂x̂ + N̂x̂ε

)
dx̂ =

1
2

∫L
0

(
EIŵ2

,x̂x̂ + EAε
2
)
dx̂.

(2.13)

Again following the same procedure outline before, the equation of motion in this case is
obtained as

EIŵ,x̂x̂x̂x̂ +mŵ,t̂t̂ −mr2ŵ,x̂x̂t̂t̂ + N̂x̂ŵx̂x̂ = 0. (2.14)

The general form of any kind of boundary conditions can be listed as

(N̂x̂δû)
L

0 = 0, (Vδŵ + N̂x̂ŵ,x̂δŵ +Mδŵ,x̂)
L

0 = 0. (2.15)
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2.4. Bernoulli-Euler’s Beam Model

In this model both effects of shear deformation and rotary inertia are neglected in the
Timoshenko beam model. Like the Rayleigh beam model, there is one dependent variable
in this model. Based on above assumptions, the potential and kinetic energies in this case are

T =
1
2

∫L
0
m
(
ŵ2
,t̂
+ û2

,t̂

)
dx̂,

U =
1
2

∫L
0

(
Mŵ,x̂x̂ + N̂x̂ε

)
dx̂ =

1
2

∫L
0

(
EIŵ2

,x̂x̂ + EAε
2
)
dx̂.

(2.16)

Similarly, the equation of motion is

EIŵ,x̂x̂x̂x̂ +mŵ,t̂t̂ + N̂x̂ŵ,x̂x̂ = 0, (2.17)

and the boundary conditions are as listed in (2.15).

3. Method of Solution

3.1. Homotopy Analysis Method (HAM)

For convenience of the reader, we will first present a brief description of the HAM [8].
Consider the following nonlinear homogeneous differential equations:

N[W(t)] = 0, (3.1)

whereN are nonlinear operators, t denotes the independent variable, andW(t) are unknown
functions.

Liao constructed the so-called zero-order deformation equation as follows [8]:

(
1 − q)L[φ(t; q) −W0(t)

]
= q�h(t)N

[
φ
(
t; q
)]
, (3.2)

where q ∈ [0, 1] is an embedding parameter, (�,h(t)) are nonzero auxiliary parameter and
function; respectively, L is an auxiliary linear operator,W0(t) are initial guesses ofW(t), and
φ(t; q) are unknown functions. As q increases from 0 to 1, the φ(t; q) varies from the initial
approximation to the exact solution. In other words, φ(t; 0) =W0(t) and φ(t; 1) =W(t).

Differentiating once more from (3.2) with respect to the embedding parameter q and
then setting q = 0, we obtain the first-order deformation equation as

L[W1(t)] = �h(t)N
[
φ
(
t; q
)]

q=0, (3.3)

which gives the first-order approximation for theW(t) [8]. The higher-order approximation
of the solution can be obtained by calculating the mth-order (m > 1) deformation equation
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which can be calculated by differentiating (3.3) m times with respect to the q, then setting
q = 0, and finally dividing them bym! [8].

To solve (3.2), we employ Taylor’s expansion series for φ(t; q) as

φ
(
t; q
)
= φ(t; 0) +

∞∑
m=1

1
m!

∂mφ(t; q)
∂qm

∣∣∣∣
q=0
qm =W0(t) +

∞∑
m=1

Wm(t)qm, (3.4)

whereWm(t) is called themth-order derivative of unknown function φ(t; q).

3.2. Application of the HAM in Beam Vibrations

3.2.1. Timoshenko’s Beam Model

For convenience, the following nondimensional variables are used:

x =
x̂

L
, w =

ŵ

r
, t = t̂

√
EI(
mL4

) . (3.5)

In order to obtain the nonlinear natural frequency, we start to apply the Galerkin method on
which the deflection for the beam with simply supported boundary conditions is expressed
as

w(x, t) =W(t) sin(πx) (3.6)

As a result (2.10) can be written as follows:

W,tttt +

[
η4

λ
+ η2π2

(
1 +

1
λ
−N

)
+
π4

4

]
W,tt + η4π2

[
π2

λ
−N

(
π2 +

η2

λ

)]
W

+
η2π4

4

[
η2

λ
+ π2

]
W3 +

π4

2

(
WW2

,t +W
2W,tt

)
= 0,

(3.7)

in which

η =
L

r
, λ =

E

kG
, N =

N̂

EA
. (3.8)

The beam centroid is subjected to the following initial conditions:

W(0) = a, W,t(0) = 0, W,tt(0) = 0, W,ttt(0) = 0. (3.9)

Note that the free vibration of a system without damping is expressed by a kind of periodic
function which has to satisfy the initial conditions. For our case this function simply is

cos(nωNLt), n = 1, 2, 3, . . .. (3.10)
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It is well known that for a Timoshenko’s beam with simple ends there are two natural
frequencies. In other words, there are two sinusoidal modes of different frequencies corre-
sponding to the same spatial mode. This is the most important difference between Timo-
shenko’s model and the other beammodels with simple end conditions. This phenomenon is
also reported by many researchers [9–11]. Thus, the initial guess forW(t) is as follows:

W0(t) = A1 cos(ωNL1t) +A2 cos(ωNL2t). (3.11)

To satisfy the initial conditions given in (3.9), we apply those conditions into (3.11) which
yields the following expressions for the A1 and A2 as

A1 =
a

1 − (ωNL1/ωNL2)
2
, A2 =

a

1 − (ωNL2/ωNL1)
2
. (3.12)

Now we use (3.11) in conjunction with HAM to get the natural frequencies and the beam
deflection. To construct the homotopy function, the auxiliary linear operator is selected as

L
[
φ
(
t; q
)]

=
∂4φ
(
t; q
)

∂t4
+
(
ω2

NL1 +ω
2
NL2

)∂2φ(t; q)
∂t2

+ (ωNL1ωNL2)2. (3.13)

For convenience and simplify, from (3.7), the nonlinear operator is defined as

N
[
φ
(
t; q
)]

=
∂4φ
(
t; q
)

∂t4
+ α1

∂2φ
(
t; q
)

∂t2
+ α2φ

(
t; q
)
+ α3φ(t; q)

3

+ α4

(
φ(t; q)2

∂2φ
(
t; q
)

∂t2
+ φ
(
t; q
)(∂φ(t; q)

∂t

)2
)
,

(3.14)

where

α1 =
η4

λ
+ η2π2

(
1 +

1
λ
−N

)
+
π4

4
, α2 = η4π2

[
π2

λ
−N

(
π2 +

η2

λ

)]
,

α3 =
η2π4

4

[
η2

λ
+ π2

]
, α4 =

π4

2
.

(3.15)

In our case, to obtain the first-order approximation, (3.3) for the function of φ(t; q) can be
expressed as

L[W1(t)] = �h(t)N[φ
(
t; q
)
]
∣∣
q=0,

W1(0) = 0, W1,t(0) = 0, W1,tt(0) = 0, W1,ttt(0) = 0.
(3.16)
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Assuming � = −1 and h(t) = 1 and substituting (3.11) in (3.16), (3.16) becomes as

W1,tttt +
(
ω2

NL1 +ω
2
NL2

)
W1,tt + (ωNL1ωNL2)2

= B1 cos(3ωNL1t) + B2 cos(3ωNL2t) + B3 cos((ωNL1 − 2ωNL2)t)

+ B4 cos((ωNL1 + 2ωNL2)t) + B5 cos((2ωNL1 −ωNL2)t)

+ B6 cos((2ωNL1 +ωNL2)t) + B7 cos(ωNL1t) + B8 cos(ωNL2t),

(3.17)

where B’s are given in the appendix, equation (A.1).
These solutions should obey the general form of the base function. This means that

the coefficients of the secular terms (cos(ωNL1t), cos(ωNL2t)) must be zero, that is, B7 =
0 and B8 = 0. This provides two algebric equations which yield the nonlinear frequencies:

(
ω4

NL1 − α1ω2
NL1 + α2

)(
ω4

NL2 −ω4
NL1

)2
+
3
4
α3a

2
(
ω4

NL2 + 2ω4
NL1

)
− 1
2
α4a

2
(
ω6

NL1 +ω
4
NL1ω

2
NL2 +ω

2
NL1ω

4
NL2

)
= 0,

(
ω4

NL2 − α1ω2
NL2 + α2

)(
ω4

NL2 −ω4
NL1

)2
+
3
4
α3a

2
(
ω4

NL1 + 2ω4
NL2

)
− 1
2
α4a

2
(
ω6

NL2 +ω
4
NL1ω

2
NL2 +ω

2
NL1ω

4
NL2

)
= 0,

(3.18)

and solving (3.17), theW1(t) is obtained as follows:

W1(t) = A cos(ωNL1t) + B cos(ωNL2t) +D1 cos(3ωNL1t) +D2 cos(3ωNL2t)

+D3 cos((ωNL1 − 2ωNL2)t) +D4 cos((ωNL1 + 2ωNL2)t) +D5 cos((2ωNL1 −ωNL2)t)

+D6 cos((2ωNL1 +ωNL2)t),
(3.19)

where A and B are obtained by applying initial conditions. Coefficients A, B and D’s have
been presented in the appendix, equation (A.2).

Thus, the first-order approximation of theW(t) becomes as

W(t) =W0(t) +W1(t). (3.20)

3.2.2. Shear, Rayleigh’s, and Bernoulli-Euler’s Beam Models

The second-order differential equations of motion for either of shear (S), Rayleigh’s (R), or
Bernoulli- Euler’s (B) beams using Galerkin’s method are the same and is

W,tt + αi1W + αi3W3 = 0, i = S,R,B. (3.21)
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Under the following initial conditions

w(0) = a, w,t(0) = 0. (3.22)

Using the same method described for Timoshenko’s beam model, we obtain the nonlinear
natural frequency and the deflection of the beam as follows.

Nonlinear natural frequency:

ωNL =
1
2

√
3αi3a3 + 4αi1. (3.23)

Deflection of the beam,

W(t) =

(
αi3a

3

32ω2
NL

+ a

)
cos(ωNLt) − αi3a

3

32ω2
NL

cos(3ωNLt), (3.24)

where αij , (i = S,R,B, j = 1, 3) are given in the appendix equation (A.3).

4. Postbuckling Load-Deflection Relation and Critical Buckling Load

In order to obtain the postbuckling load-deflection relation one can set all time derivative
terms in (3.7) and (3.21) equal to zero which yields the following.

Rayleigh’s and Bernoulli-Euler’s beam models,

N =
π2

4η2
[
4 +W2

]
. (4.1)

Shear and Timoshenko’s beam models,

N =
π2

4η2
(
η2 + λπ2

)[4η2 + (η2 + λπ2
)
W2
]
. (4.2)

Neglecting the contribution of W in the above equations, the critical buckling load can be
determined as follows:

Rayleigh and Bernoulli-Euler Beam Models:

Ncr =
(
π

η

)2

. (4.3)

Shear and Timoshenko’s beam models:

Ncr =
π2

η2 + λπ2
. (4.4)
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Table 1: Comparison of the nondimensional nonlinear frequency (ωNL).

a η Reference [6] EBBM2 RBM3 SBM4 TBM5

(ωNL1) (ωNL2)

0.4

10 8.5458(4)1

10.017

9.5561 8.8200 8.5452 67.412
25 9.7198(3) 9.9384 9.7906 9.7200 369.04
50 9.9391(3) 9.9968 9.9585 9.9393 1442.8
100 9.9968(3) 10.012 10.002 9.9970 5737.3

0.8

10 9.0018(6)

10.445

9.9648 9.3037 9.0103 67.438
25 10.1494(5) 10.364 10.228 10.155 369.05
50 10.3650(4) 10.424 10.389 10.369 1442.8
100 10.4217(4) 10.440 10.431 10.426 5737.3

1.0

10 9.3200(7)

10.755

10.261 9.6506 9.3436 67.458
25 10.4563(5) 10.671 10.545 10.469 369.05
50 10.6702(5) 10.734 10.701 10.680 1442.8
100 10.7265(5) 10.750 10.742 10.736 5737.3

2.0

10 11.4868(16)

13.056

12.456 12.163 11.747 67.623
25 12.6458(8) 12.954 12.884 12.790 369.08
50 12.8689(7) 13.031 13.012 12.987 1442.9
100 12.9279(7) 13.050 13.045 13.039 5737.3

3.0

10 14.1558(47)

16.180

15.436 15.468 14.876 67.907
25 15.4532(14) 16.054 16.041 15.922 369.12
50 15.7178(11) 16.148 16.144 16.113 1442.9
100 15.7889(11) 16.172 16.171 16.163 5737.3

1
Numbers in parentheses indicate the number of iterations required to achieve an accuracy of 10−6 in the evaluation of the

nonlinear- to-linear frequency ratio.
2EBBM: Bernoulli-Euler beam model.
3RBM: Rayleigh beam model.
4SBM: shear beam model.
5TBM: Timoshenko beam model.

As it is seen the postbuckling and critical buckling load predicted by Timoshenko model is
the same as the one from shear model. The same trend exists between the Rayleigh and the
Bernoulli-Euler beam models.

5. Results and Discussions

In all computational cases, the shear coefficient is taken as k = 5/6 and the axial force N̂ = 0
unless mentioned otherwise.

In order to demonstrate the effectiveness of the HAM, the natural frequencies of a
simply supported beam are compared with other existing results in literatures. To do this the
nondimensional nonlinear frequencies are calculated, and the results are listed for different η
and a in the Table 1.

It can be observed that there is an excellent agreement between the results obtained
from HAM and those reported by Rao et al. [6]. It should be noted that only the first natural
frequency of a Timoshenko’s beam is reported in [6] and in a rather numerical way using
FE method. It is clear that Bernoulli-Euler’s beam predicts the nonlinear natural frequency
higher than the one obtained by other theories. Also the nonlinear natural frequency obtained
by Timoshenko’s beam theory is lower than the one obtained by other theories.
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Figure 2: Variation of the nondimensional amplitude of the beam center versus t.
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Figure 3:Nonlinear frequency versus nondimensional amplitude (- - -) Bernoulli-Euler’s, (· · · ) Rayleigh’s,
(– - –) shear, and (—) Timoshenko’s Beam Models.

The convergence and accuracy of the presented analytical solution is validated against
variation of nondimensional amplitude ratio of the beam center versus t using the Runge-
Kutta method. Figure 2 illustrates comparison between these results. They are found to be in
a very good agreement.

Now, after being satisfied in obtaining results given by this method, in the next step we
try to investigate the effect of different parameters on the natural frequencies of four above-
mentioned beam models.

The variation of the nonlinear frequency versus nondimensional amplitude for all
different models and for two different slenderness ratios (η) using HAM is shown in Figure 3.
For thin beams and based on the three employed beam models, namely, Bernoulli-Euler’s,
Rayleigh’s and shear beams, almost no difference is seen for different nondimensional
amplitude. However, due to the nature of Timoshenko’s simply supported beam, there are
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Figure 4: Nonlinear frequency versus nondimensional amplitude for different slenderness ratios (- - -)
Bernoulli-Euler’s, (· · · ) Rayleigh’s, (-·-) shear, and (—) Timoshenko’s beam models.

twoωNL variations. In the region 0 < a < 5 as it is seen from Figure 3(a), theωNL1 represents a
linear fashion variation whereas the ωNL2 variation remains almost unchanged. In the region
a > 20 as it is seen from the same figure, variation of ωNL1 follows a rather constant trend
and ωNL2 follows a linear fashion variation. For the intermediate region, that is, 5 < a < 20
frequencies of both ωNL1 and ωNL2 keep changing in a rather nonlinear fashion. As can be
seen from Figure 3(a), for thick beams this interval occurs in small amplitude. In other words,
for thin and thick beams though in each amplitude both nonlinear frequencies (ωNL1,ωNL2)
are involved in beam’s response; however, one of them is mostly affected by variation of the
nondimensional amplitude.

Figure 4 shows nondimensional natural frequency ((ωNL1) for Timoshenko’s beam
model) versus small nondimensional amplitude for different slenderness ratio and different
beammodels. It can be seen that the natural nonlinear frequency obtained from four different
beam models yields the same value provided that the beam’s slenderness ratio at least 100.
This finding is also reported by [11] in which only the linear analysis was conducted.

The variations of the nonlinear frequency ratios versus nondimensional amplitude
of Timoshenko beam for different slenderness ratios are depicted in Figure 5. As it is seen
from these figures the point of shift from flat to nonflat and vise versa of ωNL increases by
increasing the beam slenderness ratio.
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Figure 5:Nonlinear frequency versus nondimensional amplitude for different beam slenderness ratios (- -
-) η = 10, (· · · )η = 20, (-·-) η = 35, and (—) η = 50.
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Figure 6: Variation of the nondimensional buckling load versus nondimensional amplitude for different
beam models and different slenderness ratios (- - -) Bernoulli-Euler’s and Rayleigh’s, (—) shear and
Timoshenko’s beam models.

Variation of the nondimensional postbuckling load (N) versus nondimensional
amplitude is shown in Figure 6. As it is seen the postbuckling load predicted by all four
different models are the same for rather a slender beam (η = 50). On the other hand for the
thick beams (η = 10), the differences between Timoshenko and/or Shear beam models with
Rayleigh’s and/or Bernoulli-Euler’s beam models are more pronounced. Furthermore, for
both cases the postbuckling load increases as amplitude (a) increases.

Variation of the critical buckling load (Ncr) versus slenderness ratio for the problem
under investigation is shown in Figure 7. It can be observed that for η > 12, that is, thin
beams, all four models give the same answer for the critical buckling load.

6. Conclusion

The natural frequencies, deflection, postbuckling, and critical buckling loads of four
approximate models of Bernoulli-Euler’s, Rayleigh’s, shear, and Timoshenko’s beams having
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Figure 7: Variation of the critical buckling load (Ncr) versus slenderness ratio for different beam models
(- - -) Bernoulli-Euler’s and Rayleigh’s, (—) shear and Timoshenko’s beam models.

nonlinear behavior and simply supported end conditions have been discussed in the present
survey in detail. A first-order approximation of HAM is used primarily to get the analytic
expressions for the nonlinear frequencies and consequently the related deflection of neutral
axis of such beam. Based on derived results, the followings are concluded.

(1) For a wide range of cases having large amplitude vibration, HAM seems to be very
efficient in handling such problems.

(2) For thin and thick beams with simple end conditions, there are two nonlinear
natural frequencies. Depending on the value of amplitude, only one of these two
nonlinear natural frequencies is mostly affected by variation of the amplitude.
There is a primary interval of amplitude in which the lower frequency varies in a
linear fashion, and the higher frequency remains almost constant. Contrary to this
trend, at the ending interval the frequency variations change their character; that
is, the lower frequency is almost constant and the higher frequency varies in a
linear fashion. Moreover, in the intermediate interval both frequencies increase in
a nonlinear fashion. It is also seen that for the thick beams this intermediate range
shifts to the left; that is, the primary interval shrinks further. In addition, it is shown
that the point of shift from flat to nonflat part ofωNL curves and vise versa increases
by increasing the beam slenderness ratio.

(3) The Bernoulli-Euler beam model predicts the nonlinear natural frequency higher
than the other theories. Whereas, the nonlinear natural frequency obtained by Ti-
moshenko’s beam theory is lower than the other theories.

(4) It can be seen that the natural nonlinear frequency obtained from four different
beam models yields the same value for the beams with slenderness ratio of at least
100.

(5) The shear effect is alwaysmore dominant than the rotary effect for a given geometry
and material in predicting postbuckling and critical buckling loads. Therefore, it is
highly recommended to use either of the shear or the Timoshenko models for a
thick beam. Nonetheless, in the postbuckling and critical buckling loads analysis
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and in a more general view the shear beammodel conveys less complexity than the
Timoshenko beam model.

(6) The postbuckling and critical buckling loads predicted by all four different models
are the same for rather a slender beam. On the other hand, for the thick beams
the differences between Timoshenko’s and/or shear beam models with Rayleigh’s
and/or Euler-Bernoulli’s beammodels aremore pronounced. Furthermore, for both
cases the postbuckling load (N) increases as amplitude increases.
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