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We have presented an efficient spectral algorithm based on shifted Jacobi taumethod of linear fifth-
order two-point boundary value problems (BVPs). An approach that is implementing the shifted
Jacobi tau method in combination with the shifted Jacobi collocation technique is introduced for
the numerical solution of fifth-order differential equations with variable coefficients. The main
characteristic behind this approach is that it reduces such problems to those of solving a system
of algebraic equations which greatly simplify the problem. Shifted Jacobi collocation method is
developed for solving nonlinear fifth-order BVPs. Numerical examples are performed to show the
validity and applicability of the techniques. A comparison has been made with the existing results.
The method is easy to implement and gives very accurate results.

1. Introduction

The solutions of fifth-order BVPs have been the subject of active research. These problems
generally arise in mathematical modeling of viscoelastic flows, physics, engineering, and
other disciplines, (see, e.g., [1–4]). Agarwal’s book [5] contains some theorems that discuss
the conditions for existence and uniqueness of the solutions of fifth-order BVPs in detail.

Recently, various powerful mathematical methods such as the sixth-degree B-spline
[6], Adomian decomposition method [7], nonpolynomial sextic spline functions [8–12], local
polynomial regression [13], and others [14, 15] have been proposed to obtain exact and
approximate analytic solutions for linear and nonlinear problems.

Spectral methods (see, e.g., [16–18]) provide a computational approach that has achie-
ved substantial popularity over the last four decades. The main advantage of these methods
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lies in their high accuracy for a given number of unknowns. For smooth problems in simple
geometries, they offer exponential rates of convergence/spectral accuracy. In contrast, finite-
difference and finite-element methods yield only algebraic convergence rates. The three most
widely used spectral versions are the Galerkin, collocation, and tau methods. Recently, Doha
et al. [19, 20] introduced and developed direct solution algorithms for solving high even-
order differential equations using Bernstein Dual petrov-Galerkin method. Also, Bhrawy and
Abd-Elhameed in [21] developed new algorithm for solving the general nonlinear third-order
differential equation by means of a shifted Jacobi-Gauss collocation spectral method. The
shifted Jacobi-Gauss points are used as collocation nodes. Moreover, Bhrawy and Alofi [22]
used the Jacobi-Gauss collocation method to solve effectively and accurately a nonlinear sin-
gular Lane-Emden-type equation with approximation converging rapidly to exact solution.

The use of general Jacobi polynomials has the advantage of obtaining the solutions
of differential equations in terms of the Jacobi parameters α and β (see, [23–25]). In the
present paper, we intend to extend application of Jacobi polynomials from Galerkin method
for solving second- and fourth-order linear problems (see, [23, 24, 26]) to tau and collocation
methods to solve linear and nonlinear fifth-order BVPs.

In the tau method (see, e.g., [16, 27]), the approximate solution uN(x) of an equation
on the interval (0, L) is represented as a finite series uN(x) =

∑N
j=0 ajφj(x), where the φj(x)

are global (base) functions on (0, L). The coefficients aj are the unknown one solves for. One
characteristic of the tau method is that the expansion functions φj(x) do not satisfy boundary
conditions in relation to the supplementary conditions imposed together with the differential
equation.

Since 1960 the nonlinear problems have attracted much attention. In fact, there are
many analytic asymptotic methods that have been proposed for addressing the nonlinear
problems. Recently, the collocation method [21, 28] has been used to solve effectively and ac-
curately a large class of nonlinear problems with approximations converging rapidly to exact
solutions.

The fundamental goal of this paper is to develop a direct solution algorithm for ap-
proximating the linear two-point fifth-order differential equations by shifted Jacobi tau (SJT)
method that can be implemented efficiently. Moreover, we introduce the pseudospectral shif-
ted Jacobi tau (P-SJT) method in order to deal with fifth-order BVPs of variable coefficients.
This method is basically formulated in the shifted Jacobi tau spectral form with general in-
dexes α, β > −1. However, the variable coefficients terms and the right-hand side of fifth-order
BVPs are treated by the shifted Jacobi collocation method with the same indexes α, β > −1 so
that the the schemes can be implemented at shifted Jacobi-Gauss points efficiently.

For nonlinear fifth-order problems on the interval (0, L), we propose the spectral
shifted Jacobi collocation (SJC) method to find the solution uN(x). The nonlinear BVP is
collocated only at the (N − 4) points. For suitable collocation points, we use the (N − 4)
nodes of the shifted Jacobi-Gauss interpolation on (0, L). These equations together with five
boundary conditions generate (N + 1) nonlinear algebraic equations which can be solved
using Newton’s iterative method. Finally, the accuracy of the proposed methods are demon-
strated by test problems.

The remainder of this paper is organized as follows. In Section 2, we give an overview
of shifted Jacobi polynomials and their relevant properties needed hereafter. Sections 3
and 4 are devoted to the theoretical derivation of the SJT and P-SJT methods for fifth-order
differential equations with constant and variable coefficients. Section 5 is devoted to applying
the SJC method for solving nonlinear fifth-order differential equations. In Section 6, the
proposed methods are applied to several examples. Also, a conclusion is given in Section 7.
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2. Preliminaries

Let w(α,β)(x) = (1 − x)α(1 + x)β be a weight function in the usual sense for α, β > −1. The set
of Jacobi polynomials {P (α,β)

k
(x)}∞

k=0 forms a complete L2
w(α,β) (−1, 1)-orthogonal system, and

∥
∥
∥P

(α,β)
k

∥
∥
∥
2

w(α,β)
= h

(α,β)
k =

2α+β+1Γ(k + α + 1)Γ
(
k + β + 1

)

(
2k + α + β + 1

)
Γ(k + 1)Γ

(
k + α + β + 1

) . (2.1)

Here, L2
w(α,β) (−1, 1) is a weighted space defined by

L2
w(α,β) (−1, 1) = {v : v is measurable and ‖v‖w(α,β) < ∞}, (2.2)

equipped with the norm

‖v‖w(α,β) =

(∫1

−1
|v(x)|2w(α,β)dx

)1/2

, (2.3)

and the inner product

(u, v)w(α,β) =
∫1

−1
u(x) v(x) w(α,β)(x)dx, ∀u, v ∈ L2

w(α,β) (−1, 1). (2.4)

It is well known that

P
(α,β)
k (−x) = (−1)kP (β,α)

k (x), P
(α,β)
k (−1) = (−1)kΓ(k + β + 1

)

k!Γ
(
β + 1

) , P
(α,β)
k (1) =

Γ(k + α + 1)
k!Γ(α + 1)

,

DmP
(α,β)
k (x) = 2−m

Γ
(
m + k + α + β + 1

)

Γ
(
k + α + β + 1

) P
(α+m,β+m)
k−m (x).

(2.5)

If we define the shifted Jacobi polynomial of degree k by P
(α,β)
L,k

(x) = P
(α,β)
k

(2x/L) − 1, L > 0,
and in virtue of (2.5), then it can easily be shown that

DqP
(α,β)
L,k (0) =

(−1)k−qΓ(k + β + 1
)(
k + α + β + 1

)
q

LqΓ
(
k − q + 1

)
Γ
(
q + β + 1

) ,

DqP
(α,β)
L,k (L) =

Γ(k + α + 1)
(
k + α + β + 1

)
q

LqΓ
(
k − q + 1

)
Γ
(
q + α + 1

) .

(2.6)
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Now, let w(α,β)
L (x) = (L − x)αxβ. The set of shifted Jacobi polynomials {P (α,β)

L,k (x)}∞
k=0

forms a complete L2
w

(α,β)
L

(0, L)-orthogonal system. Moreover, and due to (2.1), we get

∥
∥
∥P

(α,β)
L,k

∥
∥
∥
2

w
(α,β)
L

=
(
L

2

)α+β+1

h
(α,β)
k = h

(α,β)
L,k , (2.7)

where L2
w

(α,β)
L

(0, L) is a weighted space defined by

L2
w

(α,β)
L

(0, L) =
{
v : v is measurable and ‖v‖

w
(α,β)
L

< ∞
}
, (2.8)

equipped with the norm

‖v‖
w

(α,β)
L

=

(∫L

0
|v(x)|2w(α,β)

L dx

)1/2

, (2.9)

and the inner product

(u, v)
w

(α,β)
L

=
∫L

0
u(x)v(x)w(α,β)

L (x)dx, ∀u, v ∈ L2
w

(α,β)
L

(0, L). (2.10)

For α = β, one can obtain the shifted ultraspherical polynomials (symmetric Jacobi poly-
nomials). For α = β = ∓1/2, the shifted Chebyshev polynomials of first and second kinds. For
α = β = 0, one can obtain the shifted Legendre polynomials. For the two important special
cases α = −β = ±1/2, the shifted Chebyshev polynomials of third and fourth kinds are also
obtained.

We denote by x
(α,β)
N,j , 0 � j � N the nodes of the standard Jacobi-Gauss interpolation

on the interval (−1, 1). Their corresponding Christoffel numbers are �
(α,β)
N,j , 0 � j � N. The

nodes of the shifted Jacobi-Gauss interpolation on the interval (0, L) are the zeros of P (α,β)
L,N+1(x),

which are denoted by x
(α,β)
L,N,j , 0 � j � N. It is clear that x(α,β)

L,N,j = (L/2)(x(α,β)
N,j + 1), and their

corresponding Christoffel numbers are �(α,β)
L,N,j = (L/2)α+β+1�(α,β)

N,j , 0 � j � N.
Let SN(0, L) be the set of polynomials of degree at mostN. Regarding, to the property

of the standard Jacobi-Gauss quadrature, then it can be easily shown that for any φ ∈
S2N+1(0, L),

∫L

0
(L − x)αxβφ(x)dx =

(
L

2

)α+β+1 ∫1

−1
(1 − x)α(1 + x)βφ

(
L

2
(x + 1)

)

dx

=
(
L

2

)α+β+1 N∑

j=0

�
(α,β)
N,j φ

(
L

2

(
x
(α,β)
N,j + 1

))

=
N∑

j=0

�
(α,β)
L,N,jφ

(
x
(α,β)
L,N,j

)
.

(2.11)
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The qth derivative of shifted Jacobi polynomial can be written in terms of the shifted
Jacobi polynomials themselves as (see, Doha [29])

DqP
(α,β)
L,k (x) =

k−q∑

i=0

Cq

(
k, i, α, β

)
P
(α,β)
L,i (x), (2.12)

where

Cq

(
k, i, α, β

)
=
(k + λ)q

(
k + λ + q

)
i

(
i + α + q + 1

)
k−i−q Γ(i + λ)

Lq
(
k − i − q

)
!Γ(2i + λ)

× 3F2

⎛

⎜
⎜
⎝

−k + i + q, k + i + λ + q, i + α + 1

; 1

i + α + q + 1, 2i + λ + 1

⎞

⎟
⎟
⎠.

(2.13)

For the general definition of a generalized hypergeometric series and special 3F2, see [30], p.
41 and pp. 103-104, respectively.

3. Fifth-Order BVPs with Constant Coefficients

In this section, we are intending to use the SJTmethod to solve the fifth-order boundary value
problems

D(5)u(x) +
4∑

i=1

γiD
(i)u(x) + γ5u(x) = f(x), in I = (0, L), (3.1)

with boundary conditions

u(0) = α0, u(1)(0) = α1, u(2)(0) = α2, u(L) = β1, u(1)(L) = β1, (3.2)

where (γi, i = 1, 2, . . . , 5), α0, α1, α2, β0, and β1 are real constants, and f(x) is a given source
function.

Let us first introduce some basic notation that will be used in this section. We set

SN(0, L) = span
{
P
(α,β)
L,0 (x), P (α,β)

L,1 (x), . . . , P (α,β)
L,N (x)

}
, (3.3)

then the shifted Jacobi-tau approximation to (3.1) is to find uN ∈ SN(0, L) such that

(
D(5)uN, P

(α,β)
L,k (x)

)

w
(α,β)
L

+
4∑

i=1

γi
(
D(i)uN, P

(α,β)
L,k (x)

)

w
(α,β)
L

+ γ5
(
uN, P

(α,β)
L,k (x)

)

w
(α,β)
L

=
(
f, P

(α,β)
L,k (x)

)

w
(α,β)
L

, k = 0, 1, . . . ,N − 5,

u(0) = α0, u(1)(0) = α1, u(2)(0) = α2, u(L) = β1, u(1)(L) = β1.

(3.4)
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If we assume that

un(x) =
N∑

j=0

ajP
(α,β)
L,j (x), a = (a0, a1, . . . , aN)T ,

fk =
(
f, P

(α,β)
L,k (x)

)

w
(α,β)
L

, k = 0, 1, . . . ,N − 5,

f =
(
f0, f1, . . . , fN−5, α0, α1, α2, β0, β1

)
,

(3.5)

then (3.4)with its boundary conditions give

N∑

j=0
aj

[(
D(5)P

(α,β)
L,j (x), P (α,β)

L,k (x)
)

w
(α,β)
L

+
4∑

i=1
γi
(
D(i)P

(α,β)
L,j (x), P (α,β)

L,k (x)
)

w
(α,β)
L

+γ5
(
P
(α,β)
L,j (x), P (α,β)

L,k (x)
)

w
(α,β)
L

]

=
(
f, P

(α,β)
L,k (x)

)

w
(α,β)
L

, k = 0, 1, . . . ,N − 5,

(3.6)

N∑

j=0

ajP
(α,β)
L,j (0) = α0,

N∑

j=0

ajD
(1)P

(α,β)
L,j (0) = α1,

N∑

j=0

ajD
(2)P

(α,β)
L,j (0) = α2,

N∑

j=0

ajP
(α,β)
L,j (L) = β0,

N∑

j=0

ajD
(1)P

(α,β)
L,j (L) = β1.

(3.7)

Now, let us denote

A =
(
akj

)
0≤k,j≤N, Bi =

(
bikj

)

0≤k,j≤N, i=1,2,3,4
, C =

(
ckj
)
0≤k,j≤N,

akj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
D(5)P

(α,β)
L,j (x), P (α,β)

L,k (x)
)

w
(α,β)
L

, k = 0, 1, . . . ,N − 5, j = 0, 1, . . . ,N,

P
(α,β)
L,j (0), k = N − 4, j = 0, 1, . . . ,N,

D(1)P
(α,β)
L,j (0), k = N − 3, j = 0, 1, . . . ,N,

D(2)P
(α,β)
L,j (0), k = N − 2, j = 0, 1, . . . ,N,

P
(α,β)
L,j (L), k = N − 1, j = 0, 1, . . . ,N,

D(1)P
(α,β)
L,j (L), k = N, j = 0, 1, . . . ,N,

bikj =

⎧
⎨

⎩

(
D(i)P

(α,β)
L,j (x), P (α,β)

L,k (x)
)

w
(α,β)
L

, k = 0, 1, . . . ,N − 5, j = 0, 1, . . . ,N, i = 1, 2, 3, 4,

0, otherwise,

ckj =

⎧
⎨

⎩

(
P
(α,β)
L,j (x), P (α,β)

L,k (x)
)

w
(α,β)
L

, k = 0, 1, . . . ,N − 5, j = 0, 1, . . . ,N,

0, otherwise.
(3.8)
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Then, recalling (2.6) and (2.12) and making use of the orthogonality relation of shifted
Jacobi polynomials (2.7), and after performing some rather calculations, the nonzero elements
of akj , b

i
kj
and ckj for 0 ≤ k, j ≤ N are given by

akj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C5
(
j, k, α, β

)
h
(α,β)
L,k , k = 0, 1, . . . ,N − 5, j = 5, 6, . . . ,N,

(−1)jΓ(j + β + 1
)

j! Γ
(
β + 1

) , k = N − 4, j = 0, 1, . . . ,N,

(−1)j−1(j + α + β + 1
)
Γ
(
j + β + 1

)

L
(
j − 1

)
! Γ
(
β + 2

) , k = N − 3, j = 1, 2, . . . ,N,

(−1)j−2(j + α + β + 1
)
2Γ
(
j + β + 1

)

L2
(
j − 2

)
! Γ
(
β + 3

) , k = N − 2, j = 2, 3, . . . ,N,

Γ
(
j + α + 1

)

j!Γ(α + 1)
, k = N − 1, j = 0, 1, . . . ,N,

(
j + α + β + 1

)
Γ
(
j + α + 1

)

L
(
j − 1

)
! Γ(α + 2)

, k = N, j = 1, 2, . . . ,N,

bikj = Ci

(
j, k, α, β

)
h
(α,β)
L,k

, k = 0, 1, . . . ,N − 5, j = i, i + 1, . . . ,N, i = 1, 2, 3, 4,

ckj = h
(α,β)
L,k

, k = j = 0, 1, . . . ,N − 5,

(3.9)

and consequently, (3.6)may be put in the form

(

A +
4∑

i=1

γiB
i + γ5C

)

a = f. (3.10)

4. Fifth-Order BVPs with Variable Coefficients

In this section, we use the pseudospectral shifted Jacobi tau (P-SJT) method to numerically
solve the following fifth-order boundary value problem with variable coefficients

D(5)u(x) +
4∑

i=1

γi(x)D(i)u(x) + γ5(x)u(x) = f(x), x ∈ I,

u(0) = α0, u(1)(0) = α1, u(2)(0) = α2, u(L) = β1, u(1)(L) = β1.

(4.1)

We define the discrete inner product and norm as follows:

(u, v)
w

(α,β)
L ,N

=
N∑

j=0

u
(
x
(α,β)
L,N,j

)
v
(
x
(α,β)
L,N,j

)
�

(α,β)
L,N,j , ‖u‖

w
(α,β)
L ,N

=
√
(u, u)

w
(α,β)
L ,N

, (4.2)
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where x(α,β)
L,N,j and�

(α,β)
L,N,j are the nodes and the corresponding weights of shifted Jacobi-Gauss-

quadrature formula on the interval (0, L), respectively.
Obviously,

(u, v)
w

(α,β)
L ,N

= (u,v)
w

(α,β)
L

, ∀u, v ∈ S2N−1. (4.3)

Thus, for any u ∈ SN(0, L), the norms ‖u‖
w

(α,β)
L ,N

and ‖u‖
w

(α,β)
L

coincide.
The pseudospectral tau method for (4.1) is to find uN ∈ SN(0, L) such that

(
D(5)uN, P

(α,β)
L,k (x)

)

w
(α,β)
L

+
4∑

i=1

(
γi(x)D(i)uN, P

(α,β)
L,k (x)

)

w
(α,β)
L ,N

+
(
γ5(x)uN, P

(α,β)
L,k (x)

)

w
(α,β)
L ,N

=
(
f, P

(α,β)
L,k (x)

)

w
(α,β)
L ,N

, k = 0, 1, . . . ,N − 5,

(4.4)

where (u, v)
w

(α,β)
L ,N

is the discrete inner product of u and v associated with the shifted Jacobi-
Gauss quadrature, and the boundary conditions can easily be treated as in (3.7).

Hence, by setting

uN(x) =
N∑

j=0

ãjP
(α,β)
L,j (x), a = (ã0, ã1, . . . , ãN)T ,

f̃k =
(
f, P

(α,β)
L,k

)

w
(α,β)
L ,N

, k = 0, 1, . . . ,N − 5, f =
(
f̃0, f̃1, . . . , f̃N−5, α0, α1, α2, β0, β1

)T
,

b̃ikj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
γi(x)D(i)P

(α,β)
L,j (x), P (α,β)

L,k (x)
)

w
(α,β)
L ,N

, k = 0, 1, . . . ,N − 5, j = 0, 1, . . . ,N,

i = 1, 2, 3, 4,

0, otherwise,

c̃kj =

⎧
⎨

⎩

(
γ5(x)P

(α,β)
L,j (x), P (α,β)

L,k (x)
)

w
(α,β)
L ,N

, k = 0, 1, . . . ,N − 5, j = 0, 1, . . . ,N,

0, otherwise,

B̃i =
(
b̃ikj

)
, C̃ =

(
c̃kj
)
, 0 ≤ k, j ≤ N, i = 1, 2, 3, 4,

(4.5)

then (4.4) and (3.7) may be put in the following matrix form

(

A +
4∑

i=1

γiB̃i + γ5C̃

)

a = f, (4.6)

where the matrix A is defined as in (3.10).
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5. Nonlinear Fifth-Order BVPs

In this section, we are interested in solving numerically the nonlinear fifth-order boundary
value problem

D(5)u(x) = F
(
x, u(x), D(1)u(x), D(2)u(x), D(3)u(x), D(4)u(x)

)
, (5.1)

with boundary conditions

u(0) = α0, u(1)(0) = α1, u(2)(0) = α2, u(L) = β1, u(1)(L) = β1. (5.2)

It is well known that one can convert (5.1)with its boundary conditions (5.2) into a fifth-order
system of first-order boundary value problems. Methods to solve such system are simply
generalizations of the methods for a single first-order equation, for example, the classical
Runge-Kutta of order four. Another alternative spectral method is to use the shifted Jacobi
collocation method. Let

uN(x) =
N∑

j=0

bjP
(α,β)
L,j (x), (5.3)

then, making use of formula (2.12), one can express explicitly the derivatives D(i)u(x), (i =
0, 1, 2, 3, 4) in terms of the expansion coefficients bj . The criterion of spectral shifted Jacobi
collocation method for solving approximately (5.1)–(5.2) is to find uN(x) ∈ SN(0, L) such
that

D(5)uN(x) = F
(
x, uN(x), D(1)uN(x), D(2)uN(x), D(3)uN(x), D(4)uN(x)

)
,

(5.4)

is satisfied exactly at the collocation points x(α,β)
L,N,k, k = 0, 1, . . . ,N −5. In other words, we have

to collocate (5.4) at the (N − 4) shifted Jacobi roots x(α,β)
L,N,k, which immediately yields

N∑

j=0

bjD
(5)P

(α,β)
L,j (x) = F

⎛

⎝x,
N∑

j=0

bjP
(α,β)
L,j (x),

N∑

j=0

bjD
(1)P

(α,β)
L,j (x),

N∑

j=0

bjD
(2)P

(α,β)
L,j (x),

N∑

j=0

bjD
(3)P

(α,β)
L,j (x),

N∑

j=0

bjD
(4)P

(α,β)
L,j (x)

⎞

⎠,

(5.5)
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with the boundary conditions (5.2) written in the form

N∑

j=0

bjP
(α,β)
L,j (0) = α0,

N∑

j=1

bjD
(1)P

(α,β)
L,j (0) = α1,

N∑

j=2

bjD
(2)P

(α,β)
L,j (0) = α2,

N∑

j=0

bjP
(α,β)
L,j (L) = β0,

N∑

j=1

bjD
(1)P

(α,β)
L,j (L) = β1.

(5.6)

This forms a system of (N +1) nonlinear algebraic equations in the unknown expansion coef-
ficients bj (j = 0, 1, . . . ,N), which can be solved by using any standard iteration technique,
like Newton’s iteration method. For more detail, see [21] for the numerical solution of non-
linear third-order differential equation using Jacobi-Gauss collocation method.

6. Numerical Results

In this section, we apply shifted Jacobi tau (SJT)method for solving the fifth-order boundary
value problems. Numerical results are very encouraging. For the purpose of comparison, we
took the same examples as used in [6, 7, 31–34].

Example 6.1. Consider the following linear boundary value problem of fifth-order (see [6, 7,
31–34])

u(5)(x) − u(x) = f(x), (6.1)

with boundary conditions

u(0) = 0, u(1)(0) = 1, u(2)(0) = 0, u(1) = 0, u(1)(1) = −e, (6.2)

where f is selected such that exact solution is

u(x) = x(1 − x)ex. (6.3)

Table 1 shows the absolute errors obtained by using the shifted Jacobi tau (SJT)
method, the variational iteration method using He’s polynomials (VIMHP) [34], homotopy
perturbation method (HPM) [31], variational iteration method (VIM) [32], decomposition
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Table 1: Absolute errors using SJT method forN = 14.

x α β
SJT

method VIMHP B-spline VIM ADM ITM HPM

−1
2

−1
2

3.1 · 10−15

0.0 0 0 2.0 · 10−16 0.000 0.000 0.000 0.000 0.000 0.000
1
2

1
2

9.1 · 10−15

−1
2

−1
2

1.9 · 10−15

0.2 0 0 2.5 · 10−16 2.0 · 10−10 1.2 · 10−3 2.0 · 10−10 2.0 · 10−10 2.0 · 10−10 2.0 · 10−10
1
2

1
2

8.2 · 10−15

−1
2

−1
2

1.7 · 10−16

0.4 0 0 1.6 · 10−15 8.0 · 10−10 3.0 · 10−3 8.0 · 10−10 8.0 · 10−10 8.0 · 10−10 8.0 · 10−10
1
2

1
2

5.4 · 10−15

−1
2

−1
2

3.5 · 10−16

0.6 0 0 2.9 · 10−15 2.0 · 10−9 6.0 · 10−3 2.0 · 10−9 2.0 · 10−9 2.0 · 10−9 2.0 · 10−9
1
2

1
2

1.3 · 10−15

−1
2

−1
2

1.3 · 10−15

0.8 0 0 4.3 · 10−15 1.9 · 10−9 9.0 · 10−3 1.9 · 10−9 1.9 · 10−9 1.9 · 10−9 1.9 · 10−9
1
2

1
2

2.7 · 10−15

−1
2

−1
2

3.5 · 10−15

1.0 0 0 4.8 · 10−15 0.000 0.000 0.000 0.000 0.000 0.000
1
2

1
2

5.0 · 10−15

method (ADM) [7], the sixth-degree B-spline method [6], and iterative method (ITM) [33]
for x = 0.0 (0.2) 1.0. The numerical results show that SJT method is more accurate than the
existing methods for all α, β > −1.

Example 6.2. Consider the following nonlinear boundary value problem of fifth-order (see
[6, 7, 31–34])

u(5)(x) = e−xy2(x), (6.4)

with boundary conditions

u(0) = 0 = u(1)(0) = u(2)(0) = 1; u(1) = u(1)(1) = e. (6.5)
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Table 2: Absolute errors using SJC method forN = 14.

x α β
SJC

method VIMHP B-spline VIM ADM ITM HPM

−1
2

−1
2

7.0 · 10−17

0.0 0 0 6.2 · 10−17 0.000 0.000 0.000 0.000 0.000 0.000
1
2

1
2

5.5 · 10−17

−1
2

−1
2

2.2 · 10−16

0.2 0 0 2.2 · 10−16 2.0 · 10−9 7.2 · 10−4 2.0 · 10−9 2.0 · 10−9 2.0 · 10−9 2.0 · 10−9
1
2

1
2

2.2 · 10−16

−1
2

−1
2

0

0.4 0 0 2.2 · 10−16 2.0 · 10−8 4.6 · 10−4 2.0 · 10−8 2.0 · 10−8 2.0 · 10−8 2.0 · 10−8
1
2

1
2

4.4 · 10−16

−1
2

−1
2

2.2 · 10−16

0.6 0 0 4.4 · 10−16 3.7 · 10−8 4.8 · 10−4 3.7 · 10−8 3.7 · 10−8 3.7 · 10−8 3.7 · 10−8
1
2

1
2

2.2 · 10−16

−1
2

−1
2

4.4 · 10−16

0.8 0 0 4.4 · 10−15 3.1 · 10−8 3.1 · 10−4 3.1 · 10−8 3.1 · 10−8 3.1 · 10−8 3.1 · 10−8
1
2

1
2

4.4 · 10−16

−1
2

−1
2

8.8 · 10−16

1.0 0 0 0 0.000 0.000 0.000 0.000 0.000 0.000
1
2

1
2

0

The analytic solution for this problem is

u(x) = ex. (6.6)

In Table 2, we list the results obtained by using the shifted Jacobi collocation (SJC)
method with three choices of α, β and one choice of N (N = 14), and we compare our
results with variational iteration method using He’s polynomials (VIMHP) [34], homotopy
perturbation method (HPM) [31], variational iteration method (VIM) [32], decomposition
method (ADM) [7], the sixth degree B-spline method [6] and iterative method (ITM) [33],
respectively at x = 0.0 (0.2) 1.0. As we see from this Table, it is clear that the results obtained
by the present method are superior to those obtained by the numerical methods given in
[6, 7, 31–34].
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7. Conclusion

In this paper, we have presented some efficient direct solvers for the general fifth-order BVPs
by using Jacobi-tau approximation. Moreover, we developed a new approach implementing
shifted Jacobi tau method in combination with the shifted Jacobi collocation technique for the
numerical solution of fifth-order BVPswith variable coefficients. Furthermore, we proposed a
numerical algorithm to solve the general nonlinear fifth-order differential equations by using
Gauss-collocation points and approximating directly the solution using the shifted Jacobi
polynomials. The numerical results in this paper demonstrate the high accuracy of these
algorithms.
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