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The magnetohydrodynamic (MHD) and rotating flow of second-grade fluid over a suddenly
moved flat plate is investigated, where the second-grade fluid saturates the porous medium. The
new exact solution is derived by using the Fourier sine and Laplace transforms. Many interesting
available results in the literature are obtained as limiting cases of our solution. Finally, some
graphical results are presented for different values of the material constants.

1. Introduction

The study of non-Newtonian fluids in a porous medium and rotating frame offers special
challenges to mathematicians, numerical analysts, and engineers. Some of these studies
are notable and applied in paper, food stuff, personal care product, textile coating, and
suspension solutions industries. The non-Newtonian fluids have been mainly classified
under the differential, rate, and integrals types. The second-grade fluids are the subclass of
non-Newtonian fluids and are the simplest subclass of differential type fluids which can show
the normal stress effects. It was employed to study various problems due to their relatively
simple structure. Moreover, one can reasonably hope to obtain exact solutions from this type
of second-grade fluid. This motivates us to choose the second-grade model in this study. The
exact solutions are important, as these provide standard for checking the accuracies of many
approximate solutions which can be numerical or empirical. They can also be used as tests for
verifying numerical schemes that are developed for studying more complex flow problems.

In general, the governing equation in second-grade fluid is of third order, which is
higher than the second-order Navier-Stokes equation. Furthermore, the order of equation in
second-grade fluid is reduced when higher order nonlinearities are ignored, which is not



2 Journal of Applied Mathematics

possible in the Navier-Stokes equations. Exact solution of the problem is given by using the
Fourier sine and Laplace transforms method. This method has already been successfully
applied by various workers, for example, Fetecau et al. [1, 2]. Justifiably, the traditional
Fourier sine and Laplace transforms method has the following important features. It is a
very powerful technique for solving these kinds of problems, which literally transforms
the original linear differential equation into an elementary algebraic expression. More
importantly, the transformation avoids the omission of a critical term from the resulted
subsidiary equation.

The analysis of the effects of rotation and magnetohydrodynamic (MHD) flows
through a porous medium has gained an increasing interest due to the wide range
of applications either in geophysics or in engineering such as the optimization of the
solidification process of metals and metal alloys and the control underground spreading of
chemical wastes and pollutants. MHD is the study of the interaction of conducting fluids with
electromagnetic phenomena. The flow of an electrically conducting fluid in the presence of
magnetic field is of importance in various areas of technology and engineering such as MHD
power generation and MHD pumps. Therefore, several researchers have discussed the flows
of second-grade fluid in different configurations, and there are on hand few attempts which
include the effects of rotation and MHD (for instances, see studies in [3–27] and references
therein).

The objective of the current study is to establish new exact solutions for the velocity
field corresponding to the first problem of Stokes for a second-grade fluid. The fluid is
magnetohydrodynamic (MHD) in the presence of an applied magnetic field, and it occupies
a half porous space, which is bounded by a rigid and nonconducting plate, and the whole
system is also rotating.

2. Formulation of the Problem

Let us consider a Cartesian coordinate system (x, y, z). We consider a fluid saturated porous
half space bounded by an infinite accelerated plate at z = 0 (z-axis is taken normal to the
plate). The whole system is rotating uniformly with a constant angular velocity Ω about
the z-axis. The porous space is described by the modified Darcy’s law. A constant magnetic
field B◦ acts in the z-direction. The applied and induced magnetic fields are chosen zero. The
equations governing the present flow are [21]
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In above equations ρ, t, μ, σ, α1, ϕ, and k, respectively, indicate the fluid density, time, dynamic
viscosity, electrical conductivity, material parameter of second-grade fluid, porosity, and the
permeability of porous medium.
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The initial and boundary conditions are

u = υ = 0 when t = 0, z > 0,

u(0, t) = U◦, υ(0, t) = 0 for t > 0,

u,
∂u

∂z
, υ,

∂υ

∂z
→ 0 as z → ∞, t > 0.

(2.2)

3. Solution of the Problem

Defining F = u + iυ
(2.1) can be combined as
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where ν is the kinematic viscosity. The appropriate boundary and initial conditions are
F(0, t) = U◦, t > 0;F(z, 0) = 0, z > 0,

F(z, t),
∂F(z, t)

∂z
→ 0 as z → ∞, t > 0. (3.2)

In order to solve the linear partial differential equation (3.1) with initial and boundary
conditions (3.2), we will use the Fourier sine and Laplace transforms. For a greater generality,
we consider the boundary condition F(0, t) = U◦(t)withU◦(0) = 0 and apply the Fourier sine
transform with respect to. We then obtain
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where α = α1/ρ, c = 2iΩ + σB2
◦/ρ, and the Fourier sine transform Fs(η, t) of F(z, t) has to

satisfy the conditions

Fs

(
η, 0
)
= 0, η > 0. (3.4)

Applying the Laplace transform to (3.3) and using the initial condition (3.4), we find that
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where q is the transform parameter, while Fs(η, q) and U◦(q) are the Laplace transform of
Fs(η, t) and U◦(t), respectively. Choosing U◦(t) = UH(t), where H(t) is Heaviside unit step
function andU is the constant, we get the velocity field corresponding to the first problem of
Stokes.



4 Journal of Applied Mathematics

In the case U◦(q) = U/q, (3.5) takes the form
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Applying the inverse Laplace transform to (3.6), the solution can be expressed as
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Inversion of Fourier sine transform in (3.7) gives
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(3.8)

Expression (3.8) is the new exact solution for the velocity field corresponding to the first
problem of Stokes for a second-grade fluid, which is rotating and magnetohydrodynamic.
The above expression for hydrodynamic fluid (B2

◦ = 0) in a nonporous space (ϕ = 0) is given
by
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Making (Ω = 0) into (3.9), we obtain
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The velocity field F(z, t), given by (3.10), has been recently obtained by Fetecau et al. [1,
Equation (16)].
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Figure 1: Profiles of the normalized steady state velocity F(z) for various values of W . (a) Shows that the
real part of the velocity profile decreases for various values of rotationW , with respect to the increase in
z. As each W increases, the corresponding velocity profile decreases. (b) Indicates that the magnitude of
imaginary part of each of the velocity profile increases initially and later reduces for various corresponding
values of rotationW , with respect to the increase in z. Similar result is obtained in Hayat et al. [21].

Result (3.8) for a magnetohydrodynamic viscous fluid (α = 0) in a porous space is

F(z, t) = UH(t)
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and the steady solution is

F(z) = Ue−(
√

ϕ/k+c/ν)z. (3.12)

4. Results and discussions

In this section, we present the graphical illustrations of the velocity profiles which have been
determined for the flow due to the impulsive motion of an infinite flat plate. The emerging
parameters are defined here as

(i) W = Ω is the rotating parameter,
(ii) M = σB2

◦/ρ is the magnetic field parameter,
(iii) k is the permeability of the porous medium.

In order to illustrate the role of these parameters on the real and imaginary parts of the
velocity F, the Figures 1–3 have been displayed. In these Figures, panels (a) depict the
variations of Re [F(z)], and panels (b) indicate the variations of −Im [F(z)].



6 Journal of Applied Mathematics

0 50 100 150 200 250 300 350
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
e
[F

(z
)]

M = 0
M = 1

M = 2
M = 3

z

(a)

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

z

M = 0

M = 1

M = 2

M = 3

−
Im

[F
(z
)]

(b)

Figure 2: Profiles of the normalized steady state velocity F(z) for various values of M. (a) Points to the
effects of MHD parameterM, in the real part of velocity profile. By increasing each parameter M, it is
noted that the corresponding real part of the velocity profile decreases. (b) Also denotes the effects of
magnetic field on the imaginary part of the velocity profile. By increasing each of M, it is noted that the
corresponding imaginary part decreases initially and later increases.
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Figure 3: Profiles of the normalized steady state velocity F(z) for various values ofK. (a) Shows that with
an increase in each of the porosity parameter k, the corresponding real part of the velocity field decreases.
(b) Illustrates that by increasing each of the porosity parameter k, the magnitude of the corresponding
imaginary part of velocity field increases initially and later slows down.

5. Conclusion

Equation (3.3) and the ensuing results attained above are new extensions of those obtained
in other comparable existing study in Hayat et al. [21]. For example, if we were to choose
U◦(t) = U sin(ωt) or U◦(t) = Ut in (3.3), then the solutions corresponding to the second
problem of Stokes or the flow due to a constant accelerated plate can be recovered.
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