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In the first part of this paper sufficient conditions for nonuniqueness of the classical Cauchy
problem ẋ = f(t, x), x(t0) = x0 are given. As the essential tool serves a method which estimates the
“distance” between two solutions with an appropriate Lyapunov function and permits to show
that under certain conditions the “distance” between two different solutions vanishes at the initial
point. In the second part attention is paid to conditions that are obtained by a formal inversion
of uniqueness theorems of Kamke-type but cannot guarantee nonuniqueness because they are
incompatible.

1. Introduction

Consider the initial value problem

ẋ = f(t, x), x(t0) = x0, (1.1)

where t0 ∈ R, t ∈ J := [t0, t0 + a] with a > 0, x, x0 ∈ R
n and f : J × R

n → R
n.

In the first part (Section 2) we give sufficient conditions for nonuniqueness of the
classical n-dimensional Cauchy problem (1.1). As the essential tool serves a method which
estimates the “distance” between two solutions with an appropriate Lyapunov function and
permits to show that under certain conditions the “distance” between two different solutions
vanishes at the initial point. In the second part (Section 3)we analyze for the one-dimensional
case a set of conditions that takes its origin in an inversion of the uniqueness theorem by
Kamke (see, e.g., [1, page 56]) but cannot guarantee nonuniqueness since it contains an
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inner contradiction. Several attempts were made to get nonuniqueness criteria by using
conditions that are (in a certain sense) reverse uniqueness conditions of Kamke type. But
this inversion process has to be handled very carefully. It can yield incompatible conditions.
This is illustrated by a general set of conditions (in Theorems 3.2, 3.5 and 3.6) that would
ensure nonuniqueness, but unfortunately they are inconsistent.

In this paper we study Cauchy problems where f is continuous at the initial point.
Related results can be found in [1–5]. In literature there are several investigations for the
discontinuous case [1, 6–13] with different qualitative behaviour.

2. Main Result

In the following let R+ := [0,∞), b > 0, ρ > 0 and

Snρ(x0) :=
{
x ∈ R

n : ‖x − x0‖ < ρ
}
, (2.1)

where ‖ · ‖means the Euclidean norm.

Definition 2.1. We say that the initial value problem (1.1) has at least two different solutions
on the interval J if there exist solutions ϕ(t), ψ(t) defined on J and ϕ/≡ψ.

The following notions are used in our paper (see, e.g., [14, pages 136 and 137]).

Definition 2.2. A function ϕ : [0, ρ) → R+ is said to belong to the class Kρ if it is continuous,
strictly increasing on [0, ρ) and ϕ(0) = 0.

Definition 2.3. A function V : J × Snρ(0) → R+ with V (t, 0) ≡ 0 is said to be positive definite if
there exists a function ϕ ∈ Kρ such that the relation

V (t, x) ≥ ϕ(‖x‖) (2.2)

is satisfied for (t, x) ∈ J × Snρ(0).

For the convenience of the reader we recall the definition of a uniformly Lipschitzian
function with respect to a given variable.

Definition 2.4. A function V (t, · ) : Snρ(0) → R+ is said to be Lipschitzian uniformly with
respect to t ∈ J if for arbitrarily given x∗ ∈ Snρ(0) there exists a constant k = k(x∗) such that

∥∥V
(
t, x∗

1

) − V (
t, x∗

2
)∥∥ ≤ k∥∥x∗

1 − x∗
2

∥∥ (2.3)

holds for every t ∈ J and for every x∗
1, x

∗
2 within a small neighbourhood of x∗ in Snρ(0).

In [1, 15, 16] generalized derivatives of a Lipschitzian function along solutions of
an associated differential system are analyzed. A slight modification of Theorem 4.3 [15,
Appendix I] is the following lemma.
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Lemma 2.5. Let V : J × Snρ(0) → R+ be continuous and let V (t, · ) : Snρ(0) → R+ be Lipschitzian
uniformly with respect to t ∈ J . Let x1, x2 : J → Snρ(0) be any two solutions of

ẋ = f(t, x), (2.4)

where f : J ×R
n → R

n is a continuous function. Then for the upper right Dini derivative the equality

D+V (t, x2(t) − x1(t))

:= lim sup
h→ 0+

1
h
[V (t + h, x2(t + h) − x1(t + h)) − V (t, x2(t) − x1(t))]

= lim sup
h→ 0+

1
h

[
V
(
t + h, x2(t) − x1(t) + h

(
f(t, x2(t)) − f(t, x1(t))

)) − V (t, x2(t) − x1(t))
]

(2.5)

holds.

In the proof of Theorem 2.8 we require the following lemmas which are slight
adaptations of Theorem 1.4.1 [14, page 15] and Theorem 1.3.1 [1, page 10] for the left side
of the initial point.

Lemma 2.6. Let E be an open (t, u)-set in R
2, let g : E → R be a continuous function, and let u be

the unique solution of

u̇ = g(t, u), u(t2) = u2, (2.6)

to the left with t2 > t0, (t2, u2) ∈ E. Further, we assume that the scalar continuous function m :
(t0, t2] → R with (t,m(t)) ∈ E satisfiesm(t2) ≤ u(t2) and

D+m(t) ≥ g(t,m(t)), t0 < t ≤ t2. (2.7)

Then

m(t) ≤ u(t) (2.8)

holds as far as the solution u exists left of t2 in (t0, t2].

Lemma 2.7. Let S := {(t, x) : t0 − a ≤ t ≤ t0, |x − x0| ≤ b} and f : S → R be continuous and
nondecreasing in x for each fixed t in [t0 − a, t0]. Then, the initial value problem (1.1) has at most one
solution in [t0 − a, t0].

Theorem 2.8 (main result). Suppose that

(i) f : J × Sn
b
(x0) → R

n is a continuous function such that

M := sup
{∥∥f(t, x)

∥∥ : t ∈ J, x ∈ Snb(x0)
}
<
b

a
. (2.9)
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Let x1 be a solution of problem (1.1) on J . Let, moreover, there exist numbers t1 ∈ (t0, t0+a],
r ∈ (0, 2b) and continuous functions g : (t0, t1] × R+ → R, V : [t0, t1] × Snr (0) → R+

such that

(ii) g is nondecreasing in the second variable, and the problem

u̇ = g(t, u), lim
t→ t0+

u(t) = 0 (2.10)

has a positive solution u∗ on (t0, t1];

(iii) V is positive definite and V (t, ·) : Snr (0) → R+ is Lipschitzian uniformly with respect to
t ∈ J ;

(iv) for t0 < t ≤ t1, ‖y − x1(t)‖ < r, the inequality

V̇
(
t, y − x1(t)

) ≥ g(t, V (
t, y − x1(t)

))
(2.11)

holds where

V̇
(
t, y − x1(t)

)

:= lim sup
h→ 0+

1
h

[
V
(
t + h, y − x1(t) + h

[
f
(
t, y

) − f(t, x1(t))
]) − V (

t, y − x1(t)
)]
.

(2.12)

Then the set of different solutions of problem (1.1) on interval J has the cardinality of the
continuum.

Remark 2.9. If condition (i) is fulfilled then, as it is well known, problem (1.1) is globally
solvable and every global solution admits the estimate

‖x(t) − x0‖ ≤M(t − t0), t ∈ J. (2.13)

Moreover, for any local solution x∗ of problem (1.1), defined on some interval [t0, t1] ⊂ J ,
there exists a global solution x of that problem such that x(t) = x∗(t) for t ∈ [t0, t1].

Remark 2.10. For the case M = 0 the initial value problem is unique and the assumptions of
Theorem 2.8 cannot be satisfied. Therefore, without loss of generality, we assume M > 0 in
the proof below.

Proof. At first we show that (1.1) has at least two different solutions on [t0, t∗1], where t∗1 ≤ t1,
t∗1 ≤ t0 +min{a, b/(3M)} is sufficiently close to t0. We construct a further solution of (1.1) by
finding a point (t2, x2) not lying on the solution x1(t) and starting from this point backwards
to the initial point (t0, x0).

First we show that there exist values t2 and x2, t0 < t2 ≤ t∗1, ‖x2 − x0‖ ≤ 2b/3 such that

u∗(t2) = V (t2, x2 − x1(t2)) (2.14)
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holds for the nontrivial solution u∗(t) of u̇ = g(t, u). From Lemma 2.7 it follows that u∗(t) is
determined uniquely to the left by the initial data (t2, u∗(t2)). We consider the ε-tubes

S(ε) :=
{
(t, x) : t0 ≤ t ≤ t∗1, ‖x − x1(t)‖ = ε

}
(2.15)

for ε > 0 around the solution x1(t). There exists ε1 > 0 such that S(ε) with 0 < ε ≤ ε1 < r is
contained in the set

{
(t, x) : t0 ≤ t ≤ t∗1, ‖x − x0‖ ≤ 2b

3

}
. (2.16)

For 0 ≤ δ ≤ ε1, t ∈ [t0, t∗1] we define

Ψ(δ, t) := max
‖x−x1(t)‖=δ

V (t, x − x1(t)),

Ψ(δ) := max
t∈[t0,t∗1]

Ψ(δ, t) ≡ max
(t,x)∈S(δ)

V (t, x − x1(t)).
(2.17)

The function Ψ(δ, t) is continuous in t for t0 ≤ t ≤ t∗1. Since limδ→ 0Ψ(δ) = 0, there exists a δ2,
0 < δ2 ≤ min{ε1, b/3}, such that Ψ(δ2) ≤ u∗(t∗1). It is clear that inequalities

Ψ
(
δ2, t

∗
1

) ≤ Ψ(δ2) ≤ u∗
(
t∗1
)

(2.18)

and (due to positive definiteness of V )

Ψ(δ2, t0) > 0 = lim
t→ t0+

u∗(t) (2.19)

hold. We define a function

ω(t) := Ψ(δ2, t) − u∗(t), (2.20)

continuous on [t0, t∗1]. Taking into account inequalities ω(t0) > 0 and ω(t∗1) ≤ 0 we conclude
that there exists t2, t0 < t2 ≤ t∗1, with

Ψ(δ2, t2) = u∗(t2). (2.21)

The value Ψ(δ2, t2) is taken by V (t2, x − x1(t2)) at a point x = x2 such that ‖x2 − x1(t2)‖ = δ2
and clearly (in view of the construction) x2 /=x1(t2). The above statement is proved and (2.14)
is valid for (t2, x2) determined above.

Now consider the initial value problem

ẋ = f(t, x), x(t2) = x2. (2.22)
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Obviously t2 − t0 ≤ b/(3M) since

0 < t2 − t0 ≤ t∗1 − t0 ≤ min
{
a,

b

3M

}
≤ b

3M
(2.23)

and ‖x2 − x0‖ ≤ 2b/3 because

‖x2 − x0‖ = ‖x2 − x1(t2) + x1(t2) − x0‖

≤ ‖x2 − x1(t2)‖ + ‖x1(t2) − x0‖ = δ2 +

∥
∥
∥
∥
∥

∫ t2

t0

f(s, x1(s))ds

∥
∥
∥
∥
∥

≤ δ2 +M(t2 − t0) ≤ δ2 +M b

3M
= δ2 +

b

3
≤ 2b

3
.

(2.24)

Peano’s theorem implies that there exists a solution x2(t) of problem (2.22) on t0 ≤ t ≤ t2. We
will show that x2(t0) = x0. Set

m(t) := V (t, x2(t) − x1(t)). (2.25)

Note thatm(t2) = u∗(t2). Lemma 2.5 and condition (iv) imply

D+m(t) := lim sup
h→ 0+

m(t + h) −m(t)
h

= D+V (t, x2(t) − x1(t))
= V̇ (t, x2(t) − x1(t)) ≥ g(t, V (t, x2(t) − x1(t))) = g(t,m(t))

(2.26)

for t0 < t ≤ t2.
Applying Lemma 2.6 we get m(t) ≤ u∗(t) for t0 < t ≤ t2. As m(t) ≥ 0 for t0 < t ≤ t2 and

m is continuous at t0, we findm(t0) = 0. Therefore we have x2(t0) = x1(t0) = x0 and, as noted
above, x2(t2) = x2 /=x1(t2). Thus problem (1.1) has two different solutions.

According to the well-known Kneser theorem [17, Theorem 4.1, page 15] the set
of solutions of problem (1.1) either consists of one element or has the cardinality of the
continuum. Consequently, if problem (1.1) has two different solutions on interval [t0, t∗1] and
condition (i) is satisfied, then the set of different solutions of problem (1.1) on interval J has
the cardinality of the continuum. The proof is completed.

Remark 2.11. Note that in the scalar case with V (t, x) := |x| condition (2.11) has the form

(
f
(
t, y

) − f(t, x1(t))
) · sign(y − x1(t)

) ≥ g(t, ∣∣y − x1(t)
∣∣). (2.27)
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Example 2.12. Consider for a = 0.1, b = 1, t0 = 0 and x0 = 0 the scalar differential equation

ẋ = f(t, x) :=

⎧
⎪⎨

⎪⎩

2x1/3 − 1
2
· t1/2 · sin |x|

t
if t /= 0,

2x1/3 if t = 0,
(2.28)

with the initial condition x(0) = 0. Let us show that the set of different solutions of this
problem on interval J has the cardinality of R. Obviously we can set x1(t) ≡ 0. Put

g(t, u) := 2u1/3 − 1
2
· t1/2, u∗(t) := t3/2, V (t, x) := |x|. (2.29)

Conditions (i), (ii), and (iii) are satisfied. Let us verify that the last condition (iv) is valid, too.
We get

V̇
(
t, y − x1(t)

)
= V̇

(
t, y

)
=
(
sign y

) ·
[

2y1/3 − 1
2
· t1/2 · sin

∣∣y
∣∣

t

]

≥ 2
∣∣y

∣∣1/3 − 1
2
· t1/2 = 2V

(
t, y

)1/3 − 1
2
· t1/2 = g(t, V (

t, y
))

= g
(
t, V

(
t, y − x1(t)

))
.

(2.30)

Thus, all conditions of Theorem 2.8 hold and, consequently, the set of different solutions on J
of given problem has the cardinality of R.

3. Incompatible Conditions

In this section we show that the formulation of condition (iv) in Theorem 2.8 without
knowledge of a solution of the Cauchy problem can lead to an incompatible set of conditions.
In the proof of Theorem 3.2 for the one-dimensional case we use the following result given
by Nekvinda [18, page 1].

Lemma 3.1. Let D ⊂ R
2 and let f : D → R be a continuous function in D. Let equation

ẋ = f(t, x) (3.1)

has the property of left uniqueness. For any t0 ∈ R let A be the set of all x0 ∈ R such that (t0, x0) ∈ D
and, for some ε > 0, the initial-value problem (1.1) has more than one solution in the interval [t0, t0+ε).
Then A is at most countable.

Theorem 3.2. The set of conditions (i)–(iv):

(i) f : R0 → R with R0 := {(t, x) ∈ J × R, |x − x0| ≤ b} is continuous;
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(ii) g : (t0, t0 + a] × (0,∞) → R+ is continuous, nondecreasing in the second variable, and
has the following property: there exists a continuous function u∗(t) on J , which satisfies the
differential equation

u̇(t) = g(t, u) (3.2)

for t0 < t ≤ t0 + a with u∗(t0) = 0 and does not vanish for t /= t0;

(iii) V : J × S1
2b(0) → R+ is continuous, positive definite, and Lipschitzian uniformly with

respect to t ∈ J ;
(iv) for t0 < t ≤ t0 + a, |x − x0| ≤ b, |y − x0| ≤ b, x /=y,

V̇
(
t, x − y) ≥ g(t, V (

t, x − y)), (3.3)

where we define

V̇
(
t, x − y) := lim sup

h→ 0+

1
h

[
V
(
t + h, x − y + h

[
f(t, x) − f(t, y)]) − V (

t, x − y)] (3.4)

contains a contradiction.

Proof. Any initial value problem

ẋ = f(t, x), x(t0) = x∗ (3.5)

with |x∗ − x0| ≤ b has at least two different solutions due to Theorem 2.8. Thus we have an
uncountable set of nonuniqueness points. We show that solutions passing through different
initial points are left unique. Suppose that it does not hold. Let x1(t) be a solution starting
from (t0, x1), and let x2(t) be a solution starting from (t0, x2) with x2 /=x1. If we assume that
these solutions cross at a point t1 > t0 and if we set

m(t) := V (t, x1(t) − x2(t)) (3.6)

then m(t0) > 0, m(t1) = 0. Therefore there exists a point t ∈ (t0, t1) such that (we apply
Lemma 2.5)

D+m(t) = D+V (t, x1(t) − x2(t)) = V̇ (t, x1(t) − x2(t)) < 0, (3.7)

in contradiction to (3.3). Thus we obtain left uniqueness. From Lemma 3.1 we conclude in
contrast to the above conclusion that the set of nonuniqueness points (t0, x∗) can be at most
countable.

In [1, Theorem 1.24.1, page 99] the following nonuniqueness result (see [14, Theorem 2.2.7,
page 55], too) is given which uses an inverse Kamke’s condition (condition (3.9) below).



Abstract and Applied Analysis 9

Theorem 3.3. Let g(t, u) be continuous on 0 < t ≤ a, 0 ≤ u ≤ 2b, g(t, 0) ≡ 0, and g(t, u) > 0 for
u > 0. Suppose that, for each t1, 0 < t1 < a, u(t)/≡ 0 is a differentiable function on 0 < t < t1, and
continuous on 0 ≤ t < t1 for which u̇+(0) exists,

u̇ = g(t, u), 0 < t < t1,

u(0) = u̇+(0) = 0.
(3.8)

Let f ∈ C[R0,R], where R0 : 0 ≤ t ≤ a, |x| ≤ b, and, for (t, x), (t, y) ∈ R0, t /= 0,

∣
∣f(t, x) − f(t, y)∣∣ ≥ g(t, ∣∣x − y∣∣). (3.9)

Then, the scalar problem ẋ = f(t, x), x(0) = 0 has at least two solutions on 0 ≤ t ≤ a.

Remark 3.4. In the proof of Theorem 3.3 at first f(t, 0) = 0 is assumed. Putting y = 0 in (3.9)
leads to the inequality

∣∣f(t, x)
∣∣ ≥ g(t, |x|). (3.10)

As f(t, x) is continuous and g(t, u) > 0 for u > 0 it follows that f(t, x) must have constant
sign for each of the half planes x > 0 and x < 0. For the upper half plane this implies that

f(t, x) ≥ g(t, x),
f(t, x) ≤ −g(t, x).

(3.11)

For the first inequality nonuniqueness is shown in [1]. But a similar argumentation cannot be
used for the second inequality as the following example in [5] shows. We consider the initial
value problem ẋ = f(t, x), x(0) = 0, with

f(t, x) =

⎧
⎨

⎩

−√x if x ≥ 0
√−x if x < 0

(3.12)

and g(t, u) :=
√
u. Thus inequality |f(t, x)| =

√
|x| ≥ g(t, |x|) holds. In the upper half-plane

we have f(t, x) ≤ −g(t, x). The function u(t) = t2/4 is a nontrivial solution of the comparison
equation. Therefore all assumptions are fulfilled, but the initial value problem has at most
one solution because of Theorem 1.3.1 [1, page 10].

The next theorem analyzes in the scalar case (for (t0, x0) = (0, 0)) that even fulfilling
a rather general condition (see condition (3.14) in the following theorem) cannot ensure
nonuniqueness since the set of all conditions contains an inner contradiction. The proof was
motivated by the paper [5].
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Theorem 3.5. There exists no system of three functions f , g, and V satisfying the following
suppositions:

(i) f : R0 → R with R0 := {(t, x) ∈ R × R, 0 ≤ t ≤ a, 0 ≤ x ≤ b} is a continuous function;
(ii) the continuous function g : (0, a] × R+ → R+, g(t, 0) := 0 if t ∈ (0, a], has the following

property: there exists a continuously differentiable function u∗(t) on 0 ≤ t ≤ a, satisfying
the differential equation

u̇ = g(t, u) (3.13)

for 0 < t ≤ a such that u∗(0) = 0 and u∗(t) > 0 for t /= 0;

(iii) the continuous function V : [0, a] × S1
b
(0) → R+ is positive definite, and for all 0 < t ≤ a,

0 < x < b continuously differentiable;

(iv) for 0 < t ≤ a, 0 < y < x ≤ b,

V̇
(
t, x − y) ≥ g(t, V (

t, x − y)) ≥ 0, (3.14)

where we define

V̇
(
t, x − y) := V ′

1

(
t, x − y) + V ′

2
(
t, x − y) · [f(t, x) − f(t, y)] (3.15)

and subscript indices denote the derivative with respect to the first and second argument,
respectively;

(v) there exist a positive constant ϑ and a function ξ : (0, b] → (0,∞) such that for 0 < t ≤ a
and 0 < x ≤ b

0 ≤ V ′
1(t, x) ≤ ϑ · ξ(x), 0 < V ′

2(t, x) ≤ ϑ · ξ(x)
x

,

V (t, x) ≥ ξ(x);
(3.16)

(vi) for t ∈ [0, a] and x, y with 0 < y < x ≤ b the inequality

f(t, x) − f(t, y) ≥ 0 (3.17)

holds.

Proof. Let us show that the above properties are not compatible. For fixed numbers x, y with
0 < y < x ≤ b consider the auxiliary function

F(t) :=
f(t, x) − f(t, y)

x − y + 1, t ∈ [0, a] . (3.18)
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Clearly, F is continuous and assumes a (positive) maximum. Set

K = max
[0,a]

F(t) ≥ 1. (3.19)

If the function g fulfills the inequality

g(t, u) ≤ Λ · u (3.20)

with a positive constant Λ in a domain 0 < t ≤ A ≤ a, 0 ≤ u ≤ B, B > 0, then the initial value
problem

u̇ = g(t, u), u(0) = 0 (3.21)

has the unique trivial solution u = 0. Really, since u∗(t) > 0 for t ∈ (0, a], by integrating
inequality

u̇∗(t)
u∗(t)

≤ Λ (3.22)

with limits t, A∗ ∈ (0, A) we get

u∗(A∗) ≤ u∗(t) exp[Λ(A∗ − t)] (3.23)

and for t → 0+

u∗(A∗) ≤ 0 (3.24)

which contradicts positivity of u∗. Therefore problem (3.21) has only the trivial solution.
Hence, there exist a sequence {(tn, un)} with tn ∈ (0, a], un > 0, limn→∞(tn, un) = (0, 0) and a
sequence {λn}, λn > 0, with limn→∞λn = ∞ such that the inequality

g(tn, un) > λnun (3.25)

holds for every n. Consider now the relation

V (t, x) = 0. (3.26)

Due to the properties of V we conclude that for all sufficiently small positive numbers tn, un
(i.e., for all sufficiently large n) there exists a (sufficiently small and positive) number ũn such
that the equation

V (tn, x) = un (3.27)
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has the solution x = ũn. Thus a sequence {ũn} with ũn > 0 and limn→∞ũn = 0 corresponds to
the sequence {(tn, un)}. For every n define a number jn as

jn =
⌈
x − y
ũn

− 1
⌉
, (3.28)

where ·� is the ceiling function. Without loss of generality we can suppose that

x − y
ũn

> 4. (3.29)

Obviously,

x − y
ũn

− 1 ≤ jn <
x − y
ũn

. (3.30)

Moreover, without loss of generality we can suppose that for every sufficiently large n the
inequality

λn > 2ϑK (3.31)

holds. Set

x0 := y,

x1 := y + ũn,

x2 := y + 2ũn,

...

xjn := y + jn · ũn,
xjn+1 := x.

(3.32)

Consider for all sufficiently large n the expression

En := jnV ′
1(tn, ũn) + V

′
2(tn, ũn) ·

[
f(tn, x) − f

(
tn, y

)]
. (3.33)
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Then

En = jnV ′
1(tn, ũn) + V

′
2(tn, ũn) ·

jn+1∑

i=1

[
f(tn, xi) − f(tn, xi−1)

]

= jnV ′
1(tn, ũn) + V

′
2(tn, ũn) ·

jn∑

i=1

[
f(tn, xi) − f(tn, xi−1)

]
+
[
f(tn, x) − f

(
tn, xjn

)]

≥ [due to (vi)] ≥ jnV ′
1(tn, ũn) + V

′
2(tn, ũn) ·

jn∑

i=1

[
f(tn, xi) − f(tn, xi−1)

]

= [due to (iv) and (v)] = jnV ′
1(tn, ũn) + V

′
2(tn, ũn) · jn

[−V ′
1(tn, ũn) + V̇ (tn, ũn)

V ′
2(tn, ũn)

]

≥ [due to (iv)]

≥ jnV ′
1(tn, ũn) + V

′
2(tn, ũn) · jn

[−V ′
1(tn, ũn) + g(tn, V (tn, ũn))

V ′
2(tn, ũn)

]

= jn · g(tn, V (tn, ũn)) = [due to (3.27)] = jn · g(tn, un) ≥ [due to (3.25)]

≥ jnλnun ≥ [due to (3.31)] ≥ jnun · 2ϑK ≥ [due to (3.30)]

≥
(
x − y
ũn

− 1
)
un · 2ϑK

=
(
x − y
ũn

− 1
)
V (tn, ũn) · 2ϑK

≥ [due to (3.16) ] ≥
(
x − y
ũn

− 1
)
ξ(ũn) · 2ϑK

=
(
x − y − ũn

) · ξ(ũn)
ũn

· 2ϑK

≥ [due to (3.29)] ≥ 3
4
· (x − y) · 2ϑK · ξ(ũn)

ũn

=
3
2
· (x − y) · ϑK · ξ(ũn)

ũn
> 0.

(3.34)

Estimating the expression En from above we get (see (3.32))

En ≤ x − y
ũn

V ′
1(tn, ũn) + V

′
2(tn, ũn) ·

[
f(tn, x) − f

(
tn, y

)]

≤ [due to (v)]

≤ x − y
ũn

· ϑ · ξ(ũn) + ϑ · ξ(ũn)
ũn

· (K − 1)
(
x − y) = ϑ · ξ(ũn)

ũn
·K(

x − y).

(3.35)
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These two above estimations yield

0 <
3
2
· (x − y) · ϑK · ξ(ũn)

ũn
≤ En ≤ (

x − y) · ϑK · ξ(ũn)
ũn

, (3.36)

in contrast to (3/2) � 1. Since the initially taken points x and y, 0 < y < x, can be chosen
arbitrarily close to zero, the theorem is proved.

The following result is a consequence of Theorem 3.5 if V (t, x) := |x|, ξ(x) := x and ϑ = 1.
Condition (3.38) below was discussed previously in [5].

Theorem 3.6. There exists no system of two functions f and g satisfying the following suppositions:

(i) f : R0 → R with R0 := {(t, x) ∈ R × R, 0 ≤ t ≤ a, 0 ≤ x ≤ b} is a continuous function;
(ii) the continuous function g : (0, a] × R+ → R+, g(t, 0) := 0 if t ∈ (0, a], has the following

property: there exists a continuously differentiable function u∗(t) on 0 ≤ t ≤ a, satisfying
the differential equation

u̇(t) = g(t, u) (3.37)

for 0 < t ≤ a such that u∗(0) = 0 and u∗(t) > 0 for t /= 0;

(iii) for 0 < t ≤ a, 0 < y < x ≤ b

f(t, x) − f(t, y) ≥ g(t, x − y) ≥ 0; (3.38)

(iv) for 0 < y < x ≤ b the inequality f(0, x) − f(0, y) ≥ 0 holds.

Remark 3.7. Let us note that in the singular case, that is, when we permit that the function
f(t, x) is not continuous at t = 0, the given sets of conditions in Theorems 3.5 and 3.6 can
be compatible. This can be seen from the proof where the continuity of f is substantial. Such
singular case was considered in [13].
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