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We characterize the global and nonglobal solutions of the Timoshenko equation in a bounded
domain. We consider nonlinear dissipation and a nonlinear source term. We prove blowup of
solutions as well as convergence to the zero and nonzero equilibria, and we give rates of decay
to the zero equilibrium. In particular, we prove instability of the ground state. We show existence
of global solutions without a uniform bound in time for the equation with nonlinear damping. We
define and use a potential well and positive invariant sets.

1. Introduction

We consider

utt + kΔ2u −M
(
‖∇u‖22

)
Δu + g(ut) = f(u) in Ω, (1.1)

with initial conditions

u(x, 0) = u0, ut(x, 0) = v0, x ∈ Ω, (1.2)

and with one set of the following boundary conditions:

u = 0, Δu = 0 on ∂Ω, (1.3)

or

u = 0,
∂u

∂ν
= 0 on ∂Ω, (1.4)
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where Ω ⊂ R
n is a bounded domain with sufficiently smooth boundary, ‖ · ‖2 is the norm in

L2(Ω),

M
(
s2
)
= α + βs2γ , α ≥ 0, β ≥ 0, α + β > 0, γ ≥ 1, k = 1, (1.5)

g(ut) = δut|ut|λ−2, δ > 0, λ ≥ 2, (1.6)

f(u) = μu|u|r−2, μ > 0, r > 0. (1.7)

When the source term f ≡ 0, there is a considerable set of works studying several properties
of equation (1.1), see for instance, the early papers by Ball [1, 2], Haraux and Zuazua [3], and
the books by Hale [4], Haraux [5], and references therein. For a destabilizing source term,
sf(s) > 0, s ∈ R \ {0}, in the works of Payne and Sattinger [6], Georgiev and Todorova [7],
and Ikehata [8], qualitative properties of (1.1) are studied, when k = 0 = β. To understand
the dynamics of second-order equations in time, similar to (1.1), active research is reported in
Alves and Cavalcanti [9], Barbu et al. [10], Cavalcanti et al. [11–16], Rammaha [17] Rammaha
and Sakuntasathien [18], and Todorova and Vitillaro [19], Vitillaro [20]. For the Timoshenko
equation, with g ≡ 0, Bainov andMinchev [21] gave sufficient conditions for the nonexistence
of smooth solutions of (1.1), with negative initial energy, and gave an upper bound of the
maximal time of existence. For positive and sufficiently small initial energy, blowup and
globality properties are characterized in Esquivel-Avila [22]. For the Kirchhoff equation,
that is, (1.1) with k = 0, the nonexistence of global solutions is studied in [23]. In [24, 25],
we characterized properties such as blowup and asymptotic behavior of solutions, for (1.1)
with k = 0 and β = 0. To the knowledge of the author, such problems are still open for
the Timoshenko equation (1.1). Here, we want to give some results about the dynamics of
problem (1.1). To do that we will generalize the concept of the depth of the potential well in
such manner that our results of the dynamics be as sharp as the ones in [24, 25]. Furthermore,
for particular cases, our definition of depth of the potential well will coincide with the one
introduced in [6].

2. Preliminaries and Framework

We begin this section with an existence, uniqueness, and continuation theorem for (1.1). The
proof is similar to the ones in [7, 8], where semilinear wave equations are studied.

Theorem 2.1. Assume that r > 2 and r ≤ 2(n − 2)/(n − 4) if n ≥ 5. For every initial data (u0, v0) ∈
H ≡ B × L2(Ω), where B is defined either by B ≡ H2(Ω) ∩ H1

0(Ω), or B ≡ H2
0(Ω), there exists a

unique (local) weak solution (u(t), v(t)) ≡ S(t)(u0, v0) of problem (1.1), that is,

d

dt
(v(t), w)2 + (Δu(t),Δw)2 +M

(
‖∇u(t)‖22

)
(∇u(t),∇w)2 +

(
g(v(t)), w

)
2 =
(
f(u(t)), w

)
2,

(2.1)

a.e. in (0, T) and for every w ∈ B ∩ Lλ(Ω), such that

u ∈ C([0, T);B) ∩ C1
(
[0, T);L2(Ω)

)
, v ≡ ut ∈ Lλ((0, T) ×Ω). (2.2)
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Here, S(t) denotes the corresponding semigroup on H, generated by problem (1.1), and (·, ·)2
is the inner product in L2(Ω).

The following energy equation holds:

E0 = E(t) +
∫ t
0
δ‖v(τ)‖λλdτ, (2.3)

where

E(t) ≡ E(u(t), v(t)) ≡ 1
2
‖v(t)‖22 + J(u(t)), (2.4)

J(u) ≡ 1
2
a(u) +

1
2
(
γ + 1
)c(u) − 1

r
b(u), (2.5)

with

a(u) ≡ ‖u‖2B, b(u) ≡ μ‖u‖rr , c(u) ≡ β‖∇u‖2(γ+1)2 . (2.6)

Here, E0 ≡ E(u0, v0) is the initial energy, and ‖ · ‖q denotes the norm in the Lq(Ω) space.
If the maximal time of existence TM < ∞, then S(t)(u0, v0) → ∞ as t ↗ TM, in the norm of

H:

‖(u, v)‖2H ≡ ‖u‖2B + ‖v‖22 ≡ ‖Δu‖22 + α‖∇u‖22 + ‖v‖22. (2.7)

In that case, from (2.3)–(2.6), ‖u(t)‖r → ∞ as t ↗ TM.

Now, we define, respectively, the stable (potential well) and unstable sets:

W ≡ ([I(u) > 0] ∪ {0}) ∩ [J(u) < d],

V ≡ [I(u) < 0] ∩ [J(u) < d],
(2.8)

where

I(u) ≡ a(u) + c(u) − b(u). (2.9)

Here, [I(u) < 0] denotes the set of u ∈ B with that property, and the depth of the
potential well is defined as follows:

d ≡ r − 2
2r

Sr/(r−2), (2.10)
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where

√
S ≡ inf

0/=u∈B
b̂(u)>0

(
â(u)1/2

b̂(u)1/r

)
, (2.11)

â(u) ≡ a(u) + κ1c(u), b̂(u) ≡ b(u) + κ2c(u). (2.12)

with

κ1 ≡
r − 2
(
γ + 1
)

(r − 2)
(
γ + 1
) , κ2 ≡ κ1 − 1 =

−rγ
(r − 2)

(
γ + 1
) . (2.13)

We assume that r ≥ 2(γ + 1), and since γ ≥ 1, then κ1 ∈ [0, 1/2), and κ2 ∈ [−1,−1/2).
Also note that if r = 2(γ + 1), then κ1 = 0, κ2 = −1, and we have the following characterization
of the depth of the potential well (2.10)-(2.11):

d = inf
0/=u∈B

sup
λ≥0

J(λu), (2.14)

which is the definition given in [6], where a nondissipative nonlinear wave equation is
studied.

Consider any u ∈ B, r > 2, and r ≤ 2n/(n − 4) if n ≥ 5, then

â(u) ≥ C(Ω)b(u)2/r + κ1c(u) ≥ C(Ω)b(u)2/r , (2.15)

where C(Ω) > 0, is any constant in the Sobolev-Poincaré’s inequality

(
‖Δu‖22 + α‖∇u‖22

)1/2 ≥
√
C(Ω)μ1/r‖u‖r . (2.16)

Moreover, if b̂(u) > 0, from (2.15) and since b(u) ≥ b̂(u),

â(u) ≥ C(Ω)b̂(u)2/r . (2.17)

Hence, S ≥ C(Ω), and d ≥ D ≡ ((r − 2)/2r)C(Ω)r/(r−2) > 0.
If ue denotes any nonzero equilibria of equation (1.1),

E ≡
[
0/=ue ∈ B : Δ2ue −M

(
‖u‖22
)
Δue = f(ue)

]
, (2.18)

then, by (2.1) in Theorem 2.1 with u(t) = ue = w, we get that ue belongs to the Nehari
manifold, N, that is,

E ⊂ N ≡
[
0/=u ∈ B : Î(u) = I(u) = 0

]
, (2.19)

where Î(u) ≡ â(u) − b̂(u).
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Consequently, b̂(ue) = â(ue) > 0. Furthermore, from (2.17) which is an equality when
C(Ω) = S, we conclude that the Nehari manifold can be represented by the line: y = x, in the
plane with axes x = b̂(u) and y = â(u), beginning at the point: y = x = Sr/(r−2) = (2r/(r−2))d.
We also note that

J(u) =
1
2
â(u) − 1

r
b̂(u). (2.20)

From these facts it follows that the depth of the potential well (2.10) is characterized
by

d = inf
u∈N

J(u) =
r − 2
2r

�, (2.21)

where

0 < � ≡ inf
u∈N

â(u) = inf
u∈N

b̂(u). (2.22)

Hence, any equilibrium is such that ue ∈ [J(u) ≥ d]. Moreover, like in [6], the set of
extremals of (2.21) is characterized by set of equilibria with least energy, that is the ground
state

N∗ ≡ [ue ∈ E : J(ue) = d] =
[
ue ∈ E : â(ue) = b̂(ue) = �

]
. (2.23)

Observe that J(u) = d is a tangent line to the curve defined by the equality in (2.17) with
C(Ω) = S, at the point N∗, which holds if b̂(u) > 0. On the other hand, we notice that

κ1b̂(u) − κ2â(u) = κ1b(u) − κ2a(u) > 0, (2.24)

and is equal to zero if and only if a(u) = 0 = b(u). Hence, if b̂(u) < 0, then

â(u) >
r − 2
(
γ + 1
)

−rγ b̂(u). (2.25)

Therefore, next results about the stable and unstable sets follow.

Lemma 2.2. The following properties of V and W hold:

(i) W is a neighborhood of 0 ∈ B.

(ii) 0 /∈ [I(u) < 0] (closure in B), in particular 0 /∈ V .



6 Abstract and Applied Analysis

(iii) W = W+ ∪W− ∪ {0}, where

W+ ≡ W ∩
[
b̂(u) > 0

]
=
[
�(r−2)/r b̂(u)2/r ≤ â(u) <

2
r
b̂(u) +

r − 2
r

�, 0 < b̂(u) < �

]
,

W− ≡ W ∩
[
b̂(u) < 0

]
⊂
[
r − 2
(
γ + 1
)

−rγ b̂(u) < â(u) <
2
r
b̂(u) +

r − 2
r

�, −γ� < b̂(u) < 0

]
.

(2.26)

(iv) V =
[
�(r−2)/r b̂(u)2/r ≤ â(u) <

2
r
b̂(u) +

r − 2
r

�, b̂(u) > �

]
.

(v) N∗ = W ∩ V = W+ ∩ V = [ue ∈ N, â(ue) = b̂(ue) = �].

(vi) W = [I(u) < 0]c ∩ [J(u) < d], V = ([I(u) > 0] ∪ {0})c ∩ [J(u) < d].

The following result follows easily like in [23].

Lemma 2.3. One has that

J(u) >
r − 2
2r

â(u) >
r − 2
2r

b̂(u), (2.27)

J(u) >
r − 2
2r

a(u) +
r − 2
(
γ + 1
)

2r
(
γ + 1
) c(u)

>
γ

2
(
γ + 1
)a(u) + r − 2

(
γ + 1
)

2r
(
γ + 1
) b(u),

(2.28)

for any u ∈ B such that I(u) > 0, in particular if 0/=u ∈ W , and

d <
r − 2
2r

â(u) <
r − 2
2r

b̂(u), (2.29)

d <
r − 2
2r

a(u) +
r − 2
(
γ + 1
)

2r
(
γ + 1
) c(u)

<
γ

2
(
γ + 1
)a(u) + r − 2

(
γ + 1
)

2r
(
γ + 1
) b(u),

(2.30)

for any u ∈ B, such that I(u) < 0, in particular if u ∈ V .

A set V ⊂ H is positive invariant, with respect to problem (1.1), if the corresponding
generated semigroup S(t) on H is such that

S(t)V ⊂ V. (2.31)

Lemma 2.4. Let (u, v) denote any solution of (1.1), given by Theorem 2.1. Then, the sets

S ≡ [E(u, v) < d] ∩ [(u, v) ∈ H : u ∈ W], (2.32)

U ≡ [E(u, v) < d] ∩ [(u, v) ∈ H : u ∈ V ], (2.33)

are positive invariant.
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Proof. First, we show that S is positive invariant. In order to do that, we take (u0, v0) ∈ S.
Then, by (2.4), J(u(t)) ≤ E(u(t), v(t)) ≤ E0 < d, for any t ≥ 0. Now, if S is not positive
invariant, there exists some t̂ > 0, such that I(u(t̂)) = 0, with u(t̂)/= 0. Then, by (2.21), d ≤
J(u(t̂)). But this is impossible because J(u(t̂)) < d. The proof of the positive invariance of U
is quite similar. Indeed, if this is not true there exists some t̂ > 0, such that I(u(t̂)) = 0. From
(ii) of Lemma 2.2 u(t̂)/= 0, and this implies the same contradiction as before.

Next result gives an interpretation of sets S and U and follows from Lemma 2.2.

Lemma 2.5. The sets S and U have the properties

S ⊂ [E(u, v) < d] ∩
[
(u, v) ∈ H : �(r−2)/r b̂(u)2/r ≤ â(u) <

2
r
b̂(u) +

r − 2
r

�, 0 < b̂(u) < �

]
,

∪ [E(u, v) < d] ∩
[
(u, v) ∈ H :

r − 2
(
γ + 1
)

−rγ b̂(u) < â(u) <
2
r
b̂(u) +

r − 2
r

�, −γ� < b̂(u) < 0

]

U = [E(u, v) < d] ∩
[
(u, v) ∈ H : �(r−2)/r b̂(u)2/r ≤ â(u) <

2
r
b̂(u) +

r − 2
r

�, b̂(u) > �

]
,

,

(2.34)

S ∩ U = [(ue, 0) ∈ H : ue ∈ N∗]

=
[
(ue, 0) ∈ H : ue ∈ N, â(ue) = b̂(ue) = �

]
.

(2.35)

The following result is a direct consequence of (vi) in Lemma 2.2 and Lemma 2.4.

Lemma 2.6. For every solution of (1.1), only one of the following holds:

(i) there exists some t0 ≥ 0 such that (u(t0), v(t0)) ∈ S, and remains there for every t > t0,

(ii) there exists some t0 ≥ 0 such that (u(t0), v(t0)) ∈ U, and remains there for every t > t0,

(iii) (u(t), v(t)) ∈ [E(u, v) ≥ d] for every t ≥ 0.

Hence, we notice that the sets S and U play an important role in the dynamics of
(1.1). Moreover, we will prove that any solution eventually contained in S converges to the
zero equilibrium. If enters in U, either blowups in a finite time or it is global but without a
uniform bound in H for every t ≥ 0, in the case that λ > 2, in (1.6). Also, we will prove that
any solution with (u(t), v(t)) ∈ [E(u, v) ≥ d], for every t ≥ 0, is bounded and converges to the
set of nonzero equilibria E.

We will need the following inequalities to show blowup and convergence to the zero
equilibrium, respectively, in the dissipative case.

Lemma 2.7. Let F ∈ W1,1
loc(R

+) be a nonnegative function such that

Ḟ(t) ≥ CFa(t) a.e. for t ≥ 0, (2.36)

with a > 1 and C > 0.
Then, there exists some T ∗ > 0 such that limt↗T∗F(t) = ∞.
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Proof. Define G(t) ≡ F1−a(t), then

Ġ(t) ≤ (1 − a)C < 0 a.e. for t ≥ 0. (2.37)

Hence, 0 < G(0) + (1 − a)Ct, which is only possible if t < T ∗ ≡ (1/C(a − 1))F1−a(0).

Lemma 2.8. Let F ∈ W1,1
loc(R

+) be a nonnegative function such that

Ḟ(t) ≤ −CFa(t) a.e. for t ≥ 0, (2.38)

with a ≥ 1 and C > 0.
Then, for t ≥ 0, if a > 1

F(t) ≤ F0

{
1 + tC(a − 1)Fa−1

0

}−1/(a−1)
, (2.39)

and, if a = 1

F(t) ≤ F0e
−Ct. (2.40)

Proof. Consider a > 1, and notice that (F(1−a))̇(t) ≥ (a − 1)C. Then, we integrate and obtain
the first inequality. Now, let a → 1, and the second one follows.

3. Timoshenko Equation

Due to our assumptions on r and γ , we restrict our analysis to dimensions n ≤ 5. Indeed,
since γ ≥ 1, 2(γ + 1) < r and r ≤ 2(n − 2)/(n − 4), if n ≥ 5, then our analysis considers, n = 5
whenever γ < 2. We also notice that in any case we do not consider the interval 2 < r ≤ 4.
Moreover, r ≤ 6 whenever n = 5. We begin with a characterization of blowup when δ > 0 and
λ ≥ 2.

Theorem 3.1. Let (u(t), v(t)) = S(t)(u0, v0) be a solution of problem (1.1), and suppose that r >
2(γ + 1). A necessary and sufficient condition for nonglobality, blowup by Theorem 2.1, is that λ < r
and there exists t0 ≥ 0 such that (u(t0), v(t0)) ∈ U.

Proof. Sufficiency

By Lemma 2.4, (u(t), v(t)) ∈ U for all t > t0.
Now, we consider the function defined, along the solution, by

V(t) ≡ d − E(t), (3.1)

and notice that because of energy equation (2.3),

V(t) ≥ d − E0 ≡ V0 > 0, (3.2)

where, now E0 ≡ E(u(t0), v(t0)).
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Notice that from (2.29) in Lemma 2.3,

V(t) ≤ d − J(u(t))

≤ d − r

r − 2
d +

1
r
b̂(u(t))

= − 2
r − 2

d +
1
r
b(u(t)) − γ

(r − 2)
(
γ + 1
)c(u(t)).

(3.3)

We will need some estimates. First, we notice that from energy equation in terms of
V(t) and (3.3),

∣∣∣δ
(
u(t), v(t)|v(t)|λ−2

)
2

∣∣∣ ≤ δ‖u(t)‖λ‖v(t)‖λ−1λ

≤ C(Ω)δ‖u(t)‖r‖v(t)‖λ−1λ

≤ C(Ω)δ‖u(t)‖1−kr ‖u(t)‖kr ‖v(t)‖λ−1λ

≤ C(Ω)δ‖u(t)‖1−kr

[
ν‖u(t)‖kλr +

1
C(ν)

‖v(t)‖λλ
]

< CV(1−k)/r(t)
[
νδ‖u(t)‖kλr +

1
C(ν)

V̇(t)
]
,

(3.4)

where k ∈ (1, r/λ), C ≡ C(Ω)(r/μ)(1−k)/r , C(Ω) > 0 is the constant in the continuous
embedding Lr(Ω) ⊂ Lλ(Ω), C(ν) > 0, and ν > 0 will be chosen later.

Consider a positive number q to be chosen later, from (3.2)-(3.3), we obtain

−I(u(t)) = −qJ(u(t)) + q − 2
2

a(u(t)) +
q − 2
(
γ + 1
)

2
(
γ + 1
) c(u(t)) +

r − q

r
b(u(t))

≥ q(V0 − d) +
q − 2
2

a(u(t)) +
q − 2
(
γ + 1
)

2
(
γ + 1
) c(u(t)) +

r − q

r
b(u(t)).

(3.5)

If V0 ≥ d, we choose q ≡ 2(γ + 1), and from (3.5) we get

−I(u(t)) ≥ r − 2
(
γ + 1
)

r
b(u(t)). (3.6)

If V0 < d, then we notice that from (3.2)-(3.3),

V0 − d ≥ (r − 2)(V0 − d)
(r − 2)V0 + 2d

(
1
r
b(u(t)) − γ

(r − 2)
(
γ + 1
)c(u(t))

)
. (3.7)
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Hence and from (3.5), we have the estimate

−I(u(t)) ≥ q − 2
2

a(u(t))

+
q

2
(
γ + 1
)
(

q − 2
(
γ + 1
)

q
+

2γ(d − V0)
(r − 2)V0 + 2d

)
c(u(t))

+
q

r

(
r − q

q
− (r − 2)(d − V0)

(r − 2)V0 + 2d

)
b(u(t)).

(3.8)

In this case, we choose the number q so that the coefficient of c(u(t)) in (3.8) be equal
to zero, then

q ≡ 2
(
γ + 1
)
((r − 2)V0 + 2d)(

r − 2
(
γ + 1
))V0 + 2

(
γ + 1
)
d
. (3.9)

We note that 2 < q < 2(γ + 1), and we get

−I(u(t)) ≥ γra(u(t)) +
(
r − 2
(
γ + 1
))
b(u(t))(

r − 2
(
γ + 1
))V0 + 2

(
γ + 1
)
d

V0. (3.10)

Therefore, from (3.6) and (3.10),

−I(u(t)) ≥ Ĉb(u(t)), (3.11)

where

Ĉ ≡ r − 2
(
γ + 1
)

r
min

(
1,

rV0(
r − 2
(
γ + 1
))V0 + 2

(
γ + 1
)
d

)
> 0. (3.12)

Now, we define the function, along the solution, by

F(t) ≡ V1/a(t) + ε(u(t), v(t))2, (3.13)

where a ≡ (1 + (1 − k)/r)−1 ∈ (1, 2) and ε > 0 will be choosen later.
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We intend to apply Lemma 2.7 to functional (3.13). First, we calculate the derivative,
along solutions, with respect to t. Let us start with the second term of (3.13). From (3.2)–(3.4)
and (3.11), one has

d

dt
(u(t), v(t))2 = ‖v(t)‖22 − I(u(t)) − δ

(
u(t), v(t)|v(t)|λ−2

)
2

≥ ‖v(t)‖22 + Ĉμ‖u(t)‖rr − CV(1−k)/r(t)
[
νδ‖u(t)‖kλr +

1
C(ν)

V̇(t)
]

≥ ‖v(t)‖22 +
[
Ĉμ − νCδ

(
r

μ

)(kλ−r)/r
Vb

0

]
‖u(t)‖rr −

Ca

C(ν)
V̇1/a(t)

≥ ‖v(t)‖22 +
Ĉμ

2
‖u(t)‖rr −

Ca

C(ν)
V̇1/a(t),

(3.14)

where b ≡ (k(λ − 1) − (r − 1))/r < 0, and ν > 0 is sufficiently small.
Consequently, if ε > 0 is sufficiently small,

Ḟ(t) ≥ C̃
[
‖v(t)‖22 + ‖u(t)‖rr

]
> 0, (3.15)

where C̃ ≡ εmin(1, Ĉμ/2) > 0.
From (3.15) and choosing ε > 0 small enough, we get

F(t) ≥ F0 ≡ V0 + ε(u(t0), v(t0))2 > 0. (3.16)

Utilizing two times (3.3), we get

Fa(t) ≤ 2a−1
[V(t) + εa|(u(t), v(t))2|a

]

≤ 2a−1
[
μ

r
‖u(t)‖rr + εaC(Ω)a‖u(t)‖ar ‖v(t)‖a2

]

≤ 2a−1
[
μ

r
‖u(t)‖rr + εaC(Ω)a

(
‖u(t)‖2a/(2−a)r + ‖v(t)‖22

)]

≤ 2a−1
[
μ

r
‖u(t)‖rr + εaC(Ω)a

((
μ(r − 2)
2rd

)c

‖u(t)‖rr + ‖v(t)‖22
)]

≤ C
[
‖u(t)‖rr + ‖v(t)‖22

]
,

(3.17)

where C(Ω) > 0 is the imbedding constant of Lr(Ω) ⊂ L2(Ω), c ≡ (1 − 2a)/r(2 − a) > 0, and
C > 0.

Hence and from (3.15), we obtain the inequality in order to apply Lemma 2.7.
Therefore, the maximal time of existence is finite: T < ∞.
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Necessity

Suppose that λ ≥ r. Define the function, along the solution, by

W(t) ≡ E(t) +
2μ
r
‖u(t)‖rr . (3.18)

Then,

Ẇ(t) = Ė(t) + 2μ
(
u(t)|u(t)|r−2, v(t)

)
2

≤ −δ‖v(t)‖λλ +
δ

2
‖v(t)‖rλ + C‖u(t)‖rr

≤ Ĉ(W(t) + 1),

(3.19)

where Ĉ ≡ max(δ/2, Cr/μ), C ≡ 2μC(Ω)(δ/2)r , and C(Ω) > 0 is the imbedding constant of
Lλ(Ω) ⊂ Lr(Ω).

Hence, by Gronwall inequality, it follows that (u, v) is bounded in H for any finite
time. A contradiction.

Proceeding again by contradiction suppose that, for all t ≥ 0, (u(t), v(t)) /∈ U. Then, by
Lemma 2.6, we have either u(t) ∈ S for all t ≥ 0, or E(t) ≥ d for all t ≥ 0. In the first case, from
(2.28) in Lemma 2.3

E0 ≥ 1
2
‖v(t)‖22 +

r − 2
2r

a(u(t)), (3.20)

that is, (u(t), v(t)) is bounded in H. This is not possible. In the second case,

δ

∫ t
0
‖v(τ)‖λλdτ ≤ E0 − d, (3.21)

where E0 ≡ E(u0, v0). Hence, by the Hölder inequality,

δt−(λ−1)
∥∥∥∥∥
∫ t
0
v(τ)dτ

∥∥∥∥∥
λ

λ

≤ E0 − d, (3.22)

and consequently

‖u(t)‖λ ≤ C(T), (3.23)

for t ∈ [0, T], where C(T) ≡ ‖u0‖λ + ((E0 − d)/δ)1/λT (λ−1)/λ.
From Theorem 2.1,

lim
t↗TMAX

‖u(t)‖r = ∞; (3.24)
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hence, by Sobolev-Poincaré’s inequality (2.16), for everyM > E0, there exists some t̂ > 0, such
that

M <
r − 2
2r

a(u(t)), (3.25)

for every t ≥ t̂. This implies the first inequality of (2.29) in Lemma 2.3, replacing d by M.
Now, we consider the function (3.13)

F(t) ≡ V(t)1/a + ε(u(t), v(t))2, (3.26)

defined for t ≥ t̂, where a ∈ (1, 2), ε > 0 is sufficiently small, and here

V(t) ≡ M − E(t) > 0, (3.27)

and repeat the sufficiency part of the proof. Then, by Lemma 2.7, F(t) blowups as t ↗ T ∗,
T ∗ > t̂. Moreover, for t̂ ≤ t < T ∗,

F(t) ≥
F
(
t̂
)

(
1 −
(
t − t̂
)
/
(
T ∗ − t̂

))1/(a−1) , (3.28)

hence and from (3.26), (3.27), and since E(t) ≥ d,

‖u(t)‖22 ≥
∥∥∥u
(
t̂
)∥∥∥

2

2
+
2
ε

⎧
⎪⎨
⎪⎩

∫ t
t̂

⎛
⎜⎝

F
(
t̂
)

(
1 −
(
τ − t̂
)
/
(
T ∗ − t̂

))1/(a−1) − V1/a(τ)

⎞
⎟⎠dτ

⎫
⎪⎬
⎪⎭

≥
∥∥∥u
(
t̂
)∥∥∥

2

2
−
2
(
t − t̂
)

ε
(M − d)1/a

+
2(a − 1)
ε(2 − a)

F
(
t̂
)(

T ∗ − t̂
)
⎧
⎨
⎩

(
1 − t − t̂

T ∗ − t̂

)−((2−a)/(a−1))
− 1

⎫
⎬
⎭.

(3.29)

Consequently,

lim
t↗T∗

‖u(t)‖22 = ∞. (3.30)

But this contradicts (3.23), since Lλ(Ω) ⊂ L2(Ω). The proof is complete.

Remark 3.2. From the last result, if λ = 2 and r > 2(γ + 1), any solution of problem (1.1),
(u(t), v(t)), is global if and only if either (i) there exists t0 ≥ 0 such that (u(t0), v(t0)) ∈ S or
(ii) (u(t), v(t)) ∈ [E(u, v) ≥ d], for every t ≥ 0. On the other hand, if λ > 2 and r > 2(γ + 1),
then any solution is global if and only if one of the following holds: (i), (ii), or (iii) λ ≥ r and
there exists t0 ≥ 0 such that (u(t0), v(t0)) ∈ U.



14 Abstract and Applied Analysis

We next prove a characterization of convergence to the zero equilibrium, and we give
rates of decay.

Theorem 3.3. Let (u(t), v(t)) = S(t)(u0, v0) be a solution of problem (1.1) with λ ≥ 2. Suppose that
r > 2(γ + 1) and that λ ≤ 10, if n = 5. A necessary and sufficient condition for (u(t), v(t)) → (0, 0),
strongly in H as t → ∞, is that there exists t0 ≥ 0 such that (u(t0), v(t0)) ∈ S.

In this case, if F(t) denotes either the energy

E(t) ≡ E(u(t), v(t)), (3.31)

or the norm of the solution in H

ω(t) ≡ ‖(u(t), v(t))‖2H ≡ a(u(t)) + ‖v(t)‖22, (3.32)

One has the rates of decay, for t ≥ T ,

F(t) ≤ K0

{
1 + t

(
λ − 2
2

)
K1K

(λ−2)/2
0

}−2/(λ−2)
, (3.33)

and, for linear dissipation, λ = 2,

F(t) ≤ K0e
−K1t, (3.34)

where T > 0 is sufficiently large, and K0 > 0, K1 > 0 are constants depending only on initial
conditions.

Proof. Necessity

By (ii) in Lemma 2.2, (0, 0) /∈ U, and since the equilibrium (0, 0) /∈ [E(u(t), v(t)) ≥ d], strong
closures in H, then, by Lemma 2.6, the solution must eventually enter in S.

Sufficiency

By energy equation and (2.27) in Lemma 2.3, the solution must be global and uniformly
bounded in the norm of H, that is ω(t) < 2rd/(r − 2), for any t ≥ 0. Hence, there exists a
sequence of times, {tn}, such that if n → ∞ then tn → ∞, (u(tn), v(tn)) → (û, v̂) weakly in
H and, since the embedding B ⊂ Lr(Ω) is compact, b(u(tn)) → b(û). Also, notice that the
energy is such that

0 ≤ E∞ ≡ lim
t→∞

E(t) = inf
t≥0

E(t) < ∞. (3.35)

Consequently, from the energy equation and the continuous embedding Lλ(Ω) ⊂
L2(Ω),

lim
t→∞

∫ t+1
t

‖v(τ)‖λ2dτ = 0, (3.36)
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in particular, for any sequence of times {sn} such that sn → ∞ as n → ∞,

lim
n→∞

∫1
0
hn(τ)dτ = 0, (3.37)

where hn(τ) ≡ ‖v(sn + τ)‖λ2 , for τ ∈ [0, 1]. By Fatou Lemma,

lim inf
n→∞

‖v(sn + τ)‖λ2 = lim inf
n→∞

hn(τ) = 0, (3.38)

for a.e. τ ∈ [0, 1], and by the weak convergence to v̂,

‖v̂‖2 ≤ lim inf
n→∞

‖v(tn)‖2 = 0, (3.39)

where we choose {sn} such that tn = sn + τ0, for some τ0 ∈ [0, 1].
It can be shown that the semigroup generated by problem (1.1) is continuous in H

with the weak topology, and then that the weak limit set is positive invariant, see Ball [26].
Consequently (û, v̂) = (ue, 0) must be an equilibrium of (1.1). Furthermore, by the lower-
semicontinuity of the norm inH, one has

b̂(ue) = â(ue) ≤ lim inf
n→∞

{
‖v(tn)‖22 + â(u(tn))

}

= lim
n→∞

{
2E(tn) +

2
r
b̂(u(tn))

}

= 2E∞ +
2
r
b̂(ue).

(3.40)

Hence,

r − 2
2r

b̂(ue) ≤ E∞ < d. (3.41)

Then, by (2.19) and (2.21), ue = 0, and

lim
t→∞

(u(t), v(t)) = (0, 0) weakly in H. (3.42)

Strong convergence follows if we get the rates of decay in our statement. Here, we will
adapt the technique used in Haraux and Zuazua [3], to (1.1). That technique is based on the
construction of suitable Liapunov functions defined along solutions and the application of
Lemma 2.8. One of them is the energy, and we will need one more, defined by

W(t) ≡ E(t) + κE(t)λ/2−1(u(t), v(t))2, (3.43)
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where κ > 0 is a constant to be chosen later. We next prove thatW(t) is equivalent to both, the
energy E(t) and the norm ω(t) of the solution, in the sense of (2.30) and (2.28) below. First
we note that from (2.27) in Lemma 2.3,

r − 2
2r

ω(t) ≤ E(t) ≤ K

2
ω(t), (3.44)

where K − 1 ≡ (β/α(γ + 1))(2rd/α(r − 2))γ .
Also, notice that from (3.43),

|W(t) − E(t)| ≤ κEλ/2−1
0 ‖u(t)‖2‖v(t)‖2 ≤ κEλ/2−1

0 C1(Ω)ω(t), (3.45)

where C1(Ω) > 0 is a constant that depends on the continuous embedding B ⊂ L2(Ω). Hence
and from (3.44), if κ is sufficiently small, then

1
2
E(t) ≤ W(t) ≤ 3

2
E(t). (3.46)

We will need the following estimate:

δ
(
u(t), v(t)|v(t)|λ−1

)
2
≤ δ‖u(t)‖λ‖v(t)‖λ−1λ

≤ δC2(Ω)a(u(t))(λ−2)/2λa(u(t))1/λ‖v(t)‖λ−1λ

≤ δC2(Ω)
(

2r
r − 2

E0

)(λ−2)/2λ
a(u(t))1/λ

(−Ė(t))(λ−1)/λ

≤ 1
λ
a(u(t)) − ĈĖ(t),

(3.47)

where we applied (3.44) in the third step and Young inequality in last step, and the constants
C2(Ω) > 0, Ĉ > 0 depend on the continuous embedding B ⊂ Lλ(Ω), and Ĉ also depends on
E0.

It follows that, by (3.42) and since B ⊂ Lr(Ω) is compact, for any ε > 0, there exists
some T > 0 such that for any t > T

b(u(t)) ≤ C3(Ω)b(u(t))(r−2)/ra(u(t)) ≤ εE(t), (3.48)

where C3(Ω) > 0 is the corresponding embedding constant and we used (3.44) in the last
step.
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Since we will apply Lemma 2.8, we need to calculate the time derivative of (3.43) and
we begin with

d

dt
(u(t), v(t))2 = ‖v(t)‖22 − a(u(t)) − c(u(t)) + b(u(t)) − δ

(
u(t), v(t)|v(t)|λ−1

)
2

≤ ‖v(t)‖22 −
1
2
a(u(t)) − c(u(t)) − ĈĖ(t) + εE(t)

≤ 3
2
‖v(t)‖22 − (1 − ε)E(t) − ĈĖ(t),

(3.49)

which holds for any t > T , and where we used (3.47), (3.48) and definition of E(t).
We notice that for any small η > 0, and by Young inequality and energy equation

Eλ/2−1(t)
3
2
‖v(t)‖22 ≤ Eλ/2−1(t)C4(Ω)‖v(t)‖2λ ≤ ηEλ/2(t) − C

(
η
)
Ė(t), (3.50)

where C4(Ω) > 0, C(η) > 0 depend on the continuous embedding Lλ(Ω) ⊂ L2(Ω), and C(η)
depends on η.

Then, for ε and η sufficiently small, (3.49) and (3.50), imply

Eλ/2−1(t)
d

dt
(u(t), v(t))2 ≤ −1

2
Eλ/2(t) − C̃Ė(t), (3.51)

for any t > T , where C̃ ≡ C(η) + ĈEλ/2−1
0 .

Consequently, for κ sufficiently small and any t > T

Ẇ(t) ≤ Ė(t) − κ
λ − 2
r − 2

rC1(Ω)Eλ/2−1
0 Ė(t) − κ

(
1
2
Eλ/2(t) + C̃Ė(t)

)
≤ −κ

2
Eλ/2(t) ≤ −κ0W

λ/2(t),

(3.52)

where κ0 ≡ (κ/2)(2/3)λ/2 and C1(Ω) > 0 is the constant in (3.45); also we used (3.44), the
fact that the energy is decreasing and (3.46). Then, from (3.52) and Lemma 2.8, we obtain the
desired rates of decay for W(t). The result now follows by (3.46) and (3.44), and the proof is
complete.

Remark 3.4. By (2.35), the ground state is: [(u, 0) ∈ H : u ∈ N∗] = S ∩ U. Then, in any H-
neighborhood of that subset of nonzero equilibria, one can choose initial conditions either
in U or in S. Hence, by Theorem 3.1 and (3.3), the ground state is unstable in the sense of
Liapunov when the dissipation term g(ut) is either linear or nonlinear.

Next we will study the behavior of solutions such that (u(t), v(t)) ∈ [E(u, v) ≥ d] for
all t ≥ 0. First, we prove that those solutions are uniformly bounded in time. To that end we
will study the cases: λ = 2 and λ > 2 separately, First, we consider the case λ = 2.

Theorem 3.5. Let (u(t), v(t)) = S(t)(u0, v0) be a solution of problem (1.1). Assume that r > 2(γ+1),
and λ = 2. Also, assume that r ≤ 2(6/n + 1) if n ≥ 2. If (u(t), v(t)) ∈ [E(u, v) ≥ d] for all t ≥ 0,
then the solution is global and uniformly bounded in H, for all t ≥ 0.
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Proof. Suppose that (u(t), v(t)) is not global, then by Theorem 2.1 blowups and by
Theorem 3.1, (u(t0), v(t0)) ∈ U for some t0 ≥ 0. Hence, (u(t), v(t)) ∈ [E(u, v) < d] for all
t ≥ t0. A contradiction.

Next, we will prove that ‖u(t)‖2 is uniformly bounded for all t ≥ 0.
Let F(t) ≡ (1/2)‖u(t)‖22 − C, where C > 0 is the constant given below. Then, we obtain

F̈(t) + δḞ(t) = ‖v(t)‖22 − â(u(t)) + b̂(u(t))

=
r + 2
2

‖v(t)‖22 +
r − 2
2

â(u(t)) − rE(t)

≥ C(Ω)(r − 2)F(t),

(3.53)

where C(Ω) > 0 is the imbedding constant of B ⊂ L2(Ω), and C ≡ rE0/(r − 2)C(Ω).
We define W(t) ≡ F+(t) ≡ sup{F(t), 0}, the positive part of F(t). We claim that, along

solutions of (1.1), the time derivative satisfies Ẇ(t) ≤ 0. Indeed, if this is no the case, there
exists some t0 > 0 such that

F(t0) > 0, Ḟ(t0) > 0. (3.54)

By a standard comparison result for ordinary differential equations, (3.53) and (3.54)
imply that F(t) → ∞ as t → ∞. Consequently, for any constant C > E0, there exists some
t0 > 0, such that for t ≥ t0

C <
r − 2
2r

â(u(t)). (3.55)

This is (2.29) in Lemma 2.3, replacing d by C. If we now define, for t ≥ t0, the function

V(t) ≡ C − E(t), (3.56)

we can repeat the sufficiency part of the proof of Theorem 3.1 and show that the solution
blowups in a finite time, consequently is nonglobal. A contradiction. Then, ‖u(t)‖2 ≤ C < ∞,
for all t ∈ R

+, and some constant C > 0.
Next, we will prove that uniform boundedness of ‖u(t)‖2 implies uniform bound-

edness of (u(t), v(t)) in H, for all t ∈ R
+. To that end, we consider the functions H(t) ≡

G(t) − kE0 ≡ Ḟ(t) + δF(t) − kE0, where now F(t) ≡ (1/2)‖u(t)‖22 and k > 0 is defined below.
From the second line in (3.53),

Ḣ(t) ≥ KH(t), (3.57)

where K ≡ min{r + 2, αC(Ω)(r − 2)/(1 + δ)} > 0 and k ≡ r/K.
Hence, for 0 ≤ s ≤ τ ,

H(τ) ≥ H(s)e(K(τ−s)), (3.58)
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and consequently, from definition of H(t), for 0 ≤ s ≤ τ ≤ t,

F(t) = F(s)e−δ(t−s) +
∫ t
s

(H(τ) + kE0)eδ(τ−t)dτ

≥ F(s)e−δ(t−s) +
∫ t
s

(
H(s)eK(τ−s) + kE0

)
eδ(τ−t)dτ

≥ H(s)
δ +K

(
eK(t−s) − eδ(s−t)

)
+
kE0

δ

(
1 − eδ(s−t)

)
.

(3.59)

Notice that if H(s) > 0, for some s ≥ 0, we obtain from (3.59) that limt→∞F(t) = ∞. A
contradiction. Then, for all t ≥ 0,

G(t) ≤ kE0. (3.60)

Now, we define L(t) ≡ G(t) + k̃E0, and like in (3.57)

L̇(t) ≥ −K̃L(t), (3.61)

where K̃ ≡ min{r + 2, C(Ω)(r − 2)} > 0 and k̃ ≡ r/K̃. Hence,

L(t) ≥ L(0)e−K̃t ≥ min{L(0), 0}, (3.62)

and consequently,

G(t) ≥ min
{
G(0),−k̃E0

}
. (3.63)

Hence and from (3.60), G(t) is uniformly bounded in time.
We integrate the second line of (3.53) in terms of G(t) and, by the energy equation, we

obtain

G(t + 1) − G(t) ≥ r − 2
(
γ + 1
)

2

∫ t+1
t

(
‖v(τ)‖22 + a(u(τ)) +

1
γ + 1

c(u(τ))
)
dτ − rE0. (3.64)

Hence and since G(t) is uniformly bounded in time,

∫ t+1
t

ω(τ)dτ ≤ C, (3.65)

where C > 0 is a constant, and

ω(t) ≡ 1
2
‖v(t)‖22 +

1
2
a(u(t)) +

1
2
(
γ + 1
)c(u(t)) = E(t) +

1
r
b(u(t)). (3.66)
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Next, we will show that there exists a constant κ > 0, such that

ω(t) ≤ κ(ω(s) + 1), (3.67)

for any 0 ≤ s ≤ t ≤ s + 1.
To this end, we calculate

ω̇(t) =
(
v(t), f(u(t))

)
2 − δ‖v(t)‖22 ≤ μ‖v(t)‖2‖u(t)‖r−12(r−1). (3.68)

If n = 1, we integrate and obtain, for 0 ≤ s ≤ t ≤ s + 1, that

ω(t) ≤ ω(s) + μ

∫ t
s

‖v(τ)‖2‖u(τ)‖r−12(r−1)dτ

≤ ω(s) +
μ

2

∫ t
s

(
‖v(τ)‖22 + ‖u(τ)‖2(r−1)2(r−1)

)
dτ

≤ ω(s) +
μ

2

∫ s+1
s

‖u(τ)‖2(r−1)2(r−1)dτ + μ

∫ t
s

ω(τ)dτ.

(3.69)

By Gronwall inequality and (3.65),

ω(t) ≤
(
ω(s) +

μ

2
‖u‖2(r−1)

L2(r−1)(Ω×(s,s+1))

)
eμ

≤ C̃

⎧
⎨
⎩ω(s) +

[∫ s+1
s

(
‖u(τ)‖22 + α‖∇u(τ)‖22 + ‖v(τ)‖22

)
dτ

]r−1⎫⎬
⎭

≤ Ĉ

⎧
⎨
⎩ω(s) +

[∫ s+1
s

ω(τ)dτ

]r−1⎫⎬
⎭

≤ Ĉ
{
ω(s) + Cr−1

}
,

(3.70)

where C̃ > 0, Ĉ > 0 depend on the continuous embeddings B ⊂ L2(Ω), andH1(Ω×(s, s+1)) ⊂
L2(r−1)(Ω × (s, s + 1)).

If 2 ≤ n ≤ 5, we use Galiardo-Niremberg’s inequality,

‖u‖r−12(r−1) ≤ C(Ω)‖u‖(r−1)aB ‖u‖(r−1)(1−a)2 , (3.71)

where C(Ω) > 0, and a = n(r − 2)/4(r − 1). Notice that a < 1 if 2 ≤ n ≤ 4, and a ≤ 1 if n = 5,
because r ≤ 2(n − 2)/(n − 4) = 6. Then, from

ω̇(t) ≤ μ‖v(t)‖2‖u(t)‖r−12(r−1), (3.72)
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we integrate and apply Gronwall inequality, for 0 ≤ s ≤ t ≤ s + 1,

ω(t) ≤ ω(s) + μ

∫ t
s

‖v(τ)‖2‖u(τ)‖r−12(r−1)dτ

≤ ω(s) + μC(Ω)
∫ t
s

‖v(τ)‖2‖u(τ)‖(r−1)aB ‖u(τ)‖(r−1)(1−a)2 dτ

≤ ω(s) + μC(Ω)
∫ t
s

ω(τ)‖u(τ)‖(r−1)a−1B ‖u(τ)‖(r−1)(1−a)2 dτ

≤ ω(s) exp

{
μC(Ω)

∫ t
s

‖u(τ)‖(r−1)a−1B ‖u(τ)‖(r−1)(1−a)2 dτ

}

≤ ω(s) exp

{
Ĉ

∫ t
s

‖u(τ)‖(r−1)a−1B dτ

}
,

(3.73)

where Ĉ ≡ μC(Ω)supt≥0‖u(t)‖
(r−1)(1−a)
2 .

Notice that (r − 1)a − 1 ≤ 2 because by hypothesis r ≤ 2(6/n + 1), then we use the
Hölder inequality, and from (3.65)we get

ω(t) ≤ ω(s) exp

⎧
⎨
⎩Ĉ

(∫ t
s

‖u(τ)‖2Bdτ
){(r−1)a−1}/2⎫⎬

⎭

≤ ω(s) exp

⎧
⎨
⎩C̃

(∫ s+1
s

ω(τ)dτ

){(r−1)a−1}/2⎫⎬
⎭

≤ ω(s) exp
{
C̃C{(r−1)a−1}/2

}
.

(3.74)

Then (3.67) holds for any n ≥ 1, under our assumptions on r.
Consequently, (3.65) and (3.67) imply that

‖v(t)‖22 + ‖u(t)‖2B ≤
∫ t
t−1

2ω(t)ds

≤ 2κ
∫ t
t−1

(ω(s) + 1)ds

≤ 2κ(C + 1),

(3.75)

and the proof is complete.

Next, we consider the case λ > 2. Due to our assumptions on r, we restrict our analysis
to nγ < 4. Since γ ≥ 1, our analysis considers, at most, dimensions n ≤ 3, whenever γ < 4/3.

Theorem 3.6. Let (u(t), v(t)) = S(t)(u0, v0) be a solution of problem (1.1). Assume that r > 2(γ +
1), and λ > 2 with λ ≤ 2(n + 1)/(n − 1) if n ≥ 2. Also assume that r < 2(4/n + 1) for n ≥ 1. If
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(u(t), v(t)) ∈ [E(u, v) ≥ d] for all t ≥ 0, then the solution is global and uniformly bounded inH, for
all t ≥ 0.

Proof. Globality follows like in last Theorem. Suppose that

‖u(t)‖22 ≤ K, (3.76)

for some constant K > 0, and every t ≥ 0.
We recall Galiardo-Nirenberg’s inequality

‖u‖rr ≤ C(Ω)a(u)ar/2‖u‖r(1−a)2 , (3.77)

where C(Ω) > 0 is a constant, a = (n/2)((r − 2)/2r), and a ∈ (0, 1].
Hence and from (3.76) in the energy equation, we obtain, for any time t ≥ 0,

E0 ≥ 1
2
‖v(t)‖22 +

1
2
a(u(t)) − Ĉa(u(t))ar/2, (3.78)

where Ĉ ≡ Kr(1−a)/2C(Ω)μ/r, and therefore (u(t), v(t)), t ≥ 0, is uniformly bounded in H,
since ar < 2 if and only if r < 2(4/n + 1). This implies, since r > 2(γ + 1), that nγ < 4.

Now, we prove (3.76). First, we notice that from energy equation,

δ

∫ t
0
‖v(τ)‖λλdτ ≤ E0 − d. (3.79)

Hence, by Hölder inequality,

δt−(λ−1)
∥∥∥∥∥
∫ t
0
v(τ)dτ

∥∥∥∥∥
λ

λ

≤ E0 − d, (3.80)

and then

‖u(t)‖λ ≤ C(t), (3.81)

for every t ≥ 0, where C(t) ≡ ‖u0‖λ + ((E0 − d)/δ)1/λt(λ−1)/λ.
Next, we define

2ω(t) ≡ ‖(u(t), v(t))‖2H, (3.82)
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and obtain the following estimate for t ∈ (0, T), and T > 0 finite and arbitrary:

∫ t
0
δ
(
u(τ), |v(τ)|λ−2v(τ)

)
2
dτ ≤

∫ t
0
δ‖u(τ)‖λλ‖v(τ)‖λ−1λ dτ

≤
(∫ t

0
‖u(τ)‖λλdτ

)1/λ

δ

(∫ t
0
‖v(τ)‖λλdτ

)(λ−1)/λ

≤ C0‖u‖Lλ(Ω×(0,T))

≤ Ĉ

(∫ t
0

(
‖u(τ)‖22 + α‖∇u(τ)‖22 + ‖v(τ)‖22

)
dτ

)1/2

≤ C̃

(∫ t
0
ω(τ)dτ

)1/2

.

(3.83)

Here, we used the Hölder inequality, the energy equation and the fact that E(t) ≥ d,
also C0 ≡ (E0 − d)(λ−1)/λδ1/λ > 0, and Ĉ > 0, C̃ > 0 depend on the continuous embedding
H1(Ω×(0, T)) ⊂ Lλ(Ω×(0, T)), valid for λ > 2 and λ ≤ 2(n+1)/(n−1) if n ≥ 2. C̃ also depends
on the embedding B ⊂ L2(Ω).

Now, we define the function

F(t) ≡ 1
2
‖u(t)‖22 − κ, (3.84)

where κ > 0 is the constant given below. Then, the second derivative is

F̈(t) = ‖v(t)‖22 − a(u(t)) − c(u(t)) − δ
(
u(t), |v(t)|λ−2v(t)

)
2
+ b(u(t))

=
r + 2
2

‖v(t)‖22 +
r − 2
2

a(u(t)) +
r − 2
(
γ + 1
)

2
(
γ + 1
) c(u(t)) − δ

(
u(t), |v(t)|λ−2v(t)

)
2
− rE(t)

≥ (r − 2)ω(t) − δ
(
u(t), |v(t)|λ−2v(t)

)
2
− rE0.

(3.85)

If we integrate (3.85), and we use (3.83) and that ω(t) ≥ E(t) ≥ d, we obtain

Ḟ(t) ≥ Ḟ(0) + (r − 2)
∫ t
0
ω(τ)dτ − C̃

(∫ t
0
ω(τ)dτ

)1/2

− rE0t

≥ Ḟ(0) + (r − 2)
∫ t
0
ω(τ)dτ

{
1 − C̃

(r − 2)
√
Tmd

}
− rE0t
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= Ḟ(0) + (r − 2)
2

∫ t
0
ω(τ)dτ − rE0t

≥ Ḟ(0) + (r − 2)C(Ω)
2

∫ t
0
F(τ)dτ,

(3.86)

for t ∈ (Tm, T), where
√
Tmd ≡ 2C̃/(r − 2) > 0, C(Ω) > 0 is the embedding constant of

B ⊂ L2(Ω), and κ ≡ 2rE0/(r − 2)C(Ω) > 0.
Now, we define for every t ≥ 0,

G(t) ≡
∫ t
0
F(τ)dτ +

Ḟ(0)
C

, (3.87)

where C ≡ (r − 2)C(Ω)/2. Hence, (3.86) has the form

G̈(t) − CG(t) ≥ 0, (3.88)

for every t ∈ (Tm, T).
We define H(t) ≡ F+(t) ≡ sup{F(t), 0}, the positive part of F(t). We claim that, for

every t > Tm, the time derivative satisfies Ḣ(t) ≤ 0. Otherwise, there exists some t0 ∈ (Tm, T)
such that

F(t0) > 0, Ḟ(t0) > 0, (3.89)

that is,

Ġ(t0) > 0, G̈(t0) > 0. (3.90)

By a standard comparison result for ordinary differential equations, (3.88) and (3.90)
imply that

F(t) = Ġ(t) ≥ M0e
√
Ct, (3.91)

for t ∈ (t1, T) and some t1 ∈ (t0, T), where M0 > 0 depends on F(t0) and Ḟ(t0). Furthermore,
for any constant M > 0, there exists some t2 ∈ (t1, T), such thatM0e

√
Ct > M(1 + t2(λ−1)/λ), for

t ∈ (t2, T). Then, (3.91) contradicts (3.81), since Lλ(Ω) ⊂ L2(Ω). Consequently, (3.76) holds
with K ≡ max{max0≤t≤Tm‖u(t)‖22, 2κ}, and the proof is complete.

From Remark 3.2 and Theorems 3.1, 3.3, and 3.5, any global solution of (1.1), with
λ = 2, is necessarily uniformly bounded in H, for all t ≥ 0. However, this is false when λ > 2,
as we show next.

Theorem 3.7. Let (u(t), v(t)) = S(t)(u0, v0) be a solution of problem (1.1). Assume the conditions,
on r and λ, made in Theorem 3.6. Then, (u(t), v(t)) is global and not uniformly bounded in H, for
t ≥ 0, if and only if λ ≥ r and there exists t0 ≥ 0 such that (u(t0), v(t0)) ∈ U.
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Proof. Sufficiency

By Lemma 2.4, (u(t), v(t)) ∈ U, for every t ≥ t0. This solution must be global. Otherwise, by
Theorem 2.1, blowups in a finite time and, by Theorem 3.1, necessarily λ < r. A contradiction.

Now, suppose that, for t ≥ t0, the solution is uniformly bounded in H. Hence, there
exists a sequence of times {tn}, such that if n → ∞, then tn → ∞, (u(tn), v(tn)) →
(û, v̂) weakly in H and, since the imbedding B ⊂ H1(Ω) ∩ Lr(Ω) is compact, b̂(u(tn)) →
b̂(û). Moreover, since the energy is nonincreasing and bounded, E∞ ≡ limt→∞E(t) ∈ R.
Consequently, from the energy equation and since Lλ(Ω) ⊂ L2(Ω),

lim
t→∞

∫ t+1
t

‖v(τ)‖λ2dτ = 0, (3.92)

in particular, for any sequence of times {sn} such that sn → ∞ as n → ∞,

lim
n→∞

∫1
0
hn(τ)dτ = 0, (3.93)

where hn(τ) ≡ ‖v(sn + τ)‖λ2 , for τ ∈ [0, 1]. By Fatou Lemma,

lim inf
n→∞

‖v(sn + τ)‖λ2 = lim inf
n→∞

hn(τ) = 0, (3.94)

for a.e. τ ∈ [0, 1], and by the weak convergence v(tn) → v̂, in L2(Ω),

‖v̂‖2 ≤ lim inf
n→∞

‖v(tn)‖2 = 0, (3.95)

where we choose {sn} such that tn = sn + τ0, for some τ0 ∈ [0, 1].
It can be shown that the semigroup generated by problem (1.1) is continuous in H

with the weak topology, and then that the weak limit set is positive invariant; see Ball [26].
Consequently (û, v̂) = (ue, 0) must be an equilibrium of (1.1). Since (u(tn), v(tn)) ∈ U then,
by definition (2.33) and (2.29),

b̂(ue) = lim
n→∞

b̂(u(tn)) ≥ 2rd
r − 2

. (3.96)
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Since the norm in H is weak lower-semicontinuous, from (2.4), (2.19), and (2.20), we
get that

b̂(ue) = â(ue)

≤ lim inf
n→∞

{
‖v(tn)‖22 + â(u(tn))

}

= lim
n→∞

{
2E(tn) +

2
r
b̂(u(tn))

}

= 2E∞ +
2
r
b̂(ue).

(3.97)

Hence,

r − 2
2r

b̂(ue) ≤ E∞ < d. (3.98)

This contradicts (3.96). Then, the solution cannot be uniformly bounded inH, for all t ≥ 0.

Necessity

This follows from Lemma 2.6 and Theorems 3.1, 3.3, and 3.6. The proof is complete.

Next, we characterize the convergence to the set of nonzero equilibria of equation (1.1).
Due to our assumptions on r and γ , our result considers, at most, dimensions n ≤ 3 for λ > 2,
and n ≤ 5 for λ = 2.

Theorem 3.8. Let (u(t), v(t)) = S(t)(u0, v0) be a solution of problem (1.1). If λ > 2, assume
the conditions, on r and λ, made in Theorem 3.6. If λ = 2, and assume the conditions, on r

made in Theorem 3.5. Then, (u(t), v(t)) → E∞, strongly in H as t → ∞, if and only if
(u(t), v(t)) ∈ [E(u, v) ≥ d] for all t ≥ 0, where E∞ ≡ [(ue, 0) ∈ E : J(ue) = E∞ ≥ d] and
E∞ ≡ limt→∞E(u(t), v(t)).

Proof. Sufficiency

By Theorems 3.5 and 3.6, the solution is global and uniformly bounded in H, that is, ω(t) ≡
‖(u(t), v(t))‖2H ≤ K, for all t ≥ 0, and some constant K > 0. Then, like in the sufficiency
part of the proof of Theorem 3.7, there exists a sequence of times such that tn → ∞ and
(u(tn), v(tn)) → (ue, 0), weakly in H, as n → ∞, where (ue, 0) is an equilibrium. If

{(u(t), v(t))}t≥0 is precompact in H, (3.99)

then strong convergence to (ue, 0) follows. In this situation, (u(tn), v(tn)) converges to the set
E∞, because (0, 0) /∈ [E(u, v) ≥ d], strong closure inH.
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Haraux [5], developed a technique to prove precompactness of bounded orbits of
some kind of semilinear wave equations. We will follow that method to prove (3.99). To this
end we define, for every ε > 0, and t ≥ 0,

uε(t) ≡ u(t + ε) − u(t), vε(t) ≡ v(t + ε) − v(t), 2ωε(t) ≡ ‖(uε(t), vε(t))‖2H, (3.100)

and note that from (2.1), we get the energy equation for (uε(t), vε(t))

ωε(0) = ωε(t) +
∫ t
0

(
gε(τ) − fε(τ) − m̂ε(τ), vε(τ)

)
2dτ, (3.101)

where,

gε(t) ≡ g(v(t + ε)) − g(v(t)), fε(t) ≡ f(u(t + ε)) − f(u(t)),

m̂ε(t) ≡ m
(
‖u(t + ε)‖22

)
Δu(t + ε) −m

(
‖u(t)‖22

)
Δu(t), m

(
‖∇u(t)‖22

)
≡ β‖∇u(t)‖2γ2 .

(3.102)

However, in order to handle the nonlinearity m̂ε(t), we need to introduce the function

Wε(t) ≡ ωε(t) +
1
2
m
(
‖∇u(t + ε)‖22

)
‖∇uε(t)‖22. (3.103)

Hence, the corresponding energy equation for Wε(t) is

Wε(0) = Wε(t) +
∫ t
0

(
gε(τ) − fε(τ) −mε(τ), vε(τ)

)
2dτ −

∫ t
0
(nε(τ), uε(τ))2dτ, (3.104)

where,

mε(t) ≡
(
m
(
‖∇u(t + ε)‖22

)
−m
(
‖∇u(t)‖22

))
Δu(t),

nε(t) ≡ m′
(
‖∇u(t + ε)‖22

)
(Δu(t + ε), v(t + ε))2Δuε(t).

(3.105)

Notice that since the solution is uniformly bounded byK, there exists a constant K̂ > 0,
depending on K, such that

ωε(t) ≤ Wε(t) ≤ K̂ωε(t). (3.106)

We will prove that for any η > 0, there exists ε(η) > 0, such that

ωε(t) ≤ η, (3.107)

for every t ≥ 0, and ε ∈ (0, ε(η)), that is, t �→ (u(t), v(t)) ∈ H, is uniformly continuous.
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For every t ≥ 0, we have one of the following two cases:

Wε(t + 1) ≤ Wε(t), (3.108)

Wε(t + 1) > Wε(t). (3.109)

From (3.109) and (3.104),

0 > Wε(t) −Wε(t + 1) =
∫ t+1
t

(
gε(τ) − fε(τ) −mε(τ), vε(τ)

)
2dτ −

∫ t+1
t

(nε(τ), uε(τ))2dτ.

(3.110)

Notice that, by a well-known inequality,

(
gε(t), vε(t)

)
2 ≥ 22−λδ‖vε(t)‖λλ. (3.111)

Also, we recall the inequality

∣∣fε(t)
∣∣ ≤ σ(r)μ

(
|u(t + ε)|r−2 + |u(t)|r−2

)
|uε(t)|, (3.112)

where σ(r) = 1, if r ∈ [2, 3] and σ(r) = (r − 1)/2, if r > 3.
From the Hölder inequality, (3.112) yields

(∫ t+1
t

∥∥fε(τ)
∥∥2
2dτ

)1/2

≤ 2σ(r)μC(Ω)sup
t≥0

a(u(t))(r−2)/2

×
(∫ t+1

t

‖uε(τ)‖2(r−1)2(r−1)dτ

)1/2(r−1)
,

(3.113)

where C(Ω) > 0, is an embedding constant in B ⊂ L2(r−1)(Ω).
We claim that t �→ u(t) ∈ L2(r−1)(Ω) must be uniformly continuous. Otherwise, there

exists some η0 > 0, and sequences {εn}n≥1, {tn}n≥1, such that εn → 0, and tn → ∞, as n → ∞,
and

‖uεn(tn)‖2(r−1) > η0, (3.114)
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for every n ≥ 1. By assumption, B ⊂ L2(r−1)(Ω) is compact, then {u(tn + εn)}n≥1, {u(tn)}n≥1 are
precompact in L2(r−1)(Ω), and we can extract subsequences {u(t′n + ε′n)}n≥1, {u(t′n)}n≥1, such
that for some fixed n0, sufficiently big, and every n ≥ n0,

∥∥u(t′n + ε′n) − u
(
t′n
)∥∥

2(r−1) ≤
∥∥u(t′n + ε′n) − u(tn0 + εn0)

∥∥
2(r−1)

+ ‖u(tn0 + εn0) − u(tn0)‖2(r−1)
+
∥∥u(tn0) − u(t′n)

∥∥
2(r−1)

≤ η0
3

+
η0
3

+
η0
3

= η0.

(3.115)

This contradicts (3.114). Hence, for any η > 0 there exists some ε̂(η) > 0, such that for
every t ≥ 0, and every ε ∈ (0, ε̂(η)),

(∫ t+1
t

‖ uε(τ)‖2(r−1)2(r−1)dτ

)1/2(r−1)
≤ η4(λ−1). (3.116)

Consequently, from (3.113), (3.116) and the Hölder inequality

∣∣∣∣∣
∫ t+1
t

(
fε(τ), vε(τ)

)
2dτ

∣∣∣∣∣ ≤ Cη4(λ−1)
(∫ t+1

t

‖vε(τ)‖λλdτ
)1/λ

, (3.117)

where C > 0 depends on K, μ, r, C(Ω) and the inclusion Lλ(Ω) ⊂ L2(Ω).
Now notice that,

‖mε(t)‖2 ≤ sup
t≥0

{
m′
(
‖∇u(t)‖22

)}∣∣∣‖∇u(t + ε)‖22 − ‖∇u(t)‖22
∣∣∣‖Δu(t)‖2

= sup
t≥0

{
m′
(
‖∇u(t)‖22

)}
|(∇u(t + ε) +∇u(t),∇u(t + ε) − ∇u(t))2|‖Δu(t)‖2

≤ sup
t≥0

{
m′
(
‖∇u(t)‖22

)
‖Δu(t + ε) + Δu(t)‖2‖Δu(t)‖2

}
‖uε(t)‖2

≤ C(K)‖uε(t)‖2,

(3.118)

and that

|(nε(t), uε(t))2| ≤ m′
(
‖∇u(t + ε)‖22

)
‖Δu(t + ε)‖2‖v(t + ε)‖2‖Δuε(t)‖2‖uε(t)‖2

≤ C(K)‖uε(t)‖2,
(3.119)

where C(K) > 0 is a constant.
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Since B ⊂ L2(Ω) is compact, we show like in (3.116), that

(∫ t+1
t

‖uε(τ)‖22dτ
)1/2

≤ η4(λ−1). (3.120)

Consequently, from (3.118)–(3.120) and the Hölder inequality, we obtain

∣∣∣∣∣
∫ t+1
t

{(mε(τ), vε(τ))2 + (nε(τ), uε(τ))2}dτ
∣∣∣∣∣ ≤ Ĉη4(λ−1)

⎧
⎨
⎩

(∫ t+1
t

‖vε(τ)‖λλdτ
)1/λ

+ 1

⎫
⎬
⎭,

(3.121)

where Ĉ > 0 depends on K and the inclusion Lλ(Ω) ⊂ L2(Ω).
From (3.117), (3.121), and (3.111) in (3.110), we have

∫ t+1
t

‖vε(τ)‖λλdτ ≤ C̃η4(λ−1)

⎧
⎨
⎩

(∫ t+1
t

‖vε(τ)‖λλdτ
)1/λ

+ 1

⎫
⎬
⎭, (3.122)

where C̃ > 0 is a constant. Consequently, for η sufficiently small, we obtain

∫ t+1
t

‖vε(τ)‖λλdτ ≤ η3λ, (3.123)

∫ t+1
t

‖vε(τ)‖22dτ ≤ η2

5
. (3.124)

We apply inequality (3.112) to gε, and by the Hölder inequality we get

∫ t+1
t

(
gε(τ), uε(τ)

)
2dτ ≤ σ(λ)δ

(∫ t+1
t

‖vε(τ)‖λλdτ
)1/λ(∫ t+1

t

‖uε(τ)‖λλdτ
)1/λ

×
⎡
⎣
(∫ t+1

t

‖v(τ + ε)‖λλdτ
)(λ−2)/λ

+

(∫ t+1
t

‖v(τ)‖λλdτ
)(λ−2)/λ⎤

⎦.

(3.125)

Notice that by (2.3) and since E(t) ≥ d,

∫∞
0
‖v(t)‖λλdt ≤

E0 − d

δ
. (3.126)
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By assumption B ⊂ Lλ(Ω), then

(∫ t+1
t

‖uε(τ)‖λλdτ
)1/λ

≤ 2C(Ω) sup
t≥0

‖u(t)‖B ≤ C, (3.127)

where C > 0 depends on the embedding constant C(Ω) and K.
Therefore, from (3.123), (3.126), and (3.127) in (3.125), we get, for η sufficiently small

∣∣∣∣∣
∫ t+1
t

(
gε(τ), uε(τ)

)
2dτ

∣∣∣∣∣ ≤ 2σ(λ)δC
(
E0 − d

δ

)(λ−2)/λ
η3 ≤ η2

5
. (3.128)

By (3.113), (3.116), (3.120) and the Hölder inequality, for small η, we obtain

∫ t+1
t

(
fε(τ), uε(τ)

)
2dτ ≤ Cη8(λ−1) ≤ η2

5
. (3.129)

one has that

(m̂ε(t), uε(t))2 = −m
(
‖∇u(t + ε)‖22

)
‖∇uε(t)‖22

+
{
m
(
‖∇u(t + ε)‖22

)
−m
(
‖∇u(t)‖22

)}
(Δu(t), uε(t))2

≤ C(K)‖uε(t)‖2,

(3.130)

where C(K) depends on K. Hence, by (3.120) and the Hölder inequality, and again for small
η,

∫ t+1
t

(m̂ε(τ), uε(τ))2dτ ≤ η2

5
. (3.131)

From (2.1), one has the identity

d

dt
(vε(t), u(t)ε)2 − ‖vε(t)‖22 + ‖Δuε(t)‖22 + α‖∇uε(t)‖22 +

(
gε(t), uε(t)

)
2

= (m̂ε(t), uε(t))2 +
(
fε(t), uε(t)

)
2.

(3.132)

Hence, (3.124), (3.128), (3.129), and (3.131) in (3.132) yield

∫ t+1
t

‖uε(τ)‖2Bdτ ≤ 2 sup
t≥0

{‖vε(t)‖2‖uε(t)‖2} +
4η2

5
. (3.133)
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For every t ≥ 0, one has

‖uε(t)‖2 ≤ ε sup
s∈[t,t+1]

‖v(s)‖2 ≤ ε
√
2K,

‖vε(t)‖2 ≤ 2 sup
t≥0

‖v(t)‖2 ≤ 2
√
2K

(3.134)

then, for ε ∈ (0, ε̂(η)), with ε̂(η) sufficiently small, (3.133) is

∫ t+1
t

‖uε(τ)‖2Bdτ ≤ η2. (3.135)

Hence, in case (3.109), from (3.124) and (3.135), we conclude that

∫ t+1
t

ωε(τ)dτ ≤ 3η2

5
. (3.136)

And, from (3.106) with η small,

∫ t+1
t

Wε(τ)dτ ≤ 3η
5
. (3.137)

From (3.104), (3.111), (3.117), (3.121) and (3.124), we have, for any s ∈ [t, t + 1], t ≥ 0,
and η sufficiently small, that

Wε(t + 1) = Wε(s) +
∫ t+1
s

(
mε(τ) + fε(τ) − gε(τ), vε(τ)

)
2dτ +

∫ t
0
(nε(τ), uε(τ))2dτ

≤ Wε(s) +

∣∣∣∣∣
∫ t+1
t

(
fε(τ), vε(τ)

)
2dτ

∣∣∣∣∣ +
∣∣∣∣∣
∫ t+1
t

(mε(τ), vε(τ))2dτ

∣∣∣∣∣

+

∣∣∣∣∣
∫ t+1
t

(nε(τ), uε(τ))2dτ

∣∣∣∣∣

≤ Wε(s) +
2η
5
.

(3.138)

Therefore, by (3.137), we obtain

Wε(t + 1) ≤
∫ t+1
t

Wε(s)ds +
2η
5

≤ η. (3.139)

Consequently, in both cases, (3.108) and (3.109),

Wε(t + 1) ≤ max
{
η,Wε(t)

}
, (3.140)



Abstract and Applied Analysis 33

and then

Wε(t) ≤ max
{
η, max

s∈[0,1]
Wε(s)

}
, (3.141)

for any t ≥ 0.
Since the solution (u, v) : [0, 1] → H, is uniformly continuous, for any η > 0 there

exists some ε̃(η) > 0, such that

max
s∈[0,1]

Wε(s) ≤ η, (3.142)

for any ε ∈ (0, ε̃(η)). Then, (3.141) and (3.106) imply (3.107) for any t ≥ 0, η > 0, and 0 < ε <
ε(η) ≡ min{ε̂(η), ε̃(η)}.

Next, we will prove that the orbit {(u(t), v(t))}t≥0, is a precompact subset of H. We
start with {v(t)}t≥0 ⊂ L2(Ω).

Notice that because of (3.107)

∥∥∥∥∥v(t) −
1
ε

∫ t+ε
t

v(τ)dτ

∥∥∥∥∥
2

≤ 1
ε

∫ t+ε
t

‖v(t) − v(τ)‖2dτ

≤ sup
τ∈[t,t+ε]

‖v(t) − v(τ)‖2

≤
√
2η.

(3.143)

Since {u(t)}t≥0 is bounded in B, then

∥∥∥∥∥
1
ε

(∫ t+ε
t

v(τ)dτ

)∥∥∥∥∥
B

≤ 1
ε
‖u(t + ε) − u(t)‖B

≤ 2
ε
sup
t≥0

‖u(t)‖B

≤ 2
ε

√
2K.

(3.144)

Consequently, {(1/ε) ∫ t+εt v(τ)dτ}t≥0 is precompact or, equivalently, totally bounded in
L2(Ω), because B ⊂ L2(Ω) is compact. Hence, by (3.143), {v(t)}t≥0 is precompact in L2(Ω).

Like in (3.143), from (3.107), we obtain that

∥∥∥∥∥u(t) −
1
ε

∫ t+ε
t

u(τ)dτ

∥∥∥∥∥
B

≤ sup
τ∈[t,t+ε]

‖u(t) − u(τ)‖B ≤
√
2η. (3.145)
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If {Δ2
∫ t+ε
t u(τ)dτ}t≥0 is precompact in B′ ≡ dual space of B, then precompactness of

{u(t)}t≥0 in B follows from (3.145), since

L−1 ≡
(
Δ2
)−1

: B′ −→ B, (3.146)

is a linear and continuous operator.
According to the dense and continuous inclusions

B ⊂ Lλ(Ω) ⊂ L2(Ω) ⊂ Lλ∗(Ω) ⊂ B′, (3.147)

where Lλ∗(Ω) = (Lλ(Ω))′, λ∗ = λ/(λ − 1), we extend the inner product in L2(Ω) to the duality
product in B′ × B. Now, we integrate the wave equation, and since L : B → B′ is closed, we
get, in the sense of B′,

Δ2
∫ t+ε
t

u(τ)dτ = v(t) − v(t + ε) +
∫ t+ε
t

M
(
‖∇u(τ)‖22

)
Δu(τ)dτ

−
∫ t+ε
t

g(v(τ))dτ +
∫ t+ε
t

f(u(τ))dτ.

(3.148)

By the Hölder inequality and (3.126),∥∥∥∥∥
∫ t+ε
t

g(v(τ))dτ

∥∥∥∥∥
λ∗

≤ δ

∫ t+ε
t

‖(v(τ))‖λ−1λ dτ ≤ δ1/λ(E0 − d)(λ−1)/λ. (3.149)

Boundedness of u(t) in B, since B ⊂ L2(r−1)(Ω), yields the estimate∥∥∥∥∥
∫ t+ε
t

f(u(τ))dτ

∥∥∥∥∥
2

≤ μ

∫ t+ε
t

‖(u(τ))‖r−12(r−1)dτ

≤ μC(Ω)sup
t≥0

‖u(t)‖B

≤ μC(Ω)C(K).

(3.150)

Also,∥∥∥∥∥
∫ t+ε
t

M
(
‖∇u(τ)‖22

)
Δu(τ)dτ

∥∥∥∥∥
2

≤ sup
t≥0

{
M
(
‖∇u(t)‖22

)
‖u(t)‖B

}
≤ C(K), (3.151)

Therefore, (3.149)–(3.151) in (3.148) imply that∥∥∥∥∥Δ
2
∫ t+ε
t

u(τ)dτ

∥∥∥∥∥
λ∗

≤ C, (3.152)

for some constant C > 0 and every t ≥ 0.
B ⊂ Lλ(Ω) is compact by assumption. By Schauder Theorem, see for instance Brézis

[27], B ⊂ Lλ(Ω) is compact if and only if Lλ∗(Ω) ⊂ B′ is compact. Then, (3.152) implies that
{Δ2
∫ t+ε
t u(τ)dτ}t≥0 is precompact in B′.
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Necessity

Suppose that the solution converges, strongly in H, to the set E∞. Since the energy is
nonincreasing, E(t) ≥ E∞ ≡ limt→∞E(t) ≥ d, for all t ≥ 0, and the proof is complete.

Remark 3.9. By Theorem 3.3 and (2.35), everyH-neighborhood of the ground state, S ∩ U =
[(ue, 0) ∈ H : ue ∈ N∗], is connected, through an orbit, with (0, 0). Furthermore, if E∞ = d in
Theorem 3.8, the ground state attracts every solution such that (u(t), v(t)) ∈ [E(u, v) ≥ d], for
every t ≥ 0.
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