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We consider flows on a spherical surface and use a transformation to transport some well-known
periodic two-dimensional vortex streets to that spherical surface to arrive at some new expressions
for vortex streets on a sphere.

1. Introduction

For fluid flow on a two-dimensional plane, the vorticity at a point is twice the angular rota-
tion. A point vortex is a model of a flow in which the vorticity is zero except at the point
itself where the vorticity is infinite, so that there is a nonzero circulation around the point.
The study of point vortices on the plane, and other two-dimensional manifolds such as
the cylinder, sphere, and torus, has a long history, dating back to the 19th century with
Helmholtz [1] initiating the point vortex model and Kirchhoff [2] and Lin [3] formulating
it as a Hamiltonian dynamical system. In this paper, we are concerned primarily with vortex
streets, which consist of one or more periodic rows of point vortices, the simplest of which is a
single infinite row of identical vortices [4]. These have important applications in engineering
and geophysics, with a single row having been used to model the quasisteady large-scale
vortices arising following the roll-up of a shear layer, and double rows, or von Kármán
vortex streets [5], having been used to model the shedding of eddies behind a bluff body. An
overview of two-dimensional vortex streets can be found in standard texts on hydrodynamics
such as IN [6, 7].

In this paper, we are interested in transporting these well-known vortex streets from
the plane to a curved two-dimensional manifold, the surface of a sphere. Flows on a sphere
are important because of applications to planetary atmospheres. In his classic monograph,
Lamb [6] briefly outlines a method of determining the motion of vortices on a curved
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manifold and discusses how some of the 19th century work on electrical conduction, such
as charge-on-a-sphere problems, by Boltzmann, Kirchhoff, Töpler, and others could be applied
to the problem of point vortices on the sphere although Gromeka [8] appears to have been
the first to study vortices on a sphere specifically. More recently, the formulation of the
motion of vortex streets on curved manifolds has been examined in more detail by Hally [9],
with several subsequent studies [10–12] delving more deeply into the formulation of vortex
motion on a sphere. A review of some of the work on point vortices on vortices on a sphere
can be found in [13]. One interesting thread of research [14–16] has involved using numerical
methods, such as contour surgery, to study the motion of vortex patches on a sphere, and
although these results were numerical rather than the closed-form expressions sought in the
current work, they serve to reveal the richness of vortex motion on a sphere.

The outline of the rest of the paper is as follows. In Section 2, we present our analysis,
giving a brief overview of two-dimensional vortex streets in Section 2.1 and then transporting
these streets to the sphere in Section 2.2, where we look at two vortex streets in detail, a row
of corotating vortices and a row of counterrotating vortices. Finally, in Section 3, we make
some closing remarks.

2. Analysis

2.1. Two-Dimensional Vortex Streets

In plane two-dimensional hydrodynamics, the equation governing the motion of an inviscid
incompressible fluid can be written in terms of a streamfunction ψ(x, y, t) as

∂

∂t
∇2ψ − ∂

(
ψ,∇2ψ

)

∂
(
x, y

) = 0, (2.1)

where ∂(a, b)/∂(x, y) = (∂a/∂x)(∂b/∂y)− (∂a/∂y)(∂b/∂x) is a Jacobian and∇2 = (∂2/∂x2)+
(∂2/∂y2) is the two-dimensional Laplacian. The streamfunction (2.1) admits steady-state
solutions of the form

∇2ψ = F(ψ), (2.2)

for any function F, and a number of solutions are known for two-dimensional hydrody-
namics. If we set F ≡ 0, (2.2) becomes the two-dimensional Laplace equation ∇2ψ = 0, the
fundamental solution of which has the form

ψ = κ ln
√
(x − x0)2 +

(
y − y0

)2
, (2.3)

where
√
(x − x0)2 + (y − y0)2 is the distance from the fixed point x = x0, y = y0, which

represents a point vortex of strength κ at x = x0, y = y0, for which ∇2ψ = 0 except at the
point itself with a circulation around the vortex of κ. Because ∇2ψ = 0 except at the point
vortex itself, it is possible to construct steady-state solutions to (2.2) consisting of more than
one vortex although for such a combination of vortices to be a steady-state solution, each
vortex much be located at a point where the velocities induced by the other vortices sum
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Figure 1: Point vortices on the plane: (a) a row of corotating vortices; (b) a row of counterrotating vortices.

Table 1: Some two-dimensional vortex streets.

Single corotating row ψ =
κ

2π
ln[coshy + cosx]

Single counterrotating row ψ =
κ

2π
ln
[
coshy + cosx
coshy − cosx

]

Symmetrical double row ψ =
κ

2π
ln
[
cosh(y − d) + cos(x + ct)
cosh(y + d) + cos(x + ct)

]

Staggered double row ψ =
κ

2π
ln
[
cosh(y − d) + cos(x + ct)
cosh(y + d) − cos(x + ct)

]

to zero. A number of well-known steady-state vortex street solutions are given in Table 1,
and an overview of vortex streets can be found in standard texts on hydrodynamics such as
[6, 7]. The first solution in the table, which dates back to [4], is an infinite row of identical
vortices, each of strength κ, located along y = 0 at the points x = ±π,±3π,±5π, . . . which is
sketched in Figure 1(a). If we combine a row of vortices of strengths κ at x = ±π,±3π,±5π, . . .
with a row of vortices of strengths −κ at x = 0,±2π,±4π, . . ., we have a row of vortices of
alternating sign, which is sketched in Figure 1(b). There are also two combinations due to von
Kármán [5] which propagate at constant speed in the negative x-direction: the symmetrical
double row and the staggered double row, both of which consist of two rows of vortices, one
along y = d and the other along y = −d, with the symmetrical row propagating at speed
c = (κ/2π) cothd and the staggered row at speed c = (κ/2π) tanhd. It is straightforward
to verify that the single rows in Table 1 are stationary and that the double rows propagate
at constant speed. To calculate the velocity of a vortex in a vortex street, we must subtract
the contribution for an isolated vortex from the streamfunction for the vortex street and then
evaluate the resulting expression at the location of the vortex, so that, for example, for the
vortex at (x, y) = (π, 0) in the corotating single row,

ux =
κ

2π
lim

x→π,y→ 0

∂

∂y

(
ln
[
coshy + cosx

] − ln
[
y2 + (x − π)2

])
= 0,

uy = − κ

2π
lim

x→π,y→ 0

∂

∂x

(
ln
[
coshy + cosx

] − ln
[
y2 + (x − π)2

])
= 0.

(2.4)

With this approach, it can be shown that the corotating and counterrotating rows are
stationary, while the symmetrical and staggered double rows propagate in the x-direction
with velocities −(κ/2π) cothd and −(κ/2π) tanhd, respectively.
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Table 2: Some vortex streets on the sphere;m = 1, 2, 3, . . ..

Single corotating row ψ =
κ

2π
ln
[
cosh

(
m ln tan

θ

2

)
+ cosmφ

]

Single counterrotating row ψ =
κ

2π
ln
[
cosh(m ln tan(θ/2)) + cosmφ
cosh(m ln tan(θ/2)) − cosmφ

]

Symmetrical double row ψ =
κ

2π
ln
[
coshm(ln tan(θ/2) − d) + cosm(φ + ct)
coshm(ln tan(θ/2) + d) + cosm(φ + ct)

]

Staggered double row ψ =
κ

2π
ln
[
coshm(ln tan(θ/2) − d) + cosm(φ + ct)
coshm(ln tan(θ/2) + d) − cosm(φ + ct)

]

For the plane case, the corotating single row was generalized to smooth finite-
amplitude vortices satisfying Liouville’s equation by [17] and the counterrotating row to
finite-amplitude vortices satisfying the sinh-Poisson equation by [18].

2.2. Vortex Streets on a Sphere

If we have a two-dimensional vortex street which is periodic in at least one direction, such
as those in Table 1, it is possible to transport that street to the surface of a sphere, which to
the best of our knowledge has not been done previously. In what follows, we will work in
spherical polars (r, θ, φ)with associated velocities (ur, uθ, uφ). If we consider only motions on
the surface of a sphere of radius R, we will have r = R and the radial velocity will be zero,
ur = 0. If we introduce a streamfunction via uθ = (∂ψ/∂φ)csc θ and uφ = −∂ψ/∂θ, the inviscid
incompressible equations of motion become

∂

∂t
∇2ψ − 1

R sin θ
∂
(
ψ,∇2ψ

)

∂
(
θ, φ

) = 0, (2.5)

together with a radial pressure gradient ∂p/∂r = R−1(u2θ + u2φ). In the above, ∇2 ≡
R−2[csc2θ(∂2/∂φ2) + cot θ(∂/∂θ) + (∂2/∂θ2)] is the Laplacian on the sphere, known as the
Laplace-Beltrami operator. The streamfunction (2.5) admits steady-state solutions of the form

∇2ψ = F(ψ). (2.6)

This formulation is of course not new and has been used by a number of authors to study
vortices on a sphere in the past. At this point, however, we will depart from previous studies
and make the change of variable η = ln tan(θ/2), so that the interval 0 ≤ θ ≤ π is mapped
onto −∞ < η < ∞. With this change of variable, ∇2 ≡ R−2cosh2η[(∂2/∂φ2) + (∂2/∂η2)]. Since
we can write the surface of the sphere as 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π , or equivalently −∞ < η <
∞, 0 ≤ φ ≤ 2π , it follows that if ψ = Ψ(x, y) is a point vortex solution on the plane which
is 2π-periodic in x, then the transformation x → φ, y → η will produce a point vortex
solution on the sphere, ψ = Ψ(φ, ln tan(θ/2)). If we apply this transformation to the two-
dimensional vortex streets in Table 1, we obtain the corresponding vortex streets on a sphere
given in Table 2. We will examine a couple of these vortex streets in more detail.

It is straightforward to verify that the single rows in Table 2 are stationary and that
the double rows propagate at constant speed. To calculate the velocity of a vortex in a vortex
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Figure 2: Corotating point vortices on a sphere with m = 4 viewed from (a) positive y-axis; (b) positive
z-axis; (c) in φ-θ space.

street, we must subtract the contribution of that vortex itself from the streamfunctions in
Table 2 and then evaluate the resulting expression at the location of the vortex. Since dη/dθ =
csc θ, uθ = (∂ψ/∂φ)csc θ and uφ = −(∂ψ/∂η)csc θ, and therefore it follows from the velocities
of the two-dimensional vortex streets in Section 2.1 that the corotating and counterrotating
rows are stationary, while the symmetrical and staggered double rows propagate in the φ-
direction with velocities κ cothd coshd/2π and κ sinhd/2π , respectively, since dη/dθ|η=d =
coshd and are therefore rotating steadily about the axis.

2.2.1. Single Corotating Row

The streamfunction and velocity components for a single row of identical vortices are given
by

ψ =
κ

2π
ln
[
cosh

(
m ln tan

θ

2

)
+ cosmφ

]

=
κ

2π
ln
[
1
2

(
tanm

θ

2
+ cotm

θ

2

)
+ cosmφ

]
,

(
uθ, uφ

)
= − m

(
sinmφ, sinh(m ln tan(θ/2))

)

sin θ
[
cosh(m ln tan(θ/2)) + cosmφ

]

= − m
(
sinmφ, (1/2)(tanm(θ/2) − cotm(θ/2))

)

sin θ
[
(1/2)(tanm(θ/2) + cotm(θ/2)) + cosmφ

] ,

(2.7)

for m = 1, 2, 3, . . .. This streamfunction is plotted in Figure 2 for m = 4. When m = 1, the
streamfunction (2.7) reduces to ψ = ln[cosφ + csc θ], which is part of a larger family of
solutions ψ = ln[cosφ + (1/2)(c tan(θ/2) + (1/c)cot(θ/2))], while when m = 2, we have
ψ = ln[2 cot2θ + 2 cos2φ].

The points θ = 0 and π , which are the poles of the sphere, correspond to y = −∞ and
+∞ on the plane, and ψ → ∞ as θ → 0+ and π−. We can see from Figure 2(b) that the flow
at each of the poles looks like a vortex, and (2.7) confirms that there are point vortices at
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Figure 3: Counterrotating point vortices on a sphere with m = 2 viewed from (a) positive y-axis; (b)
positive z-axis; (c) in φ-θ space.

the two poles, with ψ ∼ −(κm/2π) ln θ as θ → 0 and −(κm/2π) ln(π − θ) as θ → π .
Close to the poles, we have uφ ∼ −mκ/2πθ as θ → 0 and mκ/2π(π − θ) as θ → π ,
so that uφ is singular at the poles, while uθ ∼ −(mκθm−1/2mπ) sinmφ as θ → 0 and
−(mκ(π − θ)m−1/2mπ) sinmφ as θ → π , so that uθ → −(κ/2π) sinφ as θ → 0, π for m = 1
and uθ → 0 as θ → 0, π form > 1.

2.2.2. Single Counterrotating Row

The streamfunction and velocity components for a single row of alternating vortices are given
by

ψ =
κ

2π
ln
[
cosh(m ln tan(θ/2)) + cosmφ
cosh(m ln tan(θ/2)) − cosmφ

]

=
κ

2π
ln
[
(1/2)(tanm(θ/2) + cotm(θ/2)) + cosmφ
(1/2)(tanm(θ/2) + cotm(θ/2)) − cosmφ

]
,

(
uθ, uφ

)
=

4m
(− sinmφ cosh(m ln tan(θ/2)), cosmφ sinh(m ln tan(θ/2))

)

sin θ
[
cosh(2m ln tan(θ/2)) − cos 2mφ

]

=
2m

(− sinmφ(tanm(θ/2) + cotm(θ/2)), cosmφ(tanm(θ/2) − cotm(θ/2))
)

sin θ
[
(1/2)

(
tan2m(θ/2) + cot2m(θ/2)

) − cos 2mφ
] ,

(2.8)

for m = 1, 2, 3, . . .. This streamfunction is plotted in Figure 3 for m = 2. When m = 1,
the streamfunction (2.8) reduces to ψ = ln[(1 + cosφ sin θ)/(1 − cosφ sin θ)], which is the
point vortex limit of a solution given in [19], while when m = 2, we have ψ = ln[(cos2θ +
cos2φ sin2θ)/(1 − cos2φ sin2θ)].

The spherical arcs φ = π/2m, 3π/2m, . . . , (2m−1)π/2m are streamlines since ψ = 0 on
these lines. The points θ = 0 and π , which are the poles of the sphere, correspond to y = −∞
and +∞ on the plane, and ψ → 0 as θ → 0+ and π−. We can see from Figure 3(b) that
the flow at each of the poles looks like flow in a corner of angle π/2m, with the streamlines
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φ = π/2m, 3π/2m, . . . , (2m − 1)π/2m acting like rigid walls, and (2.8) confirms that ψ ∼
(κθm/π2m−1) cosmφ as θ → 0 and (κ(π − θ)m/π2m−1) cosmφ as θ → π . Close to the poles,
we have uφ ∼ −(mκθm−1/2m−1π) cosmφ as θ → 0 and (mκ(π − θ)m−1/2m−1π) cosmφ as
θ → π , while uθ ∼ −(mκθm−1/2m−1π) sinmφ as θ → 0 and −(mκ(π − θ)m−1/2m−1π) sinmφ
as θ → π , so that for m = 1, uφ ∼ −(κ/π) cosφ as θ → 0 and (κ/π) cosφ as θ → π

and uθ ∼ −(κ/π) sinφ as θ → 0 or π , and for m > 1, both uφ and uθ → 0 as θ → 0 or
π .

2.2.3. Symmetrical and Staggered Double Rows

Near to the poles, the streamfunction for the symmetrical double row, ψ ∼ (κ/π)(md −
21−m sinhmd cosmφθm) as θ → 0 and −(κ/π)(md − 21−m sinhmd cosmφ(π − θ)m) as
θ → π , with uφ ∼ (mκθm−1/2m−1π) sinhmd cosmφ as θ → 0 and (mκ(π − θ)m−1/
2m−1π) sinhmd cosmφ as θ → π , while uθ ∼ (mκθm−1/2m−1π) sinhmd sinmφ as θ →
0 and −(mκ(π − θ)m−1/2m−1π) sinhmd sinmφ as θ → π , so that for m = 1, uφ ∼
(κ/2π) sinhd cosφ as θ → 0 or π and uθ ∼ −(κ/π) sinhd sinφ as θ → 0 and
−(κ/π) sinhd sinφ as θ → π , and form > 1, both uφ and uθ → 0 as θ → 0 or π .

Near to the poles, the streamfunction for the staggered double row, ψ ∼ (κ/π)(md +
21−m coshmd cosmφθm) as θ → 0 and −(κ/π)(md − 21−m coshmd cosmφ(π − θ)m) as
θ → π , with uφ ∼ −(mκθm−1/2m−1π) coshmd cosmφ as θ → 0 and (mκ(π − θ)m−1/
2m−1π) coshmd cosmφ as θ → π , while uθ ∼ −(mκθm−1/2m−1π) coshmd sinmφ as θ →
0 and −(mκ(π − θ)m−1/2m−1π) coshmd sinmφ as θ → π , so that for m = 1, uφ ∼
−(κ/π) coshd cosφ as θ → 0 and (κ/π) coshd cosφ as θ → π and uθ ∼ −(κ/2π) coshd sinφ
as θ → 0 or π , and form > 1, both uφ and uθ → 0 as θ → 0 or π .

2.2.4. Gauss’ Constraint on the Vorticity

Since a sphere is a closed compact surface, it follows from Gauss’ theorem that the integral
of the scalar vorticity field over the spherical surface must be zero. This is a global constraint
on the vorticity distribution. In order to satisfy this constraint and simultaneously have an
irrotational flow, each point vortex must be counterbalanced by another point vortex on the
sphere. By inspection, the single counterrotating row and the symmetrical and staggered
double rows satisfy this constraint because for these vortex streets the total vorticity on
the spherical surface is the sum of the circulations of the point vortices, and for each
point vortex, there is a point vortex of opposite strength, so that the circulations sum to
zero. For the single corotating row (2.7), the situation is slightly more complex. There are
m point vortices along the equator θ = π/2, and close to the vortex at θ = π/2 and

φ = π/m, the streamfunction behaves like (κ/π) ln
√
(θ − (π/2))2 + (φ − (π/m))2, with

similar behavior at the other vortices along the equator. There are also two point vortices
at the poles: close to the vortex at θ = 0, the streamfunction behaves like −(κm/2π) ln θ,
while close to the vortex at θ = π , the streamfunction behaves like −(κm/2π) ln(π −
θ), so that the circulations sum to zero and the constraint is satisfied for the single
corotating row, and it would appear that the two polar vortices are generated to satisfy this
constraint.
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3. Discussion

In the previous section, we saw that if we had a vortex street ψ = Ψ(x, y) on the plane which
was 2π-periodic in x, then the transformation x → φ, y → ln tan(θ/2) would produce a
vortex street on the sphere, ψ = Ψ(φ, ln tan(θ/2)). We would mention that in [20], we used
a much simpler transformation to transport vortices from the plane to the cylinder. Perhaps
surprisingly, this very simple approach of transporting vortex streets from the plane to the
sphere does not appear to have been used previously, with most previous studies having
instead used a stereographic projection, an approach which Lamb [6] mentions was used
by Kirchhoff as far back as 1875 to study electrical conduction in a spherical sheet. As an
illustration, we applied this transformation to the two-dimensional vortex streets in Table 1
to obtain the corresponding vortex streets on a sphere given in Table 2, and the vortex streets
corresponding to rows of corotating and counterrotating vortices were plotted in Figures 2
and 3. For the corotating row, two polar vortices are generated, presumably to satisfy the
Gauss constraint on the vorticity.

As to the direction of possible future research, we mentioned in Section 1 that for the
plane case, some of the vortex streets have been generalized to smooth finite amplitude
vortices, resulting in Stuart vortices [17] and Mallier-Maslowe vortices [18]. We saw in
Section 2.2 that when m = 1, the streamfunction (2.8) for the counterrotating row reduced to
the point vortex limit of a solution given in [19], where we presented some finite-amplitude
vortex solutions for the sphere, so conversely it follows that the m = 1 counterrotating case
can be generalized to smooth finite-amplitude vortices. It would be interesting to see if the
remaining vortex streets presented here could be generalized as well although we note that
this is somewhat harder for the sphere, because the equation for nonlinear solutions on the
sphere, [(∂2/∂φ2) + (∂2/∂η2)]ψ = r2 sech2ηF(ψ), has a sech2η factor on the right hand side
which is not present in the corresponding equation on the plane, [(∂2/∂x2) + (∂2/∂y2)]ψ =
F(ψ). Perhaps because of this additional factor, very few exact smooth solutions are known
for flow on a sphere, and apart from [19], the only exact distributed vortex equilibria (as
opposed to point vortices) on a sphere appear to be the exact solutions on a rotating sphere
presented in [21, 22] and two studies by Crowdy, one involving a generalization of Stuart
vortices to the sphere [23], the other involving a combination of vortex patches and point
vortices [24].

We would not claim that the present study is exhaustive, and another possible direc-
tion for future research was suggested by an anonymous referee, whowondered whether any
vortex street solutions might be found consisting of double rows with different strengths.
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[5] T. von Kármán, “Über den mechanismus des widerstandes, den ein bewegter Körper in einer

Flussigkeit erfahrt,” Gotinger Nachrichten, Mathphys. Kl. , pp. 547–556, 1912.
[6] H. Lamb, Hydrodynamics, Dover, Cambridge, UK, 1932.
[7] L. M. Milne-Thomson, Theoretical Hydrodynamics, MacMillan, London, UK, 1968.



Journal of Applied Mathematics 9

[8] I. S. Gromeka, “On vortex motions of liquid on a sphere. Uchenye Zapiski Imperatorskogo Kazan-
skogo Universiteta,” Scientific Notes of the Imperial Kazan University, vol. 3, pp. 202–236, 1885
(Russian), See also Collected Papers, Moscow Akademii Nauk, USSR, 1952.

[9] D. Hally, “Stability of streets of vortices on surfaces of revolution with a reflection symmetry,” Journal
of Mathematical Physics, vol. 21, no. 1, pp. 211–217, 1980.

[10] V. A. Bogomolov, “Two-dimensional fluid dynamics on a sphere,” Izvestiya, Academy of Sciences, USSR,
Atmospheric, vol. 15, pp. 18–22, 1979.

[11] Y. Kimura, “Vortex motion on surfaces with constant curvature,” The Royal Society of London.
Proceedings, vol. 455, no. 1981, pp. 245–259, 1999.

[12] Y. Kimura and H. Okamoto, “Vortex motion on a sphere,” Journal of the Physical Society of Japan, vol.
56, no. 12, pp. 4203–4206, 1987.

[13] H. Aref, P. Newton, M. Stremler, T. Tokieda, and D. L. Vainchtein, “Vortex crystals,” Advances in
Applied Mechanics, vol. 39, pp. 1–79, 2003.

[14] M. T. Dibattista and L. M. Polvani, “Barotropic vortex pairs on a rotating sphere,” Journal of Fluid
Mechanics, vol. 358, pp. 107–133, 1998.

[15] D. G. Dritschel, “Contour dynamics/surgery on the sphere,” Journal of Computational Physics, vol. 79,
pp. 477–483, 1988.

[16] L. M. Polvani and D. G. Dritschel, “Wave and vortex dynamics on the surface of a sphere,” Journal of
Fluid Mechanics, vol. 255, pp. 35–64, 1993.

[17] J. T. Stuart, “On finite amplitude oscillations in laminar mixing layers,” Journal of Fluid Mechanics, vol.
29, pp. 417–440, 1967.

[18] R. Mallier and S. A. Maslowe, “A row of counter-rotating vortices,” Physics of Fluids A., vol. 5, no. 4,
pp. 1074–1075, 1993.

[19] G. Alobaidi, M. C. Haslam, and R.Mallier, “Vortices on a sphere,”Mathematical Modelling and Analysis,
vol. 11, no. 4, pp. 357–364, 2006.

[20] M. C. Haslam and R. Mallier, “Vortices on a cylinder,” Physics of Fluids, vol. 15, no. 7, pp. 2087–2088,
2003.

[21] W. T. M. Verkley, “The construction of barotropic modons on a sphere,” Journal of the Atmospheric
Sciences, vol. 41, no. 16, pp. 2492–2504, 1984.

[22] W. T. M. Verkley, “Nonlinear structures with multivalued (q, θ) relationships—exact solutions of the
barotropic vorticity equation on a sphere,” Geophysical and Astrophysical Fluid Dynamics, vol. 69, pp.
77–94, 1993.

[23] D. G. Crowdy, “Stuart vortices on a sphere,” Journal of Fluid Mechanics, vol. 498, pp. 381–402, 2004.
[24] D. Crowdy and M. Cloke, “Analytical solutions for distributed multipolar vortex equilibria on a

sphere,” Physics of Fluids, vol. 15, no. 1, pp. 22–34, 2003.


