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A discrete equation Δy(n) = β(n)[y(n − j) − y(n − k)] with two integer delays k and j, k > j ≥ 0
is considered for n → ∞. We assume β : Z

∞
n0−k → (0,∞), where Z

∞
n0

= {n0, n0 + 1, . . .}, n0 ∈ N and
n ∈ Z

∞
n0
. Criteria for the existence of strictly monotone and asymptotically convergent solutions for

n → ∞ are presented in terms of inequalities for the function β. Results are sharp in the sense that
the criteria are valid even for some functions β with a behavior near the so-called critical value,
defined by the constant (k − j)−1. Among others, it is proved that, for the asymptotic convergence
of all solutions, the existence of a strictly monotone and asymptotically convergent solution is
sufficient.

1. Introduction

We use the following notation: for integers s, q, s ≤ q, we define Z
q
s := {s, s + 1, . . . , q}, where

the cases s = −∞ and q = ∞ are admitted too. Throughout this paper, using the notation Z
q
s

or another one with a pair of integers s, q, we assume s ≤ q.
In this paper we study a discrete equation with two delays

Δy(n) = β(n)
[
y
(
n − j

) − y(n − k)
]

(1.1)

as n → ∞. Integers k and j in (1.1) satisfy the inequality k > j ≥ 0 and β : Z
∞
n0− k → R

+ :=
(0,∞), where n0 ∈ N and n ∈ Z

∞
n0
. Without loss of generality, we assume n0−k > 0 throughout

the paper (this is a technical detail, necessary for some expressions to be well defined).
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The results concern the asymptotic convergence of all solutions of (1.1). We focus on
what is called the critical case (with respect to the function β) which separates the case when
all solutions are convergent from the case when there exist divergent solutions.

Such a critical case is characterized by the constant value

β(n) ≡ βcr :=
(
k − j

)−1
, n ∈ Z

∞
n0− k, (1.2)

and below we explain its meaning and importance by an analysis of the asymptotic behavior
of solutions of (1.1).

Consider (1.1) with β(n) = β0, where β0 is a positive constant; that is, we consider the
following equation:

Δy(n) = β0 ·
[
y
(
n − j

) − y(n − k)
]
. (1.3)

Looking for a solution of (1.3) in the form y(n) = λn, λ ∈ C \ {0} using the usual procedure,
we get the characteristic equation

λk+1 − λk = β0 ·
[
λk−j − 1

]
. (1.4)

Denote its roots by λi, i = 1, . . . , k + 1. Then characteristic equation (1.4) has a root λk+1 = 1.
Related solution of (1.3) is yk+1(n) = 1. Then there exists a one-parametric family of constant
solutions of (1.3) y(n) = ck+1yk+1(n) = ck+1, where ck+1 is an arbitrary constant. Equation (1.4)
can be rewritten as

λk(λ − 1) = β0 · (λ − 1)
(
λk−j−1 + λk−j−2 + · · · + 1

)
, (1.5)

and, instead of (1.4), we can consider the following equation:

f(λ) := λk − β0 ·
(
λk−j−1 + λk−j−2 + · · · + 1

)
= 0. (1.6)

Let β0 = βcr. Then (1.6) has a root λk = 1 which is a double root of (1.4). By the theory of
linear difference equations, (1.3) has a solution yk(n) = n, linearly independent with yk+1(n).
There exists a two-parametric family of solutions of (1.3)

y(n) = ckyk(n) + ck+1yk+1(n) = ckn + ck+1, (1.7)

where ck, ck+1 are arbitrary constants. Then limn→∞y(n) = ∞ if ck /= 0. This means that
solutions with ck /= 0 are divergent.

Let β0 < βcr and k − j > 1. We define two functions of a complex variable λ

F(λ) := λk, Ψ(λ) := β0 ·
(
λk−j−1 + λk−j−2 + · · · + 1

)
, (1.8)
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and (1.6) can be written as

F(λ) −Ψ(λ) = 0. (1.9)

By Rouche’s theorem, all roots λi, i = 1, 2, . . . , k of (1.6) satisfy |λi| < 1 because, on the
boundary C of a unit circle |λ| < 1, we have

|Ψ(λ)|C = β0 ·
∣∣∣λk−j−1 + λk−j−2 + · · · + 1

∣∣∣ <
1

k − j

(
k − j

)
= 1 = |F(λ)|C, (1.10)

and the functions F(λ), F(λ) −Ψ(λ) have the same number of zeros in the domain |λ| < 1.
The case β0 < βcr and k − j = 1 is trivial because (1.6) turns into

λk − β0 = 0 (1.11)

and, due to inequality |λ|k = β0 < βcr = 1, has all its roots in the domain |λ| < 1.
Then the relevant solutions yi(n), i = 1, 2, . . . , k satisfy limn→∞yi(n) = 0, and the limit

of the general solution of (1.3), y(n) = limn→∞
∑k+1

i=1 ciyi(n) where ci are arbitrary constants,
is finite because

lim
n→∞

y(n) = lim
n→∞

k+1∑

i=1

ciyi(n) = ck+1. (1.12)

Let β0 > βcr. Since f(1) = 1 − β0 · (k − j) < 0 and f(+∞) = +∞, there exists a root
λ = λ∗ > 1 of (1.6) and a solution y∗(n) = (λ∗)

n of (1.3) satisfying limn→∞y∗(n) = ∞. This
means that solution y∗(n) is divergent.

Gathering all the cases considered, we have the following:

(i) if 0 < β0 < βcr, then all solutions of (1.3) have a finite limit as n → ∞,

(ii) if β0 ≥ βcr, then there exists a divergent solution of (1.3)when n → ∞.

The above analysis is not applicable in the case of a nonconstant function β(n) in (1.1).
To overcome some difficulties, the method of auxiliary inequalities is applied to investigate
(1.1). From our results it follows that, for example, all solutions of (1.1) have a finite limit for
n → ∞ (or, in accordance with the below definition, are asymptotically convergent) if there
exists a p > 1 such that the inequality

β(n) ≤ 1
k − j

− p
(
k + j + 1

)

2n
(
k − j

) (1.13)

holds for all n ∈ Z
∞
n0−k, where n0 is a sufficiently large natural number. The limit of the right-

hand side of (1.13) as n → ∞ equals the critical value βcr:

lim
n→∞

(
1

k − j
− p

(
k + j + 1

)

2n
(
k − j

)

)

=
1

k − j
= βcr. (1.14)
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It means that the function β(n) in (1.1) can be sufficiently close to the critical value βcr but
such that all solutions of (1.1) are convergent as n → ∞.

The proofs of the results are based on comparing the solutions of (1.1)with those of an
auxiliary inequality that formally copies (1.1). First, we prove that, under certain conditions,
(1.1) has an increasing and convergent solution y = y(n) (i.e., there exists a finite limit
limn→∞y(n)). Then we extend this statement to all the solutions of (1.1). It is an interesting
fact that, in the general case, the asymptotic convergence of all solutions is characterized by
the existence of a strictly increasing and bounded solution.

The problem concerning the asymptotic convergence of solutions in the continuous
case, that is, in the case of delayed differential equations or other classes of equations, is
a classical one and has attracted much attention recently. The problem of the asymptotic
convergence of solutions of discrete and difference equations with delay has not yet received
much attention. We mention some papers from both of these fields (in most of them,
equations and systems with a structure similar to the discrete equation (1.1) are considered).

Arino and Pituk [1], for example, investigate linear and nonlinear perturbations of
a linear autonomous functional-differential equation which has infinitely many equilibria.
Bereketoğlu and Karakoç [2] derive sufficient conditions for the asymptotic constancy
and estimates of the limits of solutions for an impulsive system, and Györi et al. give
sufficient conditions for the convergence of solutions of a nonhomogeneous linear system
of impulsive delay differential equations and a limit formula in [3]. Bereketoğlu and Pituk
[4] give sufficient conditions for the asymptotic constancy of solutions of nonhomogeneous
linear delay differential equations with unbounded delay. The limits of the solutions can be
computed in terms of the initial conditions and a special matrix solution of the corresponding
adjoint equation. In [5] Diblı́k studies the scalar equation under the assumption that every
constant is its solution. Criteria and sufficient conditions for the convergence of solutions
are found. The paper by Diblı́k and Růžičková [6] deals with the asymptotic behavior of a
first-order linear homogeneous differential equation with double delay. The convergence of
solutions of the delay Volterra equation in the critical case is studied by Messina et al. in [7].
Berezansky and Braverman study a behavior of solutions of a food-limited population model
with time delay in [8].

Bereketoğlu and Huseynov [9] give sufficient conditions for the asymptotic constancy
of the solutions of a system of linear difference equations with delays. The limits of the
solutions, as t → ∞, can be computed in terms of the initial function and a special matrix
solution of the corresponding adjoint equation. Dehghan and Douraki [10] study the global
behavior of a certain difference equation and show, for example, that zero is always an
equilibrium point which satisfies a necessary and suffient condition for its local asymptotic
stability. Györi and Horváth [11] study a system of linear delay difference equations such
that every solution has a finite limit at infinity. The stability of difference equations is studied
intensively in papers by Stević [12, 13]. In [12], for example, he proves the global asymptotic
stability of a class of difference equations. Baštinec and Diblı́k [14] study a class of positive
and vanishing at infinity solutions of a linear difference equation with delay. Nonoscillatory
solutions of second-order difference equations of the Poincaré type are investigated by
Medina and Pituk in [15].

Comparing the known investigations with the results presented, we can see that our
results can be applied to the critical case giving strong sufficient conditions of asymptotic
convergence of solutions for this case. Nevertheless, we are not concerned with computing
the limits of the solutions as n → ∞.
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The paper is organized as follows. In Section 2 auxiliary results are collected, an
auxiliary inequality is studied, and the relationship of its solutions with the solutions of (1.1)
is derived. The existence of a strictly increasing and convergent solution of (1.1) is established
in Section 3. Section 4 contains results concerning the convergence of all solutions of (1.1). An
example illustrating the sharpness of the results derived is given as well.

Throughout the paper we adopt the customary notation
∑k

i=k+s B(i) = 0, where k is an
integer, s is a positive integer, and B denotes the function under consideration regardless of
whether it is defined for the arguments indicated or not.

2. Auxiliary Results

Let C := C(Z0
−k,R) be the space of discrete functions mapping the discrete interval Z

0
−k into R.

Let v ∈ Z
∞
n0

be given. The function y : Z
∞
v−k → R is said to be a solution of (1.1) on Z

∞
v−k if it

satisfies (1.1) for every n ∈ Z
∞
v . A solution y of (1.1) on Z

∞
v−k is asymptotically convergent if the

limit limn→∞y(n) exists and is finite. For a given v ∈ Z
∞
n0

and ϕ ∈ C, we say that y = y(v,ϕ) is
a solution of (1.1) defined by the initial conditions (v, ϕ) if y(v,ϕ) is a solution of (1.1) on Z

∞
v−k

and y(v,ϕ)(v +m) = ϕ(m) form ∈ Z
0
−k.

2.1. Auxiliary Inequality

The auxiliary inequality

Δω(n) ≥ β(n)
[
ω
(
n − j

) −ω(n − k)
]

(2.1)

will serve as a helpful tool in the analysis of (1.1). Let v ∈ Z
∞
n0
. The function ω : Z

∞
v−k → R is

said to be a solution of (2.1) on Z
∞
v−k if ω satisfies inequality (2.1) for n ∈ Z

∞
v . A solution ω of

(2.1) on Z
∞
v−k is asymptotically convergent if the limit limn→∞ω(n) exists and is finite.

We give some properties of solutions of inequalities of the type (2.1), which will be
utilized later on. We will also compare the solutions of (1.1) with the solutions of inequality
(2.1).

Lemma 2.1. Let ϕ ∈ C be strictly increasing (nondecreasing, strictly decreasing, nonincreasing) on
Z
0
−k. Then the corresponding solution y(n∗,ϕ)(n) of (1.1) with n∗ ∈ Z

∞
n0

is strictly increasing (non-
decreasing, strictly decreasing, nonincreasing) on Z

∞
n∗− k too.

If ϕ is strictly increasing (nondecreasing) and ω : Z
∞
n0−k → R is a solution of inequality (2.1)

with ω(n0 +m) = ϕ(m), m ∈ Z
n0
n0−k, then ω is strictly increasing (nondecreasing) on Z

∞
n0−k.

Proof. This follows directly from (1.1), inequality (2.1), and from the properties β(n) > 0,
n ∈ Z

∞
n0−k, k > j ≥ 0.

Theorem 2.2. Let ω(n) be a solution of inequality (2.1) on Z
∞
n0−k. Then there exists a solution y(n)

of (1.1) on Z
∞
n0−k such that the inequality

y(n) ≤ ω(n) (2.2)
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holds on Z
∞
n0−k. In particular, a solution y(n0, φ) of (1.1) with φ ∈ C defined by the equation

φ(m) := ω(n0 +m), m ∈ Z
0
−k (2.3)

is such a solution.

Proof. Let ω(n) be a solution of inequality (2.1) on Z
∞
n0−k. We will show that the solution

y(n) := y(n0,φ)(n) of (1.1) satisfies inequality (2.2), that is,

y(n0,φ)(n) ≤ ω(n) (2.4)

on Z
∞
n0−k. Let W : Z

∞
n0−k → R be defined by W(n) = ω(n) − y(n). Then W = 0 on Z

n0
n0−k, and,

in addition, W is a solution of (2.1) on Z
∞
n0−k. Lemma 2.1 implies that W is nondecreasing.

Consequently, ω(n) − y(n) ≥ ω(n0) − y(n0) = 0 for all n ≥ n0.

2.2. Comparison Lemma

Now we consider an inequality of the type (2.1)

Δω∗(n) ≥ β1(n)
[
ω∗(n − j

) −ω∗(n − k)
]
, (2.5)

where β1 : Z
∞
n0−k → R

+ is a discrete function satisfying β1(n) ≥ β(n) on Z
∞
n0− k

. The following
comparison lemma holds.

Lemma 2.3. Let ω∗ : Z
∞
n0−k → R

+ be a nondecreasing positive solution of inequality (2.5) on Z
∞
n0−k.

Then ω∗ is a solution of inequality (2.1) on Z
∞
n0−k too.

Proof. Let ω∗ be a nondecreasing solution of (2.5) on Z
∞
n0−k. We have

ω∗(n − j
) −ω∗(n − k) ≥ 0 (2.6)

because n − k < n − j. Then

Δω∗(n) ≥ β1(n)
[
ω∗(n − j

) −ω∗(n − k)
] ≥ β(n)

[
ω∗(n − j

) −ω∗(n − k)
]

(2.7)

on Z
∞
n0
. Consequently, the function ω := ω∗ solves inequality (2.1) on Z

∞
n0
, too.

2.3. A Solution of Inequality (2.1)

We will construct a solution of inequality (2.1). In the following lemma, we obtain a solution
of inequality (2.1) in the form of a sum. This auxiliary result will help us derive sufficient
conditions for the existence of a strictly increasing and asymptotically convergent solution of
(1.1) (see Theorem 3.2 below).



Abstract and Applied Analysis 7

Lemma 2.4. Let there exist a discrete function ε : Z
∞
n0−k → R

+ such that

ε(n + 1) ≥
n−j∑

i=n−k+1
β(i − 1)ε(i) (2.8)

on Z
∞
n0
. Then there exists a solution ω(n) = ωε(n) of inequality (2.1) defined on Z

∞
n0−k having the

form

ωε(n) :=
n∑

i=n0−k+1
β(i − 1)ε(i). (2.9)

Proof. For n ∈ Z
∞
n0
, we get

Δωε(n) = ωε(n + 1) −ωε(n)

=
n+1∑

i=n0−k+1
β(i − 1)ε(i) −

n∑

i=n0−k+1
β(i − 1)ε(i)

= β(n)ε(n + 1),

ωε

(
n − j

) −ωε(n − k) =
n−j∑

i=n0−k+1
β(i − 1)ε(i) −

n−k∑

i=n0−k+1
β(i − 1)ε(i)

=
n−j∑

i=n−k+1
β(i − 1)ε(i).

(2.10)

We substitute ωε for ω in (2.1). Using (2.10), we get

β(n)ε(n + 1) ≥ β(n)
n−j∑

n−k+1
β(i − 1)ε(i). (2.11)

This inequality will be satisfied if inequality (2.8) holds. Indeed, reducing the last inequality
by β(n), we obtain

ε(n + 1) ≥
n−j∑

n−k+1
β(i − 1)ε(i), (2.12)

which is inequality (2.8).
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2.4. Decomposition of a Function into the Difference of
Two Strictly Increasing Functions

It is well known that every absolutely continuous function is representable as the difference of
two increasing absolutely continuous functions [16, page 318]. We will need a simple discrete
analogue of this result.

Lemma 2.5. Every function ϕ ∈ C can be decomposed into the difference of two strictly increasing
functions ϕj ∈ C, j = 1, 2, that is,

ϕ(n) = ϕ1(n) − ϕ2(n), n ∈ Z
0
−k. (2.13)

Proof. Let constants Mn > 0, n ∈ Z
0
−k be such that inequalities

Mn+1 > Mn +max
{
0, ϕ(n) − ϕ(n + 1)

}
(2.14)

are valid for n ∈ Z
−1
−k. We set

ϕ1(n) := ϕ(n) +Mn, n ∈ Z
0
−k,

ϕ2(n) := Mn, n ∈ Z
0
−k.

(2.15)

It is obvious that (2.13) holds. Now we verify that both functions ϕj , j = 1, 2 are strictly
increasing. The first one should satisfy ϕ1(n + 1) > ϕ1(n) for n ∈ Z

−1
−k, which means that

ϕ(n + 1) +Mn+1 > ϕ(n) +Mn (2.16)

or

Mn+1 > Mn + ϕ(n) − ϕ(n + 1). (2.17)

We conclude that the last inequality holds because, due to (2.14), we have

Mn+1 > Mn +max
{
0, ϕ(n) − ϕ(n + 1)

} ≥ Mn + ϕ(n) − ϕ(n + 1). (2.18)

The inequality ϕ2(n + 1) > ϕ2(n) obviously holds for n ∈ Z
−1
−k due to (2.14) as well.

2.5. Auxiliary Asymptotic Decomposition

The following lemma can be proved easily by induction. The symbolO stands for the Landau
order symbol.
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Lemma 2.6. For fixed r, σ ∈ R \ {0}, the asymptotic representation

(n − r)σ = nσ

[
1 − σr

n
+O

(
1
n2

)]
(2.19)

holds for n → ∞.

3. Convergent Solutions of (1.1)

This part deals with the problem of detecting the existence of asymptotically convergent
solutions. The results shown below provide sufficient conditions for the existence of
an asymptotically convergent solution of (1.1). First we present two obvious statements
concerning asymptotic convergence. From Lemma 2.1 and Theorem 2.2, we immediately get
the following.

Theorem 3.1. Let ω(n) be a strictly increasing and bounded solution of (2.1) on Z
∞
n0−k. Then there

exists a strictly increasing and asymptotically convergent solution y(n) of (1.1) on Z
∞
n0−k.

From Lemma 2.1, Theorem 2.2, and Lemma 2.4, we get the following.

Theorem 3.2. Let there exist a function ε : Z
∞
n0−k → R

+ satisfying

∞∑

i=n0−k+1
β(i − 1)ε(i) < ∞ (3.1)

and inequality (2.8) on Z
∞
n0
. Then the initial function

ϕ(n) =
n0+n∑

i=n0−k+1
β(i − 1)ε(i), n ∈ Z

0
−k (3.2)

defines a strictly increasing and asymptotically convergent solution y(n0,ϕ)(n) of (1.1) on Z
∞
n0−k

satisfying the inequality

y(n) ≤
n∑

i=n0−k+1
β(i − 1)ε(i) (3.3)

on Z
∞
n0
.

Assuming that the coefficient β(n) in (1.1) can be estimated by a suitable function, we
can prove that (1.1) has a convergent solution.

Theorem 3.3. Let there exist a p > 1 such that the inequality

β(n) ≤ 1
k − j

− p
(
k + j + 1

)

2n
(
k − j

) (3.4)
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holds for all n ∈ Z
∞
n0−k. Then there exists a strictly increasing and asymptotically convergent solution

y(n) of (1.1) as n → ∞.

Proof. In the proof, we assume (without loss of generality) that n0 is sufficiently large for
asymptotic computations to be valid. Let us verify that inequality (2.8) has a solution ε such
that

∞∑

i=n0−k+1
β(i − 1)ε(i) < ∞. (3.5)

We put

β(n) = β∗(n) :=
1

k − j
− p∗

2n
, ε(n) :=

1
nα

(3.6)

in inequality (2.8), where p∗ > 0 and α > 1 are constants. Then, for the right-hand side R(n)
of (2.8), we have

R(n) =
n−j∑

i=n−k+1

[
1

k − j
− p∗

2(i − 1)

]
1
iα

=
1

k − j

n−j∑

i=n−k+1

1
iα

− p∗

2

n−j∑

i=n−k+1

1
(i − 1)iα

=
1

k − j

[
1

(n − k + 1)α
+

1
(n − k + 2)α

+ · · · + 1
(
n − j

)α

]

− p∗

2

[
1

(n − k)(n − k + 1)α
+

1
(n − k + 1)(n − k + 2)α

+ · · · + 1
(
n − j − 1

)(
n − j

)α

]

.

(3.7)

We asymptotically decompose R(n) as n → ∞ using decomposition formula (2.19) in
Lemma 2.6. We apply this formula to each term in the first square bracket with σ = −α and
with r = k − 1 for the first term, r = k − 2 for the second term, and so forth, and, finally, r = j
for the last term. To estimate the terms in the second square bracket, we need only the first
terms of the decomposition and the order of accuracy, which can be computed easily without
using Lemma 2.6. We get

R(n) = 1
(
k − j

)
nα

[
1 +

α(k − 1)
n

+ 1 +
α(k − 2)

n
+ · · · + 1 +

αj

n
+O

(
1
n2

)]

− p∗

2nα+1

[
1 + 1 + · · · + 1 +O

(
1
n

)]
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=
1

(
k − j

)
nα+1

[(
k − j

)
n + α(k − 1) + α(k − 2) + · · · + αj +O

(
1
n

)]

− p∗

2nα+1

[(
k − j

)
+O

(
1
n

)]

=
1
nα

+
α

(
k − j

)
nα+1

(
k + j − 1

)(
k − j

)

2
− p∗

2nα+1

(
k − j

)
+O

(
1

nα+2

)
,

(3.8)

and, finally,

R(n) = 1
nα

+
α

2nα+1

(
k + j − 1

) − p∗

2nα+1

(
k − j

)
+O

(
1

nα+2

)
. (3.9)

A similar decomposition of the left-hand side L(n) = ε(n + 1) = (n + 1)−α in inequality (2.8)
leads to

L(n) ≡ 1
(n + 1)α

=
1
nα

[
1 − α

n
+O

(
1
n2

)]
=

1
nα

− α

nα+1
+O

(
1

nα+2

)
(3.10)

(we use decomposition formula (2.19) in Lemma 2.6 with σ = −α and r = −1).
Comparing L(n) and R(n), we see that, for L(n) ≥ R(n), it is necessary to match the

coefficients of the terms n−α−1 because the coefficients of the terms n−α are equal. It means that
we need the inequality

−α >
α
(
k + j − 1

)

2
− p∗

2
(
k − j

)
. (3.11)

Simplifying this inequality, we get

p∗

2
(
k − j

)
> α +

α
(
k + j − 1

)

2
,

p∗
(
k − j

)
> α

(
k + j + 1

)
,

(3.12)

and, finally,

p∗ >
α
(
k + j + 1

)

k − j
. (3.13)

We set

p∗ := p
k + j + 1
k − j

, (3.14)
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where p = const. Then the previous inequality holds for p > α, that is, for p > 1. Consequently,
the function β∗ defined by (3.6) has the form

β∗(n) =
1

k − j
− p

(
k + j + 1

)

2
(
k − j

)
n

(3.15)

with p > 1, and, for the function ωε defined by formula (2.9), we have

ωε(n) =
n∑

i=n0−k+1

(
1

k − j
− p

(
k + j + 1

)

2
(
k − j

)
(i − 1)

)
1
iα
. (3.16)

Functionωε(n) is a positive solution of inequality (2.1), and, moreover, it is easy to verify that
ωε(∞) < ∞ since α > 1. This is a solution to every inequality of the type (2.1) if the function
β∗ fixed by formula (3.15) is changed by an arbitrary function β satisfying inequality (3.4).
This is a straightforward consequence of Lemma 2.3 if, in its formulation, we set

β1(n) := β∗(n) =
1

k − j
− p

(
k + j + 1

)

2
(
k − j

)
n

(3.17)

with p > 1 since ω∗ ≡ ωε is the desired solution of inequality (2.5). Finally, by Theorem 3.1
with ω := ωε as defined by (3.16), we conclude that there exists a strictly increasing and
convergent solution y(n) of (1.1) as n → ∞ satisfying the inequality

y(n) < ωε(n) (3.18)

on Z
∞
n0−k.

4. Convergence of All Solutions

In this part we present results concerning the convergence of all solutions of (1.1). First we
use inequality (3.4) to state the convergence of all the solutions.

Theorem 4.1. Let there exist a p > 1 such that inequality (3.4) holds for all n ∈ Z
∞
n0−k. Then all

solutions of (1.1) are convergent as n → ∞.

Proof. First we prove that every solution defined by amonotone initial function is convergent.
We will assume that a strictly monotone initial function ϕ ∈ C is given. For definiteness,
let ϕ be strictly increasing or nondecreasing (the case when it is strictly decreasing or
nonincreasing can be considered in much the same way). By Lemma 2.1, the solution y(n0,ϕ)

is monotone; that is, it is either strictly increasing or nondecreasing. We prove that y(n0,ϕ) is
convergent.

By Theorem 3.3 there exists a strictly increasing and asymptotically convergent
solution y = Y (n) of (1.1) on Z

∞
n0−k. Without loss of generality we assume y(n0,ϕ) /≡Y (n) on
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Z
∞
n0−k since, in the opposite case, we can choose another initial function. Similarly, without

loss of generality, we can assume

ΔY (n) > 0, n ∈ Z
n0−1
n0− k. (4.1)

Hence, there is a constant γ > 0 such that

ΔY (n) − γΔy(n) > 0, n ∈ Z
n0−1
n0− k

(4.2)

or

Δ
(
Y (n) − γy(n)

)
> 0, n ∈ Z

n0−1
n0− k, (4.3)

and the function Y (n) − γy(n) is strictly increasing on Z
n0−1
n0− k. Then Lemma 2.1 implies that

Y (n) − γy(n) is strictly increasing on Z
∞
n0− k. Thus

Y (n) − γy(n) > Y (n0) − γy(n0), n ∈ Z
∞
n0

(4.4)

or

y(n) <
1
γ
(Y (n) − Y (n0)) + y(n0), n ∈ Z

∞
n0
, (4.5)

and, consequently, y(n) is a bounded function on Z
∞
n0− k

because of the boundedness of Y (n).
Obviously, in such a case, y(n) is asymptotically convergent and has a finite limit.

Summarizing the previous section, we state that every monotone solution is conver-
gent. It remains to consider a class of all nonmonotone initial functions. For the behavior of a
solution y(n0,ϕ) generated by a nonmonotone initial function ϕ ∈ C, there are two possibilities:
y(n0,ϕ) is either eventually monotone and, consequently, convergent, or y(n0,ϕ) is eventually
nonmonotone.

Now we use the statement of Lemma 2.5 that every discrete function ϕ ∈ C can be
decomposed into the difference of two strictly increasing discrete functions ϕj ∈ C, j = 1, 2.
In accordance with the previous part of the proof, every function ϕj ∈ C, j = 1, 2 defines
a strictly increasing and asymptotically convergent solution y(n0,ϕj ). Now it is clear that the
solution y(n0,ϕ) is asymptotically convergent.

We will finish the paper with two obvious results. Inequality (3.4) in Theorem 3.3 was
necessary only for the proof of the existence of an asymptotically convergent solution. If we
assume the existence of an asymptotically convergent solution rather than inequality (3.4),
we can formulate the following result, the proof of which is an elementary modification of
the proof of Theorem 4.1.

Theorem 4.2. If (1.1) has a strictly monotone and asymptotically convergent solution on Z
∞
n0− k, then

all the solutions of (1.1) defined on Z
∞
n0−k are asymptotically convergent.
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Combining the statements of Theorems 2.2, 3.1, and 4.2, we get a series of equivalent
statements below.

Theorem 4.3. The following three statements are equivalent.

(a) Equation (1.1) has a strictly monotone and asymptotically convergent solution on Z
∞
n0− k.

(b) All solutions of (1.1) defined on Z
∞
n0− k

are asymptotically convergent.

(c) Inequality (2.1) has a strictly monotone and asymptotically convergent solution on Z
∞
n0−k.

Example 4.4. We will demonstrate the sharpness of the criterion (3.4) by the following
example. Let k = 1, j = 0, β(n) = 1 − 1/n, n ∈ Z

∞
n0−1, n0 = 2 in (1.1); that is, we consider

the equation

Δy(n) =
(
1 − 1

n

)[
y(n) − y(n − 1)

]
. (4.6)

By Theorems 3.3 and 4.3, all solutions are asymptotically convergent if

β(n) ≤ 1
k − j

− p
(
k + j + 1

)

2n
(
k − j

) = 1 − p

n
, (4.7)

where a constant p > 1. In our case the inequality (4.7) does not hold since inequality

β(n) = 1 − 1
n
≤ 1 − p

n
(4.8)

is valid only for p ≤ 1. Inequality (4.7) is sharp because there exists a solution y = y∗(n) of
(4.6) having the form of an nth partial sum of harmonic series, that is,

y∗(n) =
n∑

i=1

1
i

(4.9)

with the obvious property limn→∞y∗(n) = +∞. Then (by Theorem 4.3), all strictly monotone
(increasing or decreasing) solutions of (4.6) tend to infinity.
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