Research Article

# Some New Constructions of Authentication Codes with Arbitration and Multi-Receiver from Singular Symplectic Geometry 

You Gao and Huafeng Yu<br>College of Science, Civil Aviation University of China, Tianjin 300300, China<br>Correspondence should be addressed to You Gao, gao_you@263.net

Received 29 May 2011; Accepted 4 November 2011
Academic Editor: Junjie Wei


#### Abstract

Copyright © 2011 Y. Gao and H. Yu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A new construction of authentication codes with arbitration and multireceiver from singular symplectic geometry over finite fields is given. The parameters are computed. Assuming that the encoding rules are chosen according to a uniform probability distribution, the probabilities of success for different types of deception are also computed.

## 1. Introduction

Let $S, E_{T}, E_{R}$, and $M$ be four nonempty finite sets, and let $f: S \times E_{T} \rightarrow M$ and $g: M \times E_{R} \rightarrow$ $S \cup\{$ reject $\}$ be two maps. The six-tuple ( $S, E_{T}, E_{R}, M, f, g$ ) is called an authentication code with arbitration ( $A^{2}$-code) if
(1) the maps $f$ and $g$ are surjective;
(2) for any $m \in M$ and $e_{T} \in E_{T}$, if there is a $s \in S$, satisfying $f\left(s, e_{T}\right)=m$, then such an $s$ is uniquely determined by the given $m$ and $e_{T}$;
(3) $p\left(e_{T}, e_{R}\right) \neq 0$ and $f\left(s, e_{T}\right)=m$ implies $g\left(m, e_{R}\right)=s$, otherwise, $g\left(m, e_{R}\right)=\{$ reject $\}$.
$S, E_{T}, E_{R}$, and $M$ are called the set of source states, the set of transmitter's encoding rules, the set of receiver's decoding rules, and the set of messages, respectively; $f$ and $g$ are called the encoding map and decoding map, respectively. The cardinals $|S|,\left|E_{T}\right|,\left|E_{R}\right|$, and $|M|$ are called the size parameters of the code.

In [1], Simmons introduced the $A^{2}$-code model to solve the transmitter and the receiver's distrust problem. In [2-4], some Cartesian authentication codes were constructed from
symplectic and unitary geometry; in [5-7], authentication codes with arbitration based on symplectic and pseudosymplectic geometry were constructed.

The following notations will be fixed throughout this paper: $p$ is a fixed prime. $F_{q}$ is a field with $q$ elements. $V=F_{q}^{(2 v+l)}$ is a singular symplectic space over $F_{q}$ with index $v$. $e_{i}(1 \leq i \leq 2 v+l)$ is row vector in $V$ whose $i$ th coordinate is 1 and all other coordinates are 0 . Denote by $E$ the $l$-dimensional subspace of $V$ generated by $e_{2 v+1}, e_{2 v+2}, \ldots, e_{2 v+l} . K_{l}$ denotes the matrix

$$
\left(\begin{array}{ccc}
0 & I^{(v)} & 0  \tag{1.1}\\
-I^{(v)} & 0 & 0 \\
0 & 0 & 0^{(l)}
\end{array}\right)
$$

For more concepts and notations used in this paper, refer to [8].
In an authentication system that permits arbitration, the model includes four attendance: the transmitter, the receiver, the opponent, and the arbiter and includes five attacks.
(1) The opponent's impersonation attack: the largest probability of an opponent's successful impersonation attack is $P_{I}$. Then,

$$
\begin{equation*}
P_{I}=\max _{m \in M}\left\{\frac{\left|e_{R} \in E_{R}\right| e_{R} \subset m \mid}{\left|E_{R}\right|}\right\} \tag{1.2}
\end{equation*}
$$

(2) The opponent's substitution attack: the largest probability of an opponent's successful substitution attack is $P_{S}$. Then,

$$
\begin{equation*}
P_{S}=\max _{m \in M}\left\{\frac{\max _{m \neq m^{\prime} \in M}\left|e_{R} \in E_{R}\right| e_{R} \subset m, e_{R} \subset m^{\prime} \mid}{\left|e_{R} \in E_{R}\right| e_{R} \subset m \mid}\right\} \tag{1.3}
\end{equation*}
$$

(3) The transmitter's impersonation attack: the largest probability of a transmitter's successful impersonation attack is $P_{T}$. Then,

$$
\begin{equation*}
P_{T}=\max _{e_{T} \in E_{T}}\left\{\frac{\max _{m \in M, e_{T} \notin m}\left|\left\{e_{R} \in E_{R} \mid e_{R} \subset m, p\left(e_{R}, e_{T}\right) \neq 0\right\}\right|}{\left|\left\{e_{R} \in E_{R} \mid p\left(e_{R}, e_{T}\right) \neq 0\right\}\right|}\right\} \tag{1.4}
\end{equation*}
$$

(4) The receiver's impersonation attack: the largest probability of a receiver's successful impersonation attack is $P_{R_{0}}$. Then,

$$
\begin{equation*}
P_{R_{0}}=\max _{e_{R} \in E_{R}}\left\{\frac{\max _{m \in M}\left|\left\{e_{T} \in E_{T} \mid e_{T} \subset m, p\left(e_{R}, e_{T}\right) \neq 0\right\}\right|}{\left|\left\{e_{T} \in E_{T} \mid p\left(e_{R}, e_{T}\right) \neq 0\right\}\right|}\right\} . \tag{1.5}
\end{equation*}
$$

(5) The receiver's substitution attack: the largest probability of a receiver's successful substitution attack is $P_{R_{1}}$. Then,

$$
\begin{equation*}
P_{R_{1}}=\max _{e_{R} \in E_{R^{\prime}}, m \in M}\left\{\frac{\max _{m^{\prime} \in M}\left|\left\{e_{T} \in E_{T} \mid e_{T} \subset m, m^{\prime}, p\left(e_{R}, e_{T}\right) \neq 0\right\}\right|}{\left|\left\{e_{T} \in E_{T} \mid p\left(e_{R}, e_{T}\right) \neq 0\right\}\right|}\right\} . \tag{1.6}
\end{equation*}
$$

Notes
$p\left(e_{R}, e_{T}\right) \neq 0$ implies that any source $s$ encoded by $e_{T}$ can be authenticated by $e_{R}$.

## 2. The First Construction

In this section, we will construct an authentication code with arbitration from singular symplectic geometry over finite fields.

Assume that $2 s \leq 2 s_{0}<m_{0} \leq v+m_{0}, m_{0}<2 v-1$ and $1 \leq k<l$. Let $P$ be a subspace $\left\langle v_{1}, v_{2}, e_{2 v+1}\right\rangle$ of type $(3,0,1)$ in $F_{q}^{(2 v+1)}$, and let $P_{0}$ be a fixed subspace of type ( $m_{0}+l, s_{0}, l$ ) which contains $P$ and orthogonal to $v_{2}$, but not orthogonal to $v_{1}$.

Our authentication code is a six-tuple

$$
\begin{equation*}
\left(S, E_{T}, E_{R}, M ; f, g\right), \tag{2.1}
\end{equation*}
$$

where the set of source states

$$
\begin{equation*}
S=\left\{s \mid s \text { is a subspace of type }(2 s+1+k, s, k), p \subset s \subset P_{0}\right\}, \tag{2.2}
\end{equation*}
$$

the set of transmitter's encoding rules:

$$
\begin{equation*}
E_{T}=\left\{e_{T} \mid e_{T} \text { is a subspace of type }(5,2,1), e_{T} \cap P_{0}=P\right\}, \tag{2.3}
\end{equation*}
$$

the set of receiver's decoding rules:

$$
\begin{equation*}
E_{R}=\left\{e_{R} \mid e_{R} \text { is a subspace of type }(2,1,0), e_{R} \cap P_{0}=\left\langle v_{2}\right\rangle\right\}, \tag{2.4}
\end{equation*}
$$

the set of messages:

$$
\begin{align*}
& M=\{m \mid m \text { is a subspace of type }(2 s+3+k, s+1, k), P \subset m,  \tag{2.5}\\
& \\
& \left.\quad v_{2} \notin m^{\perp}, m \cap P_{0} \text { is a subspace of type }(2 s+1+k, s, k)\right\},
\end{align*}
$$

the encoding function:

$$
\begin{equation*}
f: S \times E_{T} \longrightarrow M, \quad\left(s, e_{T}\right) \longmapsto m=s+e_{T} \tag{2.6}
\end{equation*}
$$

and the decoding function: $g: M \times E_{R} \rightarrow S \cup\{$ reject $\}$,

$$
\left(m, e_{R}\right) \longmapsto \begin{cases}s & \text { if } e_{R} \subset m, \text { where } s=m \cap P_{0}  \tag{2.7}\\ \{\text { reject }\} & \text { if } e_{R} \not \subset m\end{cases}
$$

Assuming that the transmitter's encoding rules and the receiver's decoding rules are chosen according to a uniform probability distribution, we can prove that the construction given above results in an $A^{2}$-code.

Lemma 2.1. The six-tuple $\left(S, E_{T}, E_{R}, M, f, g\right)$ is an authentication code with arbitration; that is
(1) $s+e_{T}=m \in M$, for all $s \in S$ and $e_{T} \in E_{T}$;
(2) for any $m \in M, s=m \cap P_{0}$ is uniquely information source contained in $m$ and there is $e_{T} \in E_{T}$, such that $m=s+e_{T}$.

Proof. (1) Let $s$ be a source state, that is, a subspace $Q$ of type $(2 s+1+k, s, k)$ containing $p$ and contained in $p_{0}$. Write $E_{k}, Q$ as

$$
E_{k}=\left(\begin{array}{c}
e_{2 v+1}  \tag{2.8}\\
e_{2 v+i_{2}} \\
\vdots \\
2 v+i_{k}
\end{array}\right), \quad \mathrm{Q}=\left(\begin{array}{c}
Q_{0} \\
v_{1} \\
v_{2} \\
E_{k}
\end{array}\right)
$$

which satisfies

$$
\mathrm{QK}_{l} \mathrm{Q}^{\mathrm{T}}=\left(\begin{array}{cccccc}
0 & I^{(s-1)} & & & &  \tag{2.9}\\
-I^{(s-1)} & 0 & & & & \\
& & 0 & 1 & & \\
& & -1 & 0 & & \\
& & & & 0 & 0
\end{array}\right)
$$

Let $e_{T}$ be a transmitter's rule, that is, a subspace $R$ of type $(5,2,1)$ containing $P$ and $R \cap P_{0}=P$. So, there exists $u_{1}, u_{2} \in R$, such that $R=\left\langle v_{1}, v_{2}, u_{1}, u_{2}, e_{2 v+1}\right\rangle$ and

$$
\mathrm{QK}_{l} \mathrm{Q}^{\mathrm{T}}=\left(\begin{array}{cccccccc}
0 & I^{(s-1)} & & & & & &  \tag{2.10}\\
-I^{(s-1)} & 0 & & & & & & \\
& & 0 & 1 & 0 & * & * & \\
& & -1 & 0 & 0 & 1 & 0 & \\
& & 0 & 0 & 0 & 0 & 1 & \\
& & * & -1 & 0 & 0 & 0 & \\
& & * & 0 & -1 & 0 & 0 & 0
\end{array}\right) .
$$

Therefore, $M=Q+\left\langle u_{1}, u_{2}\right\rangle$ is a subspace of type $(2 s+3+k, s+1, k)$ which contains $P$ and $M \cap P_{0}=Q$ is a subspace of type ( $2 s+1+k, s, k$ ), and is not orthogonal to $v_{2}$, hence a message.
(2) Now, let $m$ be a message; that is, $m$ is a subspace $M$ of type $(2 s+3+k, s+1, k)$ which contains $P$ and intersects $P_{0}$ at a subspace of type ( $2 s+1+k, s, k$ ), and is not orthogonal to $v_{2}$. By definition, $P_{0}$ contains $\left\langle v_{1}, v_{2}, e_{2 v+1}\right\rangle$, so $P \subset M \cap P_{0}=Q$, so $Q$ is a source state. Since $M \neq P_{0}$, there exists $u_{1}, u_{2} \in M$ but $u_{1}, u_{2} \notin P_{0}$ such that $M=Q+\left\langle u_{1}, u_{2}\right\rangle$. We have to show that there exists $u_{1}, u_{2} \in M$ such that $R=\left\langle v_{1}, v_{2}, u_{1}, u_{2}, e_{2 v+1}\right\rangle$ is a subspace of type $(5,2,1)$, hence a transmitter's encoding rule.

Assume that $R=\left\langle v_{1}, v_{2}, u_{1}, u_{2}, e_{2 v+1}\right\rangle$ has been set; if $R$ is a subspace of type $(5,2,1)$, then we are done. So, suppose that $R$ is not a subspace of type $(5,2,1)$. Since $v_{2} \in Q^{\perp}$ and $v_{2} \notin M^{\perp}$, we must have that $v_{2} K_{l} u_{1}^{T} \neq 0$ or $v_{2} K_{l} u_{2}^{T} \neq 0$. Without loss of generality, let $v_{2} K_{l} u_{2}^{T}=$ 1. If we also have $v_{2} K_{l} u_{1}^{T}=1$, replacing $u_{1}$ by $u_{1}-u_{2}$, we get $v_{2} K_{l} u_{2}^{T}=1$ and $v_{2} K_{l} u_{1}^{T}=0$. Since $R$ is not a subspace of type $(5,2,1)$, certainly $v_{1} K_{l} u_{1}^{T}=0$. Note that $Q$ is a subspace of type ( $2 s+1+k, s, k$ ), $v_{1} \notin Q^{\perp}$, so there exists a vector $w \in Q$ such that $v_{1} K_{l} w^{T}=1$. Replacing $u_{1}$ by $w+u_{1}$, we have $v_{1} K_{l} u_{1}^{T}=1, v_{2} K_{l} u_{1}^{T}=0\left(v_{2} \in Q^{\perp}\right)$. Then, $R=\left\langle v_{1}, v_{2}, u_{1}, u_{2}, e_{2 v+1}\right\rangle$ is a subspace of type $(5,2,1)$, and $M=Q+R$, hence $R$ is a transmitter's encoding rule.

If there is another source state $Q^{\prime}$ such that $M=Q^{\prime}+R^{\prime}$, we have that $Q^{\prime} \subset M \cap P_{0}=Q$. by $Q^{\prime} \subset M, Q^{\prime} \subset P_{0}$. Since $\operatorname{dim} Q^{\prime}=\operatorname{dim} Q=2 s+1+k$, so $Q^{\prime}=Q$. This implies that the source state $Q$ is uniquely determined by $M$.

Let $n_{1}$ denote the number of subspaces of type $(2 s+1+k, s, k)$ contained in $\left\langle v_{2}\right\rangle^{\perp}$ and containing $P, n_{2}$, the number of subspaces of type ( $m_{0}+l, s_{0}, l$ ) contained in $\left\langle v_{2}\right\rangle^{\perp}$ and containing a fixed subspace of type $(2 s+1+k, s, k)$ as above, and $n_{3}$, the number of subspaces of type ( $m_{0}+l, s_{0}, l$ ) contained in $\left\langle v_{2}\right\rangle^{\perp}$ and containing $P$ and not contained in $\left\langle v_{1}\right\rangle^{\perp}$.

Lemma 2.2. One has

$$
\begin{align*}
& n_{1}=q^{2(v-s-1)} \cdot q^{(2 s-1)(l-k)} \cdot N(2(s-1), s-1 ; 2(v-2)) \cdot N(k-1, l-1), \\
& n_{2}=N\left(m_{0}-(2 s+1), s_{0}-s ; 2(v-s-1)\right),  \tag{2.11}\\
& n_{3}=q^{2(v-s-1)} \cdot q^{\left(2 v-m_{0}-1\right)} \cdot N\left(m_{0}-3, s_{0}-1 ; 2(v-2)\right) .
\end{align*}
$$

Proof. (1) Computation of $n_{1}$.
By the transitivity of $S p_{2 v+l}\left(F_{q}\right)$ on the set of subspaces of the same type, we can assume that

$$
\binom{v_{1}}{v_{2}}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.12}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & v-2 & 1 & 1 & v-2 & l
\end{array} .\right.
$$

Let $Q$ be a subspace of type $(2 s+1+k, s, k)$ contained in $\left\langle v_{2}\right\rangle^{\perp}$ and containing $P$. There exists a $u \in Q$ such that $v_{1} K_{l} u^{T}=1$. We may assume that $u=\left(0,0, R_{1}, 1,0, R_{2}, 0,0, R_{3}\right)$. So, $Q$ has a matrix representation of the form

$$
\mathrm{Q}=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.13}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_{1} & 1 & 0 & R_{2} & 0 & 0 & R_{3} \\
0 & 0 & Q_{1} & 0 & 0 & Q_{2} & 0 & 0 & Q_{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & I^{(k-1)} & 0
\end{array}\right) \begin{gathered}
1 \\
1 \\
1
\end{gathered} 1
$$

It is easy to verify that $Q_{1}, Q_{2}$ is a subspace of type $(2(s-1), s-1)$ in the $2(v-2)$ dimensional symplectic space. The number of this kind of subspace is denoted by $N(2(s-$ $1), s-1 ; 2(v-2)), Q_{3}$ arbitrarily. Furthermore, we may take $\left(Q_{1}, Q_{2}, Q_{3}\right)$ as

$$
\left(\begin{array}{ccccc}
I^{(s-1)} & 0 & 0 & 0 & 0  \tag{2.14}\\
0 & 0 & I^{(s-1)} & 0 & 0
\end{array}\right)
$$

to compute $n_{1}$, where $b=(v-2)-(s-1)$. Since $Q$ has a matrix representation of the form

$$
Q=\left(\begin{array}{ccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.15}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_{4} & 1 & 0 & 0 & b_{4} & 0 & 0 & c_{3} \\
0 & 0 & I^{(s-1)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I^{(s-1)} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & I^{(k-1)} & 0 \\
1 & 1 & a & b & 1 & 1 & a & b & 1 & k-1 & l-k
\end{array}\right)
$$

where $a=s-1$ and $b=v-s-1$, we have that

$$
\begin{equation*}
n_{1}=q^{2(v-s-1)} \cdot q^{(2 s-1)(l-k)} \cdot N(2(s-1), s-1 ; 2(v-2)) \cdot N(k-1, l-1) \tag{2.16}
\end{equation*}
$$

## (2) Computation of $n_{2}$.

Let $U$ be a subspaces of type $\left(m_{0}+l, s_{0}, l\right)$ contained in $\left\langle v_{2}\right\rangle^{\perp}$ and containing a fixed subspace of type $(2 s+1+k, s, k)$ which contains $P$, similar to (1), we may assume that $U$ has a matrix representation of the form

$$
U=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.17}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & I^{(s-1)} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I^{(s-1)} & 0 & 0 \\
0 & 0 & 0 & P_{1} & 0 & 0 & 0 & P_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & I^{(l)} \\
1 & 1 & a & b & 1 & 1 & a & b & l
\end{array}\right),
$$

where $a=s-1, b=v-s-1$, so $\left(P_{1}, P_{2}\right)$ is a subspace of type $\left(m_{0}-(2 s+1), s_{0}-s\right)$ in the $2(v-s-1)$-dimensional symplectic space. We have that

$$
\begin{equation*}
n_{2}=N\left(m_{0}-(2 s+1), s_{0}-s ; 2(v-s-1)\right) . \tag{2.18}
\end{equation*}
$$

## (3) Computation of $n_{3}$.

By the same method as that of (1) and (2), let $U_{0}$ be a subspaces of type ( $m_{0}+l, s_{0}, l$ ) contained in $\left\langle v_{2}\right\rangle^{\perp}$, containing $P$ and not contained in $\left\langle v_{1}\right\rangle^{\perp}$. We may assume that the subspace has a matrix representation of the form

$$
U_{0}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.19}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & A_{1} & 1 & 0 & A_{2} & 0 \\
0 & 0 & Q_{1} & 0 & 0 & Q_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I^{(l)} \\
1 & 1 & v-2 & 1 & 1 & v-2 & l
\end{array}\right) .
$$

So, the number of the subspaces $\left(Q_{1}, Q_{2}\right)$ is denoted by $N\left(m_{0}-3, s_{0}-1 ; 2(v-2)\right)$. Then, by the transitivity of $S p_{2 v+l}\left(F_{q}\right)$ on the set of subspaces of the same type, we can assume that

$$
U_{0}=\left(\begin{array}{ccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.20}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_{5} & 1 & 0 & 0 & b_{4} & b_{5} & 0 \\
0 & 0 & I^{\left(s_{0}-1\right)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & I^{\left(s_{0}-1\right)} & 0 & 0 & 0 \\
0 & 0 & 0 & I^{(a)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & I^{(l)} \\
1 & 1 & c & a & b & 1 & 1 & c & a & b & l
\end{array}\right),
$$

where $c=s_{0}-1, a=m_{0}-2 s_{0}-1, b=\mathcal{v}-m_{0}+s_{0}, a_{5}, b_{4}, b_{5}$ arbitrarily. We may get

$$
\begin{equation*}
n_{3}=q^{2(v-s-1)} \cdot q^{\left(2 v-m_{0}-1\right)} \cdot N\left(m_{0}-3, s_{0}-1 ; 2(v-2)\right) . \tag{2.21}
\end{equation*}
$$

Lemma 2.3. The number of the source states is

$$
\begin{align*}
|S|= & q^{\left(m_{0}-2 s-1\right)+(2 s-1)(l-k)} \\
& \cdot \frac{N(2(s-1), s-1 ; 2(v-2)) \cdot N\left(m_{0}-(2 s+1), s_{0}-s ; 2(v-s-1)\right) \cdot N(k-1, l-1)}{N\left(m_{0}-3, s_{0}-1 ; 2(v-2)\right)} . \tag{2.22}
\end{align*}
$$

Proof. Since $|S|$ is the number of subspaces of type ( $2 s+1+k, s, k$ ) contained in $P_{0}$ and containing $P$, we have $|S| \cdot n_{3}=n_{1} \cdot n_{2}$.

Lemma 2.4. The number of the encoding rules of transmitter is

$$
\begin{equation*}
\left|E_{T}\right|=q^{\left(m_{0}-3\right)+2(v-2)+2(l-1)} \cdot\left(q^{2 v-m_{0}-1}-1\right) . \tag{2.23}
\end{equation*}
$$

Proof. Since $\left|E_{T}\right|$ is the number of subspaces of type $(5,2,1)$ contained in $P_{0}$ and containing $P$, let $R=\left\langle v_{1}, v_{2}, u_{1}, u_{2}, e_{2 v+1}\right\rangle$, where $v_{1} K_{l} u_{1}^{T}=1, v_{2} K_{l} u_{2}^{T}=1$, and $\left\langle v_{1}, u_{1}\right\rangle \perp\left\langle v_{2}, u_{2}\right\rangle$. By the transitivity of $S p_{2 v+1}\left(F_{q}\right)$ on the set of subspaces of the same type, we can assume that

$$
\begin{equation*}
 \tag{2.24}
\end{equation*}
$$

where $c=s_{0}-1, a=m_{0}-2 s_{0}-1$, and $b=v-m_{0}+s_{0}$. Therefore, $u_{1}$ and $u_{2}$ have the respective forms:

$$
\begin{align*}
& u_{1}=\left(0,0, a_{3}, a_{4}, a_{5}, 1,0, b_{3}, b_{4}, b_{5}, 0, f_{2}\right), \\
& u_{2}=\left(0,0, c_{3}, c_{4}, c_{5}, 0,1, d_{3}, d_{4}, d_{5}, 0, g_{2}\right) . \tag{2.25}
\end{align*}
$$

Note that $u_{2} \notin P_{0}$ and $\operatorname{dim}\left(R \cap p_{0}\right)=3$, so the vector $u_{1}$ cannot lie in $P_{0}$. Then, $a_{5}, b_{4}, b_{5}$ cannot equal zero at the same time. Thus, the number of $u_{1}$ is $q^{\left(m_{0}-3\right)+(l-1)}\left(q^{2 v-m_{0}-1}-1\right)$ and that for $u_{2}$ is $q^{2(v-2)+(l-1)}$; we may get

$$
\begin{equation*}
\left|E_{T}\right|=q^{\left(m_{0}-3\right)+2(v-2)+2(l-1)} \cdot\left(q^{2 v-m_{0}-1}-1\right) \tag{2.26}
\end{equation*}
$$

Lemma 2.5. The number of the encoding rules of receiver is

$$
\begin{equation*}
\left|E_{R}\right|=q^{2 v-2} \cdot q^{l} \tag{2.27}
\end{equation*}
$$

Proof. $\left|E_{R}\right|$ is the number of type $(2,1,0)$ intersecting $P_{0}$ at $\left\langle v_{2}\right\rangle$. Let $H=\left\langle v_{2}, u\right\rangle$, where $v_{2} K_{l} u^{T}=1$. Following the notion of Lemma 2.4, hence $u$ has the form

$$
\begin{equation*}
u=\left(a_{1}, 0, a_{3}, a_{4}, a_{5}, b_{1}, 1, b_{3}, b_{4}, b_{5}, c_{1}\right) \tag{2.28}
\end{equation*}
$$

Clearly, $u \notin P_{0}$. The number of $u$ is $q^{2 v-2} \cdot q^{l}$, that is,

$$
\begin{equation*}
\left|E_{R}\right|=q^{2 v-2} \cdot q^{l} \tag{2.29}
\end{equation*}
$$

Lemma 2.6. For any $m \in M$, let the number of $e_{T}$ and $e_{R}$ contained in $m$ be $a$ and $b$, respectively. Then,

$$
\begin{equation*}
a=q^{4 s-3+2(k-1)} \cdot(q-1), \quad b=q^{2 s+1} \cdot q^{k} . \tag{2.30}
\end{equation*}
$$

Proof. Let $M$ be a message, and $Q=M \cap P_{0}$, then $Q$ is a source state contained in $M$. By Lemma 2.1, we may get a transmitter's encoding rule $R$ contained in $M$. Let $R=\left\langle v_{1}, v_{2}\right.$, $\left.u_{1}, u_{2}, e_{2 v+1}\right\rangle$. Here, $M=Q+\left\langle u_{1}, u_{2}\right\rangle, v_{2} K_{l} u_{2}^{T}=1$. Following the notation of Lemma 2.4, we can assume that $Q$ has a matrix representation of the form

$$
Q=\left(\begin{array}{ccccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.31}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I^{(s-1)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & I^{(s-1)} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & I^{(k-1)} & 0 \\
1 & 1 & d & c & a & b & 1 & 1 & d & c & a & b & 1 & k-1 & l-k
\end{array}\right),
$$

where $a=m_{0}-2 s_{0}-1, b=v+s_{0}-m, c=s_{0}-s$, and $d=s-1$. By $v_{2} K_{l} u_{2}^{T}=1$ and $R$ being the subspace of type $(5,2,1)$, we can assume

$$
\begin{align*}
& u_{1}=\left(0,0, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, 0, b_{3}, b_{4}, b_{5}, b_{6}, 0, f_{2}, f_{3}\right),  \tag{2.32}\\
& u_{2}=\left(0,0, c_{3}, c_{4}, c_{5}, c_{6}, d_{1}, 1, d_{3}, d_{4}, d_{5}, d_{6}, 0, g_{2}, g_{3}\right),
\end{align*}
$$

where $b_{1} \neq 0$. Then,

$$
M=\left(\begin{array}{ccccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.33}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I^{(s-1)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & I^{(s-1)} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & I^{(k-1)} & 0 \\
0 & 0 & a_{3} & a_{4} & a_{5} & a_{6} & b_{1} & 0 & b_{3} & b_{4} & b_{5} & b_{6} & 0 & f_{2} & f_{3} \\
0 & 0 & c_{3} & c_{4} & c_{5} & c_{6} & d_{1} & 1 & d_{3} & d_{4} & d_{5} & d_{6} & 0 & g_{2} & g_{3} \\
1 & 1 & d & c & a & b & 1 & 1 & d & c & a & b & 1 & k-1 & l-k
\end{array}\right),
$$

where $a=m_{0}-2 s_{0}-1, b=v+s_{0}-m, c=s_{0}-s$, and $d=s-1$.
(1) Note that $M$ is fixed, so, for $u_{1}$, the $a_{4}, a_{5}, a_{6}, b_{4}, b_{5}, b_{6}$, and $f_{3}$ are fixed and, for $u_{2}$, the $c_{4}, c_{5}, c_{6}, d_{4}, d_{5}, d_{6}$, and $g_{3}$ are fixed. Therefore, the number of $u_{1}$ is $q^{2(s-1)+(k-1)}$.
$(q-1)$ and the number of $u_{2}$ is $q^{2(s-1)+(k-1)+1}$. Then, the number of $e_{T}$ contained in $m$ is

$$
\begin{equation*}
a=q^{4 s-3+2(k-1)} \cdot(q-1) \tag{2.34}
\end{equation*}
$$

(2) Let $H=\left\langle v_{2}, u\right\rangle$ be a receiver's encoding rule contained in $M$, where $v_{2} K_{l} u^{T}=1$. Clearly, $u \notin Q$, then we can assume that $u$ has the form

$$
\begin{equation*}
u=\left(h_{1}, 0, h_{3}, h_{4}, h_{5}, h_{6}, i_{1}, 1, i_{3}, i_{4}, i_{5}, i_{6}, j_{1}, j_{2}, j_{3}\right) \tag{2.35}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left(h_{4}, h_{5}, h_{6}, i_{4}, i_{5}, i_{6}, j_{3}\right)=k\left(a_{4}, a_{5}, a_{6}, b_{4}, b_{5}, b_{6}, f_{3}\right)+\left(c_{4}, c_{5}, c_{6}, d_{4}, d_{5}, d_{6}, g_{3}\right) \tag{2.36}
\end{equation*}
$$

where $k \in F_{q}$. Therefore, the number of $\left(h_{4}, h_{5}, h_{6}, i_{4}, i_{5}, i_{6}, j_{3}\right)$ is $q$. Then, the number of $e_{R}$ contained in $m$ is

$$
\begin{equation*}
b=q \cdot q^{2} \cdot q^{2(s-1)} \cdot q^{k}=q^{2 s+1+k} \tag{2.37}
\end{equation*}
$$

Lemma 2.7. The number of the messages is

$$
\begin{equation*}
|M|=\frac{|S|\left|E_{T}\right|}{q^{4 s-k+2(k-1)}(q-1)} \tag{2.38}
\end{equation*}
$$

Proof. For any $m \in M$, there is uniquely $s \in S$ and $e_{T} \in E_{T}$ satisfying $m=s+e_{T}$; the number of $e_{T}$ is $a$. Thus,

$$
\begin{equation*}
|M|=\frac{|S|\left|E_{T}\right|}{a}=\frac{|S|\left|E_{T}\right|}{q^{4 s-k+2(k-1)}(q-1)} \tag{2.39}
\end{equation*}
$$

Lemma 2.8. (1) For any $e_{T} \in E_{T}$, the number of $e_{R}$ contained in $e_{T}$ is $q^{3}$.
(2) For any $e_{R} \in E_{R}$, the number of $e_{T}$ containing $e_{R}$ is $\left(q^{2 v-4}-q^{m_{0}-3}\right) \cdot q^{l-1}$.

Proof. (1) Let $R$ be a transmitter's encoding rule; we can assume that $R=\left\langle v_{1}, v_{2}, u_{1}, u_{2}, e_{2 v+1}\right\rangle$. Here, $v_{2} K_{l} u_{2}^{T}=1, v_{1} K_{l} u_{1}^{T}=1$, and $\left\langle v_{1}, u_{1}\right\rangle \perp\left\langle v_{2}, u_{2}\right\rangle$. Then, the receiver's encoding rule $H$ contained in $R$ should have the form $H=\left\langle v_{2}, k_{1} v_{1}+k_{2} u_{1}+u_{2}+k_{3} e_{2 v+1}\right\rangle$, where $k_{1}, k_{2}, k_{3} \in F_{q}$. So, the number of $H$ is $q^{3}$.
(2) Let $H$ be a receiver's encoding rule, and $H=\left\langle v_{2}, u\right\rangle$, where $v_{2} K_{l} u^{T}=1$. Therefore, $\left\langle v_{1}, v_{2}, u, e_{2 v+1}\right\rangle$ is a subspace of type $(4,1,1)$. The number of subspace $\left\langle v_{1}, v_{2}, u, u_{1}, e_{2 v+1}\right\rangle$ of type $(5,2,1)$ is $q^{2 v-4} \cdot q^{l-1}$. Here, $v_{1} K_{l} u_{1}^{T} \neq 0$. Note that $v_{2} \in P_{0}^{\perp}$ and $v_{1} \notin p_{0}^{\perp}$. It is easy to see that
the number of $u_{1} \in P_{0}$ such that $\left\langle v_{1}, v_{2}, u_{1}, e_{2 v+1}\right\rangle$ is a subspace of type $(4,1,1)$ is $q^{m_{0}-3} \cdot q^{l-1}$. So, the number of transmitter's encoding rules $e_{T}$ containing $H$ is $\left(q^{2 v-4}-q^{m_{0}-3}\right) \cdot q^{l-1}$.

Lemma 2.9. For any $m \in M$ and $e_{R} \subset m$, the number of $e_{T}$ contained in $m$ and containing $e_{R}$ is

$$
\begin{equation*}
q^{2(s-1)+(k-1)} \cdot(q-1) \tag{2.40}
\end{equation*}
$$

Proof. Let $M$ be a message, and let $H=\left\langle v_{2}, u\right\rangle$ be a receiver's encoding rule contained in $M$; we can assume that $u=(0,0,0,0,0,1,0,0,0,0,0,0)$, and $M$ has a matrix representation of the form

$$
M=\left(\begin{array}{ccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.41}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I^{(s-1)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I^{(s-1)} & 0 & 0 & 0 & 0 \\
0 & 0 & a_{3} & a_{4} & b_{1} & 0 & b_{3} & b_{4} & 0 & f_{2} & f_{3} \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & I^{(k-1)} & 0 \\
1 & 1 & a & b & 1 & 1 & a & b & 1 & k-1 & l-k
\end{array}\right),
$$

where $b_{1} \neq 0, a=s-1$, and $b=v-s-1$.
Note that $M$ is fixed, so $a_{4}, b_{4}, f_{3}$ are fixed. Assume that $R$ is a transmitter's encoding rule contained in $M$ and containing $H$. Let $R=\left\langle v_{1}, v_{2}, u, u_{1}, e_{2 v+1}\right\rangle$, where $v_{1} K_{l} u_{1}^{T} \neq 0$. Thus, $u_{1}$ has the form

$$
\begin{equation*}
u_{1}=\left(0,0, c_{3}, c_{4}, d_{1}, 0, d_{3}, d_{4}, 0, g_{2}, g_{3}\right) \tag{2.42}
\end{equation*}
$$

where $d_{1} \neq 0$. Note that $\left(c_{4}, d_{4}, g_{3}\right)=k\left(a_{4}, b_{4}, f_{3}\right)$ and $u_{1} \notin P_{0}$, so $k \neq 0$. Hence, $u_{1}, c_{4}, d_{4}$, and $g_{3}$ are fixed. Then, the number of $u_{1}$ is $q^{2(s-1)+(k-1)} \cdot(q-1)$; that is, the number of $R$ is $q^{2(s-1)+(k-1)}$. ( $q-1$ ).

Lemma 2.10. Assume that $m_{1}$ and $m_{2}$ are two distinct messages which commonly contain a transmitter's encoding rule $e_{T}^{\prime}$. $s_{1}$ and $s_{2}$ contained in $m_{1}$ and $m_{2}$ are two source states, respectively. Assume that $s_{0}=s_{1} \bigcap s_{2}$, dim $s_{0}=k_{1}$, then $3 \leq k_{1} \leq 2 s+k$, and
(1) the number of $e_{R}$ contained in $m_{1} \bigcap m_{2}$ is $q^{k_{1}}$;
(2) for any $e_{R} \subset m_{1} \cap m_{2}$, the number of $e_{T}$ containing $e_{R}$ is $q^{k_{1}-4}$.

Proof. Since $m_{1}=s_{1}+e_{T}^{\prime}, m_{2}=s_{2}+e_{T}^{\prime}$, and $m_{1} \neq m_{2}$, then $s_{1} \neq s_{2}$. Again because of $s_{1} \supset P_{0}$ and $s_{2} \supset P_{0}, 3 \leq k_{1} \leq 2 s+k$. From $m_{i}=s_{i}+e_{T}^{\prime}=s_{0}+s_{i}^{\prime}+e_{T}^{\prime}$, it is easy to know that $m_{1} \bigcap m_{2}=s_{0}+e_{T}^{\prime}$. Therefore,

$$
\begin{equation*}
\operatorname{dim}\left(m_{1} \bigcap m_{2}\right)=\operatorname{dim} s_{0}+\operatorname{dim} e_{T}^{\prime}-\operatorname{dim}\left(s_{0} \bigcap e_{T}^{\prime}\right)=k_{1}+5-3=k_{1}+2 . \tag{2.43}
\end{equation*}
$$

(1) By the definition of the message, we can assume that $m_{1}$ and $m_{2}$ have the form as follows, respectively:

$$
m_{1}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.44}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & A_{1} & 0 & 0 & A_{2} & 0 \\
0 & 0 & a_{3} & 0 & 1 & a_{6} & 0 \\
0 & 0 & b_{3} & b_{4} & 0 & b_{6} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & A_{3} \\
1 & 1 & v-2 & 1 & 1 & v-2 & l
\end{array}\right)
$$

where $b_{4} \neq 0$,

$$
m_{2}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.45}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & B_{1} & 0 & 0 & B_{2} & 0 \\
0 & 0 & c_{3} & 0 & 1 & c_{6} & 0 \\
0 & 0 & d_{3} & d_{4} & 0 & d_{6} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & B_{3} \\
1 & 1 & v-2 & 1 & 1 & v-2 & l
\end{array}\right)
$$

where $d_{4} \neq 0$. Thus,

$$
m_{1} \bigcap m_{2}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.46}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & D_{1} & 0 & 0 & D_{2} & 0 \\
0 & 0 & f_{3} & 0 & 1 & f_{6} & 0 \\
0 & 0 & g_{3} & g_{4} & 0 & g_{6} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & D_{3} \\
1 & 1 & v-2 & 1 & 1 & v-2 & l
\end{array}\right)
$$

where $g_{4} \neq 0$. Since $\operatorname{dim}\left(m_{1} \cap m_{2}\right)=k_{1}+2$, therefore

$$
\operatorname{dim}\left(\begin{array}{ccccccc}
0 & 0 & D_{1} & 0 & 0 & D_{2} & 0  \tag{2.47}\\
0 & 0 & f_{3} & 0 & 1 & f_{6} & 0 \\
0 & 0 & g_{3} & g_{4} & 0 & g_{6} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & D_{3}
\end{array}\right)=k_{1}+2-3=k_{1}-1
$$

If $e_{R} \subset m_{1} \cap m_{2}$, then

$$
e_{R}=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0  \tag{2.48}\\
R_{1} & 0 & R_{3} & R_{4} & 1 & R_{6} & R_{7} \\
1 & 1 & v-2 & 1 & 1 & v-2 & l
\end{array}\right)
$$

Since $R_{1}, R_{4}$ are arbitrary, every row of $\left(\begin{array}{lllllll}0 & 0 & R_{3} & 0 & 1 & R_{6} & R_{7}\end{array}\right)$ is the linear combination of the base

$$
\left(\begin{array}{ccccccc}
0 & 0 & D_{1} & 0 & 0 & D_{2} & 0  \tag{2.49}\\
0 & 0 & f_{3} & 0 & 1 & f_{6} & 0 \\
0 & 0 & g_{3} & g_{4} & 0 & g_{6} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & D_{3}
\end{array}\right),
$$

thus the number of it is $q^{k_{1}-2}$. So, it is easy to know that the number of $e_{R}$ contained in $m_{1} \bigcap m_{2}$ is

$$
\begin{equation*}
q^{k_{1}-2} \cdot q^{2}=q^{k_{1}} . \tag{2.50}
\end{equation*}
$$

(2) Assume that $m_{1} \cap m_{2}$ has the form of (2.46), then, for any $e_{R} \subset m_{1} \cap m_{2}$, we can assume that

$$
e_{R}=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0  \tag{2.51}\\
R_{1} & 0 & R_{3} & R_{4} & 1 & R_{6} & R_{7} \\
1 & 1 & v-2 & 1 & 1 & v-2 & l
\end{array}\right) .
$$

If $e_{R} \subset e_{T}$ and $e_{T} \subset m_{1} \cap m_{2}$, then

$$
e_{T}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0  \tag{2.52}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_{3} & R_{4} & 1 & R_{6} & 0 & R_{7} \\
0 & 0 & R_{3}^{\prime} & 1 & 0 & R_{6}^{\prime} & 0 & R_{7}^{\prime} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \begin{gathered}
1 \\
1 \\
1
\end{gathered} 1
$$

where

$$
\left(\begin{array}{cccccccc}
0 & 0 & R_{3}^{\prime} & 0 & 0 & R_{6}^{\prime} & 0 & R_{7}^{\prime}  \tag{2.53}\\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

is the linear combination on the basis of

$$
\left(\begin{array}{ccccccc}
0 & 0 & D_{1} & 0 & 0 & D_{2} & 0  \tag{2.54}\\
0 & 0 & f_{3} & 0 & 1 & f_{6} & 0 \\
0 & 0 & g_{3} & g_{4} & 0 & g_{6} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & D_{3}
\end{array}\right),
$$

then the number of $e_{T}$ containing $e_{R}$ is $q^{k_{1}-4}$.

Theorem 2.11. The above construction yields an $A^{2}$-code with the following size parameters:

$$
\begin{align*}
|S|= & q^{\left(m_{0}-2 s-1\right)+(2 s-1)(l-k)} \\
& \cdot \frac{N(2(s-1), s-1 ; 2(v-2)) \cdot N\left(m_{0}-(2 s+1), s_{0}-s ; 2(v-s-1)\right) \cdot N(k-1, l-1)}{N\left(m_{0}-3, s_{0}-1 ; 2(v-2)\right)}, \\
\left|E_{T}\right|= & q^{\left(m_{0}-3\right)+2(v-2)+2(l-1)} \cdot\left(q^{2 v-m_{0}-1}-1\right), \\
\left|E_{R}\right|= & q^{2 v-2+l}, \\
|M|= & \frac{|S|\left|E_{T}\right|}{q^{4 s-3+2(k-1)} \cdot(q-1)} . \tag{2.55}
\end{align*}
$$

Moreover, assume that the encoding rules $e_{T}$ and $e_{R}$ are chosen according to a uniform probability distribution, the largest probabilities of success for different types of deceptions:

$$
\begin{gather*}
P_{I}=\frac{1}{q^{2 v-2 s-3} \cdot q^{l-k}}, \quad P_{S}=\frac{1}{q^{\prime}} \quad P_{T}=\frac{1}{q^{2}} ; \\
P_{R_{0}}=\frac{q-1}{q^{m_{0}-2 s-1} \cdot q^{l-k}\left(q^{2 v-m_{0}-1}-1\right)}, \quad P_{R_{1}}=\frac{1}{q \cdot(q-1)} . \tag{2.56}
\end{gather*}
$$

Proof. (1) The number of $m$ containing $e_{R}$ is $b$, then

$$
\begin{equation*}
P_{I}=\frac{q^{2 s+1} \cdot q^{k}}{q^{2 v-2} \cdot q^{l}}=\frac{1}{q^{2 v-2 s-3} \cdot q^{l-k}} . \tag{2.57}
\end{equation*}
$$

(2) Assume that opponent gets $m_{1}$, which is from transmitter, and sends $m_{2}$ instead of $m_{1}$, when $s_{1}$ contained in $m_{1}$ is different from $s_{2}$ contained in $m_{2}$; the opponent's substitution attack can be successful. Because $e_{R} \subset e_{T} \subset m_{1}$, the opponent selects $e_{T}^{\prime} \subset m_{1}$ satisfying $m_{2}=s_{2}+e_{T}^{\prime}$ and $\operatorname{dim}\left(s_{1} \cap s_{2}\right)=k_{1}$, then

$$
\begin{equation*}
P_{S}=\frac{q^{k_{1}}}{q^{2 s+1} \cdot q^{k}}=\frac{1}{q^{\prime}} \tag{2.58}
\end{equation*}
$$

where $k_{1}=2 s+k$.
(3) Assume that $R$ is transmitter's encoding rules, $Q$ is a source state, and $M=R+Q$. Therefore, the number of receiver's encoding rules contained in $R$ is $q^{3}$. Let $M^{\prime}$ be another message, such that $M^{\prime}=R^{\prime}+Q$ and $R \neq R^{\prime}$. Then, $e_{R}$ contained $R \cap M^{\prime}$ is at most $q$. So,

$$
\begin{equation*}
P_{T}=\frac{q}{q^{3}}=\frac{1}{q^{2}} . \tag{2.59}
\end{equation*}
$$

(4) From Lemmas 2.8 and 2.9, thus

$$
\begin{equation*}
P_{R_{0}}=\frac{q^{2(s-1) \cdot(q-1) \cdot q^{k-1}}}{\left(q^{2 v-4}-q^{m_{0}-3}\right) \cdot q^{l-1}}=\frac{q-1}{q^{m_{0}-2 s-1} \cdot q^{l-k}\left(q^{2 v-m_{0}-1}-1\right)} \tag{2.60}
\end{equation*}
$$

(5) Assume that the receiver declares to receive a message $m_{2}$ instead of $m_{1}$, when $s_{2}$ contained in $m_{1}$ is different from $s_{2}$ contained in $m_{2}$; the receiver's substitution attack can be successful. Since $e_{R} \subset e_{T} \subset m_{1}$, receiver is superior to select $e_{T}^{\prime}$, satisfying $e_{R} \subset e_{T}^{\prime} \subset m_{1}$, thus $m_{2}=s_{2}+e_{T}^{\prime}$, and $\operatorname{dim}\left(s_{1} \cap s_{2}\right)=k_{1}$ as large as possible. Therefore, the probability of a receiver's successful substitution attack is

$$
\begin{equation*}
P_{R_{1}}=\frac{q^{k_{1}-4}}{q^{2(s-1)+(k-1)} \cdot(q-1)}=\frac{1}{q(q-1)} \tag{2.61}
\end{equation*}
$$

where $k_{1}=2 s+k$.

## 3. The Second Construction

In this section, from singular symplectic geometry and the first construction, we construct an authentication code with a transmitter and multi-receivers and compute the probabilities of success for different types of deceptions. For the definition of multi-receiver authentication codes, refer to [9].

Let $2 s \leq 2 s_{0}<m_{0} \leq v+m_{0}, m_{0}<2 v-1$, and $1 \leq k<l$. Let $p$ be a subspace $\left\langle v_{1}, v_{2}, e_{2 v+1}\right\rangle$ of type $(3,0,1)$ in $F_{q}^{(2 v+l)}$, and let $P_{0}$ be a fixed subspace of type ( $m_{0}+l, s_{0}, l$ ) which contains $P$ and orthogonal to $v_{2}$, but not orthogonal to $v_{1}$. Let $S=\{s \mid s$ is a subspace of type $\left.(2 s+1+k, s, k), P \subset s \subset P_{0}\right\}$, Let $E=\left\{e \mid e\right.$ is a subspace of type $(5,2,1), e_{T} \bigcap P_{0}=$ $P\}$, Let $M=\left\{m \mid m\right.$ is a subspace of type $(2 s+3+k, s+1, k), P \subset m, v_{2} \notin m^{\perp}$, $m \bigcap P_{0}$ is a subspace of type $\left.(2 s+1+k, s, k)\right\}$, and let $M^{*}=\left\{\left(m_{1}, m_{2}, \ldots, m^{\lambda}\right) \mid m_{1} \bigcap U^{\perp}=\right.$ $\left.m_{2} \bigcap U^{\perp}=\ldots=m_{\lambda} \bigcap U^{\perp}\right\}$.

First, we construct $(\lambda+1) A$-codes. Let $C=\left(S, E^{\lambda}, M^{*}, f\right)$, where $S, E^{\lambda}$, and $M^{*}$ are the sets of source states, keys, and authenticators of $C$, respectively, and $f: S \times E^{\lambda} \rightarrow M^{*}, f(s, e)=$ $\left(s+e_{1}, s+e_{2}, \ldots, s+e_{\lambda}\right)$ for $e=\left(e_{1}, e_{2}, \ldots, e_{\lambda}\right) \in E^{\lambda}$ is the authentication mapping of $C$. Let $C_{i}=\left(S, E_{i}, M_{i} ; f_{i}\right)$, where $S, E_{i}=E$ and $M_{i}=M$ are the sets of source states, keys, and authenticators of $C_{i}$, respectively, and $f_{i}: S \times E_{i} \rightarrow M_{i}, f_{i}\left(s, e_{i}\right)=s+e_{i}$ for $e_{i} \in E_{i}$, is the authentication mapping of $C_{i}$. It is easy to know that $C$ and $C_{i}$ are well-defined $A$-codes.

Our authentication scheme is a $(\lambda+1)$-tuple $C ; C_{1}, C_{2}, \ldots, C_{\lambda}$. Let $\tau_{i}: E^{\lambda} \rightarrow E_{i}, \tau_{i}(e)=e_{i}$ for $e=\left(e_{1}, e_{2}, \ldots, e_{\lambda}\right) \in E^{\curlywedge}$, and let $\pi_{i}: M^{*} \rightarrow M_{i}, \pi_{i}(m)=m_{i}$ for $m=\left(m_{1}, m_{2}, \ldots, m_{\lambda}\right)$. Then,

$$
\begin{align*}
\pi_{i}(f(s, e)) & =\pi\left(s+e_{1}, s+e_{2}, \ldots, s+e_{\lambda}\right)=s+e_{i}  \tag{3.1}\\
f_{i}\left(\left(I_{s} \times \tau_{i}\right)(s, e)\right) & =f_{i}\left(I_{s}(s), \tau_{i}(e)\right)=f_{i}\left(s, e_{i}\right)=s+e_{i} .
\end{align*}
$$

Therefore, $\pi_{i}(f(s, e))=f_{i}\left(\left(I_{s} \times \pi_{i}\right)(s, e)\right)$. Thus, our scheme is indeed a well-defined authentication code with a transmitter and multi-receivers.

Theorem 3.1. In the construction of multi-receiver authentication codes, if the encoding rules are chosen according to a uniform probability distribution, then the probabilities of impersonation attack and substitution attack are, respectively,

$$
\begin{align*}
& P_{I}[i, J]=\frac{1}{q^{m_{0}+2 v+2 l-4 s-2 k-4} \cdot\left(q^{2 v-m_{0}-1}-1\right)} \\
& P_{S}[i, J]=\frac{1}{q^{m_{0}+2 v+2 l-2 s-k-5} \cdot\left(q^{2 v-m_{0}-1}-1\right)} \tag{3.2}
\end{align*}
$$

where $J=\left\{i_{1}, i_{2}, \ldots, i_{j}\right\}, i \notin J$.
Proof. Let $e_{J}=\left(e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{j}}\right)$, then

$$
\begin{equation*}
\tau_{J}(e)=e_{J} \Longleftrightarrow e=\left(\ldots, e_{i_{1}}, \ldots, e_{i_{j}}, \ldots\right) \tag{3.3}
\end{equation*}
$$

It is easy to know that $\left|e \in E^{\lambda}\right| \tau_{J}(e)=e_{J}\left|=|E|^{\lambda-j}\right.$, and

$$
\begin{equation*}
f_{i}\left(s, e_{i}\right)=\pi_{i}(m), \quad s+e_{i}=m_{i}=\pi_{i}(m) . \tag{3.4}
\end{equation*}
$$

From Lemma 2.6, we know that the number of $e_{i}$ satisfying (3.4) is $a$. For any $e_{i}$ satisfying (3.4), the number of $e$ satisfying $\tau_{J}(e), \tau_{i}(e)=e_{i}$ is $|E|^{\lambda-J-1}$. So,

$$
\begin{equation*}
\left|\left\{e \in E^{\lambda} \mid \tau_{J}(e)=e_{J}, \tau_{i}(e)=e_{i}, f_{i}\left(s, e_{i}\right)=\pi_{i}(m)\right\}\right|=|E|^{\lambda-j-1} \tag{3.5}
\end{equation*}
$$

and $a=q^{4 s+2 k-5}$, thus

$$
\begin{align*}
P_{I}[i, J] & =\max _{e_{J} \in E^{J}} \max _{s \in S} \max _{m \in M} \frac{\left|\left\{e \in E^{\curlywedge} \mid \tau_{J}(e)=e_{J}, \tau_{i}(e)=e_{i}, f_{i}\left(s, e_{i}\right)=\pi_{i}(m)\right\}\right|}{\left|\left\{e \in E^{\curlywedge} \mid \tau_{J}(e)=e_{J}\right\}\right|} \\
& =\max _{e_{J} \in E^{\prime}} \max _{s \in S} \max _{m \in M} \frac{a}{|E|}=\frac{q^{4 s+2 k-5}}{q^{\left(m_{0}-3\right)+2(v-2)+2(l-1)} \cdot\left(q^{2 v-m_{0}-1}-1\right)}  \tag{3.6}\\
& =\frac{1}{q^{m_{0}+2 v+2 l-4 s-2 k-4} \cdot\left(q^{2 v-m_{0}-1}-1\right)} .
\end{align*}
$$

Now, we compute the probability of substitution attack: we know that

$$
\begin{equation*}
m=f(s, e)=\left(s+e_{1}, s+e_{2}, \ldots, s+e_{\curlywedge}\right)=\left(m_{1}, m_{2}, \ldots, m_{\curlywedge}\right) \tag{3.7}
\end{equation*}
$$

and $\tau_{J}(e)=\left(e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{j}}\right)$, whenever $e=(e_{1}, e_{2}, \ldots, \underbrace{e_{i_{1}}, \ldots, e_{i_{1}}}, e_{k}, \ldots, e_{\lambda})$, while

$$
\begin{gather*}
\left|\left\{e \in E^{\curlywedge} \mid m=f(s, e), \tau_{J}(e)=e_{J}\right\}\right|=|E|^{\lambda-j} \\
\left|\left\{e \in E^{\curlywedge} \mid m=f(s, e), \tau_{J}(e)=e_{J}, \tau_{i}(e)=e_{i} \in E_{i}, f_{i}\left(s^{\prime}, e_{i}\right)=\pi_{i}(m)\right\}\right|=|E|^{\lambda-j-1} \cdot d \tag{3.8}
\end{gather*}
$$

and $d=q^{k_{1}-4}$, therefore

$$
\begin{align*}
& P_{S}[i, J] \\
& =\max _{e_{j} \in E^{J}} \max _{s \in S,} \max _{m \in M} \frac{\left|\left\{e \in E^{\curlywedge} \mid m=f(s, e), \tau_{J}(e)=s_{J}, \tau_{i}(e)=e_{i} \in E_{i}, f_{i}\left(s^{\prime}, e_{i}\right)=\pi_{i}\left(m^{\prime}\right)\right\}\right|}{\left|\left\{e \in E^{\curlywedge} \mid m=f(s, e), \tau_{J}(e)=e_{J}\right\}\right|} \\
& =\max _{e_{j} \in E^{J}} \max _{s \in S, m \in M} \max _{s \neq s^{\prime} \in S, m \in M} \frac{d}{|E|} \\
& =\max _{e_{j} \in E^{J}} \max _{s \in S, m \in M} \max _{s \neq s^{\prime} \in S, m \in M} \frac{1}{q^{\left(m_{0}-3\right)+2(v-2)+2(l-1) \cdot\left(q^{2 v-m_{0}-1}-1\right)}} \\
& =\frac{1}{q^{m_{0}+2 v+2 l-2 s-k-5} \cdot\left(q^{2 v-m_{0}-1}-1\right)}, \tag{3.9}
\end{align*}
$$

where $k_{1}=2 s+k$.
Two types of construction of authentication codes from singular symplectic geometry over finite fields are given. Among them, in the first construction, based on singular symplectic geometry structure of the authentication code with arbitration, the greatest probabilities of success for different types of deceptions are relatively lower, therefore there are some advantages. In addition, the second construction is based on singular symplectic geometry and is a multi-receiver authentication code. The probabilities of success for different types of deceptions are also computed. The results about multi-receiver authentication codes based on singular symplectic geometry are fewer. Thus, the structure of authentication code and the theory for further discussion are very meaningful.

## Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant no. 61179026 and the Natural Science Foundation of Tianjin City under Grant no. 08JCYBJC13900.

## References

[1] G. J. Simmons, "Message authentication with arbitration of transmitter/receiver disputes," in Proceedings of the Workshop on the Theory and Application of of Cryptographic Techniques (EUUROCRYPT '87), vol. 304 of Lecture Notes in Computer Science, pp. 151-165, 1987.
[2] Z. X. Wan, "Construction of Cartesian authentication codes from unitary geometry," Designs, Codes and Cryptography, vol. 2, no. 4, pp. 333-356, 1992.
[3] H. You and Y. Gao, "Some new constructions of Cartesian authentication codes from symplectic geometry," Systems Science and Mathematical Sciences, vol. 7, no. 4, pp. 317-327, 1994.
[4] T. Yayuan, "Construction of cartesian authentication codes from symplectic geometry," Journal of Hebei Polytechnic University (Natual Science Edition), vol. 30, no. 1, pp. 49-53, 2008 (Chinese).
[5] G. You, S. Xinhua, and W. Hongli, "Constructions of authentication codes with arbitration from singular sympleetic geometry over finite fields," Acta Scientiarum Naturalium Universitatis Nankaiensis, vol. 41, no. 6, pp. 72-77, 2008.
[6] R. Li and L. Guo, "Construction of authentication codes with arbitration from unitary geometry," Applied Mathematics Series B, vol. 14, no. 4, pp. 475-480, 1999.
[7] G. You and W. Hong-Li, "Construction of authentication codes with arbitration from singular pseudosymplectic geometry," in Proceedings of the 7th International Conference on Machine Learning and Cybernetics (ICMLC '08), vol. 2, pp. 1183-1188, Kunming, China, 2008.
[8] W. Zhexian, Geometry of Classical Groups over Finite Fields, Science Press, Beijing, China, 2nd edition, 2002.
[9] R. Safavi-Naini and H. Wang, "Multireceiver authentication codes: models, bounds, constructions, and extensions," Information and Computation, vol. 151, no. 1-2, pp. 148-172, 1999.

