
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2011, Article ID 675484, 18 pages
doi:10.1155/2011/675484

Research Article
Some New Constructions of Authentication Codes
with Arbitration and Multi-Receiver from Singular
Symplectic Geometry

You Gao and Huafeng Yu

College of Science, Civil Aviation University of China, Tianjin 300300, China

Correspondence should be addressed to You Gao, gao you@263.net

Received 29 May 2011; Accepted 4 November 2011

Academic Editor: Junjie Wei

Copyright q 2011 Y. Gao and H. Yu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A new construction of authentication codes with arbitration and multireceiver from singular
symplectic geometry over finite fields is given. The parameters are computed. Assuming that
the encoding rules are chosen according to a uniform probability distribution, the probabilities
of success for different types of deception are also computed.

1. Introduction

Let S, ET , ER, andM be four nonempty finite sets, and let f : S ×ET → M and g : M ×ER →
S ∪ {reject} be two maps. The six-tuple (S, ET , ER,M, f, g) is called an authentication code
with arbitration (A2-code) if

(1) the maps f and g are surjective;

(2) for anym ∈ M and eT ∈ ET , if there is a s ∈ S, satisfying f(s, eT ) = m, then such an s
is uniquely determined by the given m and eT ;

(3) p(eT , eR)/= 0 and f(s, eT ) = m implies g(m, eR) = s, otherwise, g(m, eR) = {reject}.

S, ET , ER, andM are called the set of source states, the set of transmitter’s encoding rul-
es, the set of receiver’s decoding rules, and the set ofmessages, respectively; f and g are called
the encoding map and decoding map, respectively. The cardinals |S|, |ET |, |ER|, and |M| are
called the size parameters of the code.

In [1], Simmons introduced the A2-code model to solve the transmitter and the recei-
ver’s distrust problem. In [2–4], some Cartesian authentication codes were constructed from
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symplectic and unitary geometry; in [5–7], authentication codes with arbitration based on
symplectic and pseudosymplectic geometry were constructed.

The following notations will be fixed throughout this paper: p is a fixed prime. Fq

is a field with q elements. V = F
(2ν+l)
q is a singular symplectic space over Fq with index ν.

ei (1 ≤ i ≤ 2ν + l) is row vector in V whose ith coordinate is 1 and all other coordinates are
0. Denote by E the l-dimensional subspace of V generated by e2ν+1, e2ν+2, . . . , e2ν+l.Kl denotes
the matrix

⎛
⎜⎜⎝

0 I(ν) 0

−I(ν) 0 0

0 0 0(l)

⎞
⎟⎟⎠. (1.1)

For more concepts and notations used in this paper, refer to [8].
In an authentication system that permits arbitration, the model includes four atten-

dance: the transmitter, the receiver, the opponent, and the arbiter and includes five attacks.

(1) The opponent’s impersonation attack: the largest probability of an opponent’s suc-
cessful impersonation attack is PI . Then,

PI = max
m∈M

{ |eR ∈ ER | eR ⊂ m|
|ER|

}
. (1.2)

(2) The opponent’s substitution attack: the largest probability of an opponent’s suc-
cessful substitution attack is PS. Then,

PS = max
m∈M

{maxm/=m′∈M|eR ∈ ER | eR ⊂ m, eR ⊂ m′|
|eR ∈ ER | eR ⊂ m|

}
. (1.3)

(3) The transmitter’s impersonation attack: the largest probability of a transmitter’s
successful impersonation attack is PT . Then,

PT = max
eT∈ET

{
maxm∈M, eT /∈m

∣∣{eR ∈ ER | eR ⊂ m, p(eR, eT )/= 0
}∣∣

∣∣{eR ∈ ER | p(eR, eT ) /= 0
}∣∣

}
. (1.4)

(4) The receiver’s impersonation attack: the largest probability of a receiver’s success-
ful impersonation attack is PR0 . Then,

PR0 = max
eR∈ER

{
maxm∈M

∣∣{eT ∈ ET | eT ⊂ m, p(eR, eT )/= 0
}∣∣

∣∣{eT ∈ ET | p(eR, eT )/= 0
}∣∣

}
. (1.5)
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(5) The receiver’s substitution attack: the largest probability of a receiver’s successful
substitution attack is PR1 . Then,

PR1 = max
eR∈ER, m∈M

{
maxm′∈M

∣∣{eT ∈ ET | eT ⊂ m,m′, p(eR, eT )/= 0
}∣∣

∣∣{eT ∈ ET | p(eR, eT )/= 0
}∣∣

}
. (1.6)

Notes

p(eR, eT )/= 0 implies that any source s encoded by eT can be authenticated by eR.

2. The First Construction

In this section, we will construct an authentication code with arbitration from singular sym-
plectic geometry over finite fields.

Assume that 2s ≤ 2s0 < m0 ≤ ν + m0, m0 < 2ν − 1 and 1 ≤ k < l. Let P be a subspace
〈v1, v2, e2ν+1〉 of type (3, 0, 1) in F

(2ν+1)
q , and let P0 be a fixed subspace of type (m0 + l, s0, l)

which contains P and orthogonal to v2, but not orthogonal to v1.
Our authentication code is a six-tuple

(
S, ET , ER,M; f, g

)
, (2.1)

where the set of source states

S =
{
s | s is a subspace of type (2s + 1 + k, s, k), p ⊂ s ⊂ P0

}
, (2.2)

the set of transmitter’s encoding rules:

ET =
{
eT | eT is a subspace of type (5, 2, 1), eT ∩ P0 = P

}
, (2.3)

the set of receiver’s decoding rules:

ER =
{
eR | eR is a subspace of type (2, 1, 0), eR ∩ P0 = 〈 v2〉

}
, (2.4)

the set of messages:

M =
{
m | m is a subspace of type (2s + 3 + k, s + 1, k), P ⊂ m,

v2 /∈ m⊥, m ∩ P0 is a subspace of type (2s + 1 + k, s, k)
}
,

(2.5)

the encoding function:

f : S × ET −→ M, (s, eT ) �−→ m = s + eT (2.6)
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and the decoding function: g : M × ER → S ∪ {reject},

(m, eR) �−→
⎧
⎨
⎩
s if eR ⊂ m,where s = m ∩ P0,
{
reject

}
if eR/⊂m.

(2.7)

Assuming that the transmitter’s encoding rules and the receiver’s decoding rules are
chosen according to a uniform probability distribution, we can prove that the construction
given above results in an A2-code.

Lemma 2.1. The six-tuple (S, ET , ER,M, f, g) is an authentication code with arbitration; that is

(1) s + eT = m ∈ M, for all s ∈ S and eT ∈ ET ;

(2) for any m ∈ M, s = m ∩ P0 is uniquely information source contained in m and there is
eT ∈ ET , such that m = s + eT .

Proof. (1) Let s be a source state, that is, a subspace Q of type (2s + 1 + k, s, k) containing p
and contained in p0. Write Ek,Q as

Ek =

⎛
⎜⎜⎜⎜⎜⎜⎝

e2v+1

e2v+i2

...

2v+ik

⎞
⎟⎟⎟⎟⎟⎟⎠

, Q =

⎛
⎜⎜⎜⎜⎜⎝

Q0

v1

v2

Ek

⎞
⎟⎟⎟⎟⎟⎠

, (2.8)

which satisfies

QKlQ
T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
−I(s−1)

I(s−1)

0
0
−1

1
0

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

s − 1 s − 1 1 1 1 k

(2.9)

Let eT be a transmitter’s rule, that is, a subspace R of type (5, 2, 1) containing P and
R ∩ P0 = P . So, there exists u1, u2 ∈ R, such that R = 〈v1, v2, u1, u2, e2ν+1〉 and

QKlQ
T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−I(s−1)

I(s−1)

0
0
−1
0
∗
∗

1
0
0
−1
0

0
0
0
0
−1

∗
1
0
0
0

∗
0
1
0
0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

s − 1 s − 1 1 1 1 1 1 k

(2.10)
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Therefore, M = Q + 〈u1, u2〉 is a subspace of type (2s + 3 + k, s + 1, k) which contains P and
M∩P0 = Q is a subspace of type (2s+1+k, s, k), and is not orthogonal to v2, hence a message.

(2)Now, letm be a message; that is,m is a subspaceM of type (2s+3+k, s+1, k)which
contains P and intersects P0 at a subspace of type (2s + 1 + k, s, k), and is not orthogonal to
v2. By definition, P0 contains 〈v1, v2, e2ν+1〉, so P ⊂ M ∩ P0 = Q, so Q is a source state. Since
M/=P0, there exists u1, u2 ∈ M but u1, u2 /∈ P0 such that M = Q + 〈u1, u2〉. We have to show
that there exists u1, u2 ∈ M such that R = 〈v1, v2, u1, u2, e2ν+1〉 is a subspace of type (5, 2, 1),
hence a transmitter’s encoding rule.

Assume that R = 〈v1, v2, u1, u2, e2ν+1〉 has been set; if R is a subspace of type (5, 2, 1),
then we are done. So, suppose that R is not a subspace of type (5, 2, 1). Since v2 ∈ Q⊥ and
v2 /∈ M⊥, we must have that v2Klu

T
1 /= 0 or v2Klu

T
2 /= 0. Without loss of generality, let v2Klu

T
2 =

1. If we also have v2Klu
T
1 = 1, replacing u1 by u1 − u2, we get v2Klu

T
2 = 1 and v2Klu

T
1 = 0.

Since R is not a subspace of type (5, 2, 1), certainly v1Klu
T
1 = 0. Note that Q is a subspace of

type (2s + 1 + k, s, k), v1 /∈ Q⊥, so there exists a vectorw ∈ Q such that v1Klw
T = 1. Replacing

u1 by w + u1, we have v1Klu
T
1 = 1, v2Klu

T
1 = 0 (v2 ∈ Q⊥). Then, R = 〈v1, v2, u1, u2, e2ν+1〉 is a

subspace of type (5, 2, 1), andM = Q + R, hence R is a transmitter’s encoding rule.
If there is another source stateQ′ such thatM = Q′ +R′, we have thatQ′ ⊂ M∩P0 = Q.

byQ′ ⊂ M,Q′ ⊂ P0. Since dimQ′ = dimQ = 2s + 1 + k, soQ′ = Q. This implies that the source
state Q is uniquely determined by M.

Let n1 denote the number of subspaces of type (2s + 1 + k, s, k) contained in 〈v2〉⊥
and containing P , n2, the number of subspaces of type (m0 + l, s0, l) contained in 〈v2〉⊥ and
containing a fixed subspace of type (2s+1+k, s, k) as above, and n3, the number of subspaces
of type (m0 + l, s0, l) contained in 〈v2〉⊥ and containing P and not contained in 〈v1〉⊥.

Lemma 2.2. One has

n1 = q2(ν−s−1) · q(2s−1)(l−k) ·N(2(s − 1), s − 1; 2(ν − 2)) ·N(k − 1, l − 1),

n2 = N(m0 − (2s + 1), s0 − s; 2(ν − s − 1)),

n3 = q2(ν−s−1) · q(2ν−m0−1) ·N(m0 − 3, s0 − 1; 2(ν − 2)).

(2.11)

Proof. (1) Computation of n1.
By the transitivity of Sp2v+l(Fq) on the set of subspaces of the same type, we can assume that

(
v1

v2

)
=
(

1
0

0
1

0
0

0
0

0
0

0
0

0
0

)
.

1 1 v − 2 1 1 v − 2 l

(2.12)

LetQ be a subspace of type (2s+1+k, s, k) contained in 〈v2〉⊥ and containing P . There
exists a u ∈ Q such that v1Klu

T = 1. We may assume that u = (0, 0, R1, 1, 0, R2, 0, 0, R3). So, Q
has a matrix representation of the form

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

0
1
0
0
0
0

0
0
R1

Q1

0
0

0
0
1
0
0
0

0
0
0
0
0
0

0
0
R2

Q2

0
0

0
0
0
0
1
0

0
0
0
0
0
I(k−1)

0
0
R3

Q3

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1 1 v − 2 1 1 v − 2 1 k − 1 l − k

1
1
1

2s − 2
1

k − 1

. (2.13)
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It is easy to verify that Q1, Q2 is a subspace of type (2(s − 1), s − 1) in the 2(v − 2)-
dimensional symplectic space. The number of this kind of subspace is denoted by N(2(s −
1), s − 1; 2(ν − 2)), Q3 arbitrarily. Furthermore, we may take (Q1, Q2, Q3) as

(
I(s−1)

0
0
0

0
I(s−1)

0
0

0
0

)

s − 1 b s − 1 b l − k
(2.14)

to compute n1, where b = (ν − 2) − (s − 1). Since Q has a matrix representation of the form

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
0
I(s−1)

0
0
0

0
0
a4

0
0
0
0

0
0
1
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
I(s−1)

0
0

0
0
b4
0
0
0
0

0
0
0
0
0
1
0

0
0
0
0
0
0
I(k−1)

0
0
c3
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1 1 a b 1 1 a b 1 k − 1 l − k

(2.15)

where a = s − 1 and b = ν − s − 1, we have that

n1 = q2(ν−s−1) · q(2s−1)(l−k) ·N(2(s − 1), s − 1; 2(ν − 2)) ·N(k − 1, l − 1). (2.16)

(2) Computation of n2.

Let U be a subspaces of type (m0 + l, s0, l) contained in 〈v2〉⊥ and containing a fixed subspace
of type (2s + 1 + k, s, k) which contains P , similar to (1), we may assume that U has a matrix
representation of the form

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
0

I(s−1)

0
0
0

0
0
0
0
0
P1

0

0
0
1
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0

I(s−1)

0
0

0
0
0
0
0
P2

0

0
0
0
0
0
0
I(l)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1 1 a b 1 1 a b l

(2.17)

where a = s − 1, b = ν − s − 1, so (P1, P2) is a subspace of type (m0 − (2s + 1), s0 − s) in the
2(v − s − 1)-dimensional symplectic space. We have that

n2 = N(m0 − (2s + 1), s0 − s; 2(ν − s − 1)). (2.18)
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(3) Computation of n3.

By the samemethod as that of (1) and (2), letU0 be a subspaces of type (m0+l, s0, l) contained
in 〈v2〉⊥, containing P and not contained in 〈v1〉⊥. We may assume that the subspace has a
matrix representation of the form

U0 =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
0
0

0
1
0
0
0

0
0
A1

Q1

0

0
0
1
0
0

0
0
0
0
0

0
0
A2

Q2

0

0
0
0
0
I(l)

⎞
⎟⎟⎟⎟⎟⎠

.

1 1 v − 2 1 1 v − 2 l

(2.19)

So, the number of the subspaces (Q1, Q2) is denoted byN(m0−3, s0−1; 2(ν−2)). Then,
by the transitivity of Sp2ν+l(Fq) on the set of subspaces of the same type, we can assume that

U0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
0

I(s0−1)

0
0
0

0
0
0
0
0
I(a)

0

0
0
a5

0
0
0
0

0
0
1
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0

I(s0−1)

0
0

0
0
b4
0
0
0
0

0
0
b5
0
0
0
0

0
0
0
0
0
0
I(l)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1 1 c a b 1 1 c a b l

(2.20)

where c = s0 − 1, a = m0 − 2s0 − 1, b = ν −m0 + s0, a5, b4, b5 arbitrarily. We may get

n3 = q2(ν−s−1) · q(2ν−m0−1) ·N(m0 − 3, s0 − 1; 2(ν − 2)). (2.21)

Lemma 2.3. The number of the source states is

|S| = q(m0−2s−1)+(2s−1)(l−k)

· N(2(s − 1), s − 1; 2(ν − 2)) ·N(m0 − (2s + 1), s0 − s; 2(ν − s − 1)) ·N(k − 1, l − 1)
N(m0 − 3, s0 − 1; 2(ν − 2))

.

(2.22)

Proof. Since |S| is the number of subspaces of type (2s + 1 + k, s, k) contained in P0 and con-
taining P , we have |S| · n3 = n1 · n2.

Lemma 2.4. The number of the encoding rules of transmitter is

|ET | = q(m0−3)+2(ν−2)+2(l−1) ·
(
q2ν−m0−1 − 1

)
. (2.23)
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Proof. Since |ET | is the number of subspaces of type (5, 2, 1) contained in P0 and containing
P , let R = 〈v1, v2, u1, u2, e2ν+1〉, where v1Klu

T
1 = 1, v2Klu

T
2 = 1, and 〈v1, u1〉 ⊥ 〈v2, u2〉. By the

transitivity of Sp2ν+1(Fq) on the set of subspaces of the same type, we can assume that

v1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
v2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

e2ν+1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0),

P0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
0

I(s0−1)

0
0
0

0
0
0
0
0
I(a)

0

0
0
0
0
0
0
0

0
0
1
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0

I(s0−1)

0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
I(l)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1 1 c a b 1 1 c a b l

(2.24)

where c = s0 − 1, a = m0 − 2s0 − 1, and b = ν −m0 + s0. Therefore, u1 and u2 have the respective
forms:

u1 =
(
0, 0, a3, a4, a5, 1, 0, b3, b4, b5, 0, f2

)
,

u2 =
(
0, 0, c3, c4, c5, 0, 1, d3, d4, d5, 0, g2

)
.

(2.25)

Note that u2 /∈ P0 and dim(R∩ p0) = 3, so the vector u1 cannot lie in P0. Then, a5, b4, b5 cannot
equal zero at the same time. Thus, the number of u1 is q(m0−3)+(l−1)(q2ν−m0−1 − 1) and that for u2

is q2(ν−2)+(l−1); we may get

|ET | = q(m0−3)+2(ν−2)+2(l−1) ·
(
q2ν−m0−1 − 1

)
. (2.26)

Lemma 2.5. The number of the encoding rules of receiver is

|ER| = q2ν−2 · ql. (2.27)

Proof. |ER| is the number of type (2, 1, 0) intersecting P0 at 〈v2〉. Let H = 〈v2, u〉, where
v2Klu

T = 1. Following the notion of Lemma 2.4, hence u has the form

u = (a1, 0, a3, a4, a5, b1, 1, b3, b4, b5, c1). (2.28)

Clearly, u /∈ P0. The number of u is q2ν−2 · ql, that is,

|ER| = q2ν−2 · ql. (2.29)
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Lemma 2.6. For any m ∈ M, let the number of eT and eR contained in m be a and b, respectively.
Then,

a = q4s−3+2(k−1) · (q − 1
)
, b = q2s+1 · qk. (2.30)

Proof. Let M be a message, and Q = M ∩ P0, then Q is a source state contained in M. By
Lemma 2.1, we may get a transmitter’s encoding rule R contained in M. Let R = 〈v1, v2,
u1, u2, e2ν+1〉. Here, M = Q + 〈u1, u2〉, v2Klu

T
2 = 1. Following the notation of Lemma 2.4, we

can assume that Q has a matrix representation of the form

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
0

I(s−1)

0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
1
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0

I(s−1)

0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
1
0

0
0
0
0
0
0

I(k−1)

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1 1 d c a b 1 1 d c a b 1 k − 1 l − k

(2.31)

where a = m0 − 2s0 − 1, b = ν + s0 −m, c = s0 − s, and d = s − 1. By v2Klu
T
2 = 1 and R being the

subspace of type (5, 2, 1), we can assume

u1 =
(
0, 0, a3, a4, a5, a6, b1, 0, b3, b4, b5, b6, 0, f2, f3

)
,

u2 =
(
0, 0, c3, c4, c5, c6, d1, 1, d3, d4, d5, d6, 0, g2, g3

)
,

(2.32)

where b1 /= 0. Then,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

0
0
0

I(s−1)

0
0
0
a3

c3

0
0
0
0
0
0
0
a4

c4

0
0
0
0
0
0
0
a5

c5

0
0
0
0
0
0
0
a6

c6

0
0
1
0
0
0
0
b1
d1

0
0
0
0
0
0
0
0
1

0
0
0
0

I(s−1)

0
0
b3
d3

0
0
0
0
0
0
0
b4
d4

0
0
0
0
0
0
0
b5
d5

0
0
0
0
0
0
0
b6
d6

0
0
0
0
0
1
0
0
0

0
0
0
0
0
0

I(k−1)

f2
g2

0
0
0
0
0
0
0
f3
g3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1 1 d c a b 1 1 d c a b 1 k − 1 l − k

(2.33)

where a = m0 − 2s0 − 1, b = ν + s0 −m, c = s0 − s, and d = s − 1.

(1) Note that M is fixed, so, for u1, the a4, a5, a6, b4, b5, b6, and f3 are fixed and, for u2,
the c4, c5, c6, d4, d5, d6, and g3 are fixed. Therefore, the number of u1 is q2(s−1)+(k−1) ·
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(q− 1) and the number of u2 is q2(s−1)+(k−1)+1. Then, the number of eT contained inm
is

a = q4s−3+2(k−1) · (q − 1
)
. (2.34)

(2) Let H = 〈v2, u〉 be a receiver’s encoding rule contained in M, where v2Klu
T = 1.

Clearly, u /∈ Q, then we can assume that u has the form

u =
(
h1, 0, h3, h4, h5, h6, i1, 1, i3, i4, i5, i6, j1, j2, j3

)
. (2.35)

Note that

(
h4, h5, h6, i4, i5, i6, j3

)
= k

(
a4, a5, a6, b4, b5, b6, f3

)
+
(
c4, c5, c6, d4, d5, d6, g3

)
, (2.36)

where k ∈ Fq. Therefore, the number of (h4, h5, h6, i4, i5, i6, j3) is q. Then, the number of eR
contained inm is

b = q · q2 · q2(s−1) · qk = q2s+1+k. (2.37)

Lemma 2.7. The number of the messages is

|M| = |S||ET |
q4s−k+2(k−1)

(
q − 1

) . (2.38)

Proof. For any m ∈ M, there is uniquely s ∈ S and eT ∈ ET satisfying m = s + eT ; the number
of eT is a. Thus,

|M| = |S||ET |
a

=
|S||ET |

q4s−k+2(k−1)
(
q − 1

) . (2.39)

Lemma 2.8. (1) For any eT ∈ ET , the number of eR contained in eT is q3.
(2) For any eR ∈ ER, the number of eT containing eR is (q2ν−4 − qm0−3) · ql−1.

Proof. (1) Let R be a transmitter’s encoding rule; we can assume that R = 〈v1, v2, u1, u2, e2ν+1〉.
Here, v2Klu

T
2 = 1, v1Klu

T
1 = 1, and 〈v1, u1〉 ⊥ 〈v2, u2〉. Then, the receiver’s encoding rule H

contained in R should have the formH = 〈v2, k1v1 +k2u1 +u2 +k3e2ν+1〉, where k1, k2, k3 ∈ Fq.
So, the number of H is q3.

(2) LetH be a receiver’s encoding rule, andH = 〈v2, u〉, where v2Klu
T = 1. Therefore,

〈v1, v2, u, e2ν+1〉 is a subspace of type (4, 1, 1). The number of subspace 〈v1, v2, u, u1, e2ν+1〉 of
type (5, 2, 1) is q2ν−4 ·ql−1. Here, v1Klu

T
1 /= 0. Note that v2 ∈ P⊥

0 and v1 /∈ p⊥0 . It is easy to see that
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the number of u1 ∈ P0 such that 〈v1, v2, u1, e2ν+1〉 is a subspace of type (4, 1, 1) is qm0−3 · ql−1.
So, the number of transmitter’s encoding rules eT containing H is (q2ν−4 − qm0−3) · ql−1.

Lemma 2.9. For any m ∈ M and eR ⊂ m, the number of eT contained inm and containing eR is

q2(s−1)+(k−1) · (q − 1
)
. (2.40)

Proof. Let M be a message, and let H = 〈v2, u〉 be a receiver’s encoding rule contained in M;
we can assume that u = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), and M has a matrix representation of the
form

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

0
0
0

I(s−1)

0
a3

0
0
0

0
0
0
0
0
a4

0
0
0

0
0
1
0
0
b1
0
0
0

0
0
0
0
0
0
1
0
0

0
0
0
0

I(s−1)

b3
0
0
0

0
0
0
0
0
b4
0
0
0

0
0
0
0
0
0
0
1
0

0
0
0
0
0
f2
0
0

I(k−1)

0
0
0
0
0
f3
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1 1 a b 1 1 a b 1 k − 1 l − k

(2.41)

where b1 /= 0, a = s − 1, and b = ν − s − 1.
Note that M is fixed, so a4, b4, f3 are fixed. Assume that R is a transmitter’s encoding

rule contained in M and containing H. Let R = 〈v1, v2, u, u1, e2ν+1〉, where v1Klu
T
1 /= 0. Thus,

u1 has the form

u1 =
(
0, 0, c3, c4, d1, 0, d3, d4, 0, g2, g3

)
, (2.42)

where d1 /= 0. Note that (c4, d4, g3) = k(a4, b4, f3) and u1 /∈ P0, so k /= 0. Hence, u1, c4, d4, and g3
are fixed. Then, the number of u1 is q2(s−1)+(k−1) · (q− 1); that is, the number of R is q2(s−1)+(k−1) ·
(q − 1).

Lemma 2.10. Assume that m1 and m2 are two distinct messages which commonly contain a trans-
mitter’s encoding rule e′T . s1 and s2 contained in m1 and m2 are two source states, respectively. As-
sume that s0 = s1

⋂
s2, dim s0 = k1, then 3 ≤ k1 ≤ 2s + k, and

(1) the number of eR contained inm1
⋂
m2 is qk1 ;

(2) for any eR ⊂ m1
⋂
m2, the number of eT containing eR is qk1−4.

Proof. Sincem1 = s1 + e′T ,m2 = s2 + e′T , andm1 /=m2, then s1 /= s2. Again because of s1 ⊃ P0 and
s2 ⊃ P0, 3 ≤ k1 ≤ 2s+k. Frommi = si+e′T = s0+s′i+e

′
T , it is easy to know thatm1

⋂
m2 = s0+e′T .

Therefore,

dim
(
m1

⋂
m2

)
= dim s0 + dim e′T − dim

(
s0
⋂

e′T
)
= k1 + 5 − 3 = k1 + 2. (2.43)
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(1) By the definition of the message, we can assume that m1 and m2 have the form as
follows, respectively:

m1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
0
A1

a3

b3
0

0
0
1
0
0
b4
0

0
0
0
0
1
0
0

0
0
0
A2

a6

b6
0

0
0
0
0
0
0
A3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1 v − 2 1 1 v − 2 l

1
1
1

2(s − 1)
1
1
l

, (2.44)

where b4 /= 0,

m2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
0
B1

c3
d3

0

0
0
1
0
0
d4

0

0
0
0
0
1
0
0

0
0
0
B2

c6
d6

0

0
0
0
0
0
0
B3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1 v − 2 1 1 v − 2 l

1
1
1

2(s − 1)
1
1
l

, (2.45)

where d4 /= 0. Thus,

m1
⋂
m2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
0
D1

f3
g3
0

0
0
1
0
0
g4
0

0
0
0
0
1
0
0

0
0
0
D2

f6
g6
0

0
0
0
0
0
0
D3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1 v − 2 1 1 v − 2 l

1
1
1

2(s − 1)
1
1
l

, (2.46)

where g4 /= 0. Since dim(m1 ∩m2) = k1 + 2, therefore

dim

⎛
⎜⎜⎜⎝

0 0 D1 0 0 D2 0
0 0 f3 0 1 f6 0
0 0 g3 g4 0 g6 0
0 0 0 0 0 0 D3

⎞
⎟⎟⎟⎠ = k1 + 2 − 3 = k1 − 1. (2.47)

If eR ⊂ m1 ∩m2, then

eR =
(

0
R1

1
0

0
R3

0
R4

0
1

0
R6

0
R7

)
.

1 1 v − 2 1 1 v − 2 l
(2.48)
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Since R1, R4 are arbitrary, every row of (0 0 R3 0 1 R6 R7) is the linear com-
bination of the base

⎛
⎜⎜⎜⎜⎜⎝

0 0 D1 0 0 D2 0

0 0 f3 0 1 f6 0

0 0 g3 g4 0 g6 0

0 0 0 0 0 0 D3

⎞
⎟⎟⎟⎟⎟⎠

, (2.49)

thus the number of it is qk1−2. So, it is easy to know that the number of eR contained inm1
⋂
m2

is

qk1−2 · q2 = qk1 . (2.50)

(2) Assume thatm1
⋂
m2 has the form of (2.46), then, for any eR ⊂ m1

⋂
m2, we can as-

sume that

eR =
(

0
R1

1
0

0
R3

0
R4

0
1

0
R6

0
R7

)
.

1 1 v − 2 1 1 v − 2 l
(2.51)

If eR ⊂ eT and eT ⊂ m1
⋂
m2, then

eT =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
0
0

0
1
0
0
0

0
0
R3

R′
3
0

0
0
R4

1
0

0
0
1
0
0

0
0
R6

R′
6
0

0
0
0
0
1

0
0
R7

R′
7
0

⎞
⎟⎟⎟⎟⎟⎠

1
1
1
1
1

,

1 1 v − 2 1 1 v − 2 1 l − 1

(2.52)

where

(
0 0 R′

3 0 0 R′
6 0 R′

7

0 0 0 0 0 0 1 0

)
(2.53)

is the linear combination on the basis of

⎛
⎜⎜⎜⎜⎜⎝

0 0 D1 0 0 D2 0

0 0 f3 0 1 f6 0

0 0 g3 g4 0 g6 0

0 0 0 0 0 0 D3

⎞
⎟⎟⎟⎟⎟⎠

, (2.54)

then the number of eT containing eR is qk1−4.
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Theorem 2.11. The above construction yields anA2-code with the following size parameters:

|S| = q(m0−2s−1)+(2s−1)(l−k)

· N(2(s − 1), s − 1; 2(ν − 2)) ·N(m0 − (2s + 1), s0 − s; 2(ν − s − 1)) ·N(k − 1, l − 1)
N(m0 − 3, s0 − 1; 2(ν − 2))

,

|ET | = q(m0−3)+2(ν−2)+2(l−1) ·
(
q2ν−m0−1 − 1

)
,

|ER| = q2ν−2+l,

|M| = |S||ET |
q4s−3+2(k−1) · (q − 1

) .
(2.55)

Moreover, assume that the encoding rules eT and eR are chosen according to a uniform probability dis-
tribution, the largest probabilities of success for different types of deceptions:

PI =
1

q2ν−2s−3 · ql−k , PS =
1
q
, PT =

1
q2

;

PR0 =
q − 1

qm0−2s−1 · ql−k(q2ν−m0−1 − 1
) , PR1 =

1
q · (q − 1

) .
(2.56)

Proof. (1) The number of m containing eR is b, then

PI =
q2s+1 · qk
q2ν−2 · ql =

1
q2ν−2s−3 · ql−k . (2.57)

(2) Assume that opponent gets m1, which is from transmitter, and sends m2 instead of
m1, when s1 contained in m1 is different from s2 contained in m2; the opponent’s
substitution attack can be successful. Because eR ⊂ eT ⊂ m1, the opponent selects
e′T ⊂ m1 satisfying m2 = s2 + e′T and dim(s1

⋂
s2) = k1, then

PS =
qk1

q2s+1 · qk =
1
q
, (2.58)

where k1 = 2s + k.

(3) Assume that R is transmitter’s encoding rules, Q is a source state, and M = R +Q.
Therefore, the number of receiver’s encoding rules contained in R is q3. Let M′ be
another message, such thatM′ = R′ +Q and R/=R′. Then, eR contained R

⋂
M′ is at

most q. So,

PT =
q

q3
=

1
q2

. (2.59)
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(4) From Lemmas 2.8 and 2.9, thus

PR0 =
q2(s−1)·(q−1)·q

k−1

(
q2ν−4 − qm0−3) · ql−1 =

q − 1
qm0−2s−1 · ql−k(q2ν−m0−1 − 1

) . (2.60)

(5) Assume that the receiver declares to receive a message m2 instead of m1, when s2
contained in m1 is different from s2 contained in m2; the receiver’s substitution
attack can be successful. Since eR ⊂ eT ⊂ m1, receiver is superior to select e′T ,
satisfying eR ⊂ e′T ⊂ m1, thus m2 = s2 + e′T , and dim(s1 ∩ s2) = k1 as large as
possible. Therefore, the probability of a receiver’s successful substitution attack is

PR1 =
qk1−4

q2(s−1)+(k−1) · (q − 1
) =

1
q
(
q − 1

) , (2.61)

where k1 = 2s + k.

3. The Second Construction

In this section, from singular symplectic geometry and the first construction, we construct an
authentication code with a transmitter and multi-receivers and compute the probabilities of
success for different types of deceptions. For the definition of multi-receiver authentication
codes, refer to [9].

Let 2s ≤ 2s0 < m0 ≤ ν + m0, m0 < 2ν − 1, and 1 ≤ k < l. Let p be a subspace
〈v1, v2, e2ν+1〉 of type (3, 0, 1) in F

(2ν+l)
q , and let P0 be a fixed subspace of type (m0 + l, s0, l)

which contains P and orthogonal to v2, but not orthogonal to v1. Let S = {s | s is a subspace
of type (2s + 1 + k, s, k), P ⊂ s ⊂ P0}, Let E = {e | e is a subspace of type (5, 2, 1), eT

⋂
P0 =

P}, Let M = {m | m is a subspace of type (2s + 3 + k, s + 1, k), P ⊂ m, v2 /∈ m⊥,
m
⋂
P0 is a subspace of type (2s + 1 + k, s, k)}, and let M∗ = {(m1, m2, . . . , m

λ)|m1
⋂
U⊥ =

m2
⋂
U⊥ = . . . = mλ

⋂
U⊥}.

First, we construct (λ+ 1)A-codes. Let C = (S, Eλ,M∗, f), where S, Eλ, and M∗ are the
sets of source states, keys, and authenticators ofC, respectively, and f : S×Eλ → M∗, f(s, e) =
(s + e1, s + e2, . . . , s + eλ) for e = (e1, e2, . . . , eλ) ∈ Eλ is the authentication mapping of C. Let
Ci = (S, Ei,Mi; fi), where S, Ei = E and Mi = M are the sets of source states, keys, and
authenticators of Ci, respectively, and fi : S × Ei → Mi, fi(s, ei) = s + ei for ei ∈ Ei, is the
authentication mapping of Ci. It is easy to know that C and Ci are well-defined A-codes.

Our authentication scheme is a (λ+1)-tuple C;C1, C2, . . . , Cλ. Let τi : Eλ → Ei, τi(e) = ei
for e = (e1, e2, . . . , eλ) ∈ Eλ, and let πi : M∗ → Mi,πi(m) = mi form = (m1, m2, . . . , mλ). Then,

πi

(
f(s, e)

)
= π(s + e1, s + e2, . . . , s + eλ) = s + ei,

fi((Is × τi)(s, e)) = fi(Is(s), τi(e)) = fi(s, ei) = s + ei.
(3.1)

Therefore, πi(f(s, e)) = fi((Is × πi)(s, e)). Thus, our scheme is indeed a well-defined
authentication code with a transmitter and multi-receivers.
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Theorem 3.1. In the construction of multi-receiver authentication codes, if the encoding rules are
chosen according to a uniform probability distribution, then the probabilities of impersonation attack
and substitution attack are, respectively,

PI[i, J] =
1

qm0+2ν+2l−4s−2k−4 · (q2ν−m0−1 − 1
) ,

PS[i, J] =
1

qm0+2ν+2l−2s−k−5 · (q2ν−m0−1 − 1
) ,

(3.2)

where J = {i1, i2, . . . , ij}, i /∈ J .

Proof. Let eJ = (ei1 , ei2 , . . . , eij ), then

τJ(e) = eJ ⇐⇒ e =
(
. . . , ei1 , . . . , eij , . . .

)
. (3.3)

It is easy to know that |e ∈ Eλ | τJ(e) = eJ | = |E|λ−j , and

fi(s, ei) = πi(m), s + ei = mi = πi(m). (3.4)

From Lemma 2.6, we know that the number of ei satisfying (3.4) is a. For any ei satisfying
(3.4), the number of e satisfying τJ(e), τi(e) = ei is |E|λ−J−1. So,

∣∣∣
{
e ∈ Eλ | τJ(e) = eJ , τi(e) = ei, fi(s, ei) = πi(m)

}∣∣∣ = |E|λ−j−1 (3.5)

and a = q4s+2k−5, thus

PI[i, J] = max
eJ∈EJ

max
s∈S

max
m∈M

∣∣{e ∈ Eλ | τJ(e) = eJ , τi(e) = ei, fi(s, ei) = πi(m)
}∣∣

∣∣∣
{
e ∈ Eλ| τJ(e) = eJ

}∣∣∣

= max
eJ∈EJ

max
s∈S

max
m∈M

a

|E| =
q4s+2k−5

q(m0−3)+2(ν−2)+2(l−1) · (q2ν−m0−1 − 1
)

=
1

qm0+2ν+2l−4s−2k−4 · (q2ν−m0−1 − 1
) .

(3.6)

Now, we compute the probability of substitution attack: we know that

m = f(s, e) = (s + e1, s + e2, . . . , s + eλ) = (m1, m2, . . . , mλ) (3.7)
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and τJ(e) = (ei1 , ei2 , . . . , eij ), whenever e = (e1, e2, . . . , ei1 , . . . , eij︸ ︷︷ ︸, ek, . . . , eλ), while

∣∣∣
{
e ∈ Eλ | m = f(s, e), τJ(e) = eJ

}∣∣∣ = |E|λ−j ,
∣∣∣
{
e ∈ Eλ | m = f(s, e), τJ(e) = eJ , τi(e) = ei ∈ Ei, fi

(
s′, ei

)
= πi(m)

}∣∣∣ = |E|λ−j−1 · d
(3.8)

and d = qk1−4, therefore

PS[i, J]

= max
ej∈EJ

max
s∈S, m∈M

max
s /= s′∈S, m∈M

∣∣{e ∈ Eλ | m = f(s, e), τJ(e) = eJ , τi(e) = ei ∈ Ei, fi(s′, ei) = πi(m′)
}∣∣

∣∣{e ∈ Eλ | m = f(s, e), τJ(e) = eJ
}∣∣

= max
ej∈EJ

max
s∈S, m∈M

max
s /= s′∈S, m∈M

d

|E|

= max
ej∈EJ

max
s∈S, m∈M

max
s /= s′∈S, m∈M

qk1−4

q(m0−3)+2(ν−2)+2(l−1)·(q2ν−m0−1−1)

=
1

qm0+2ν+2l−2s−k−5 · (q2ν−m0−1 − 1
) ,

(3.9)

where k1 = 2s + k.

Two types of construction of authentication codes from singular symplectic geometry
over finite fields are given. Among them, in the first construction, based on singular symplec-
tic geometry structure of the authentication code with arbitration, the greatest probabilities of
success for different types of deceptions are relatively lower, therefore there are some advan-
tages. In addition, the second construction is based on singular symplectic geometry and is
a multi-receiver authentication code. The probabilities of success for different types of decep-
tions are also computed. The results about multi-receiver authentication codes based on sin-
gular symplectic geometry are fewer. Thus, the structure of authentication code and the theo-
ry for further discussion are very meaningful.
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