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The paper is devoted to integro-differential operators, which correspond to nonlocal reaction-
diffusion equations considered on the whole axis. Their Fredholm property and properness will
be proved. This will allow one to define the topological degree.

1. Introduction

Consider the semilinear parabolic equation

∂u

∂t
=
∂2u

∂x2
+ F(u, J(u)), (1.1)

where

J(u) =
∫∞

−∞
φ
(
x − y)u(y, t)dy. (1.2)

Here φ : � → � is a bounded function, not necessarily continuous, φ ≥ 0 on �. The support
of the function φ is supposed to be bounded, suppφ ⊆ [−N,N]. We will also assume that∫∞
−∞ φ(y)dy = 1. Conditions on the function F will be specified below.

Integro-differential equations of this type arise in population dynamics (see [1, 2] and
references therein). They are referred to as nonlocal reaction-diffusion equations. A travelling
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wave solution of (1.1) is a solution of this equation of the particular form u(x, t) = w(x − ct).
It satisfies the equation

w′′ + cw′ + F(w, J(w)) = 0. (1.3)

The constant c ∈ � is the wave speed. It is unknown and should be found together with
the function w(x). There are numerous works devoted to the existence [3–7], stability and
nonlinear dynamics [1, 1, 2, 8–16] of travelling wave solutions of some particular cases
of (1.1). Properties of travelling waves are determined by the properties of the integro-
differential operator in the left-hand side of (1.3). In this paper we will study the Fredholm
property of this operator and its properness.Wewill use them to define the topological degree
and will discuss some applications.

Let E = C2+α(�), E0 = Cα(�), 0 < α < 1 the usual Holder spaces endowed with the
norms

‖u‖E0 = sup
x,y∈�

∣∣u(x) − u(y)∣∣∣∣x − y∣∣α + sup
x∈�

|u(x)|, ‖u‖E = ‖u‖E0 +
∥∥u′∥∥

E0 +
∥∥u′′∥∥

E0 . (1.4)

We are interested in the solutions of equation (1.3)with the limitsw± at ±∞, where the values
w± are such that F(w±, w±) = 0. We are looking for the solutions w of (1.3) under the form
w = u + ψ, where ψ ∈ C∞(�), such that ψ(x) = w+ for x ≥ 1 and ψ(x) = w− for x ≤ −1. Thus
(1.3) becomes

(
u + ψ

)′′ + c(u + ψ
)′ + F(u + ψ, J

(
u + ψ

))
= 0. (1.5)

Denote by A the operator in the left-hand side of (1.5), that is A : E → E0,

Au =
(
u + ψ

)′′ + c(u + ψ
)′ + F(u + ψ, J

(
u + ψ

))
. (1.6)

Suppose that F is differentiable with respect to both variables. The linearization of A
about a function u1 ∈ E is the operator L : E → E0,

Lu ≡ A′(u1)u = u′′ + cu′ +
∂F

∂u

(
u1 + ψ, J

(
u1 + ψ

))
u +

∂F

∂U

(
u1 + ψ, J

(
u1 + ψ

))
J(u), (1.7)

where ∂F/∂u and ∂F/∂U are the derivatives of F(u,U) with respect to the first and to the
second variable, respectively.

For the linearized operatorL, we introduce the limiting operators. Since forw1 = u1+ψ,
there exist the limits limx→±∞w1(x) = w±, it follows that J(w1) = J(u1+ψ) → w± as x → ±∞
and the limiting operators are given by

L±u = u′′ + cu′ + a±u + b±J(u), (1.8)
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where

a± =
∂F

∂u

(
w±, w±), b± =

∂F

∂U

(
w±, w±). (1.9)

We will now recall the main definitions and results concerning the essential spectrum
and Fredholm property for linear operators and the properness of nonlinear operators.

1.1. Essential Spectrum and Fredholm Property

Let us recall that a linear operator M : E1 → E2 acting from a Banach space E1 into another
Banach space E2 is called a Fredholm operator if its kernel has a finite dimension, its image is
closed, and the codimension of the image is also finite. The last two conditions are equivalent
to the following solvability condition: the equation Lu = f is solvable if and only if φi(f) = 0
for a finite number of functionals φi from the dual space E∗

2.
Suppose that E1 ⊂ E2. By definition, the essential spectrum of the operator L is the set

of all complex λ for which the operator L−λI, where I is the identity operator, does not satisfy
the Fredholm property. The essential spectrum of general elliptic boundary value problems in
unbounded domains can be determined in terms of limiting operators [17]. For the integro-
differential operators under consideration, since they have constant coefficients at infinity,
the essential spectrum can be found explicitly. It is proved [5, 6] that the operator L − λI is
normally solvable with a finite-dimensional kernel if and only if the equations L±u = λu do
not have nonzero bounded solutions. Applying the Fourier transform to the last equations,
we obtain

λ±(ξ) = −ξ2 + ciξ + a± + b±φ̃(ξ), ξ ∈ �, (1.10)

where φ̃(ξ) is the Fourier transform of the function φ(x). Thus, the operator L is normally
solvable with a finite-dimensional kernel if and only if the curves λ±(ξ) on the complex plane
do not pass through the origin. Under some additional conditions, it can be also shown that
the codimension of the operator is finite, that is, it satisfies the Fredholm property, and its
index can be found.

A nonlinear operator B : E1 → E2 is called Fredholm if the linearized operator B′

satisfies this property. In what follows we will use the Fredholm property in some weighted
spaces (see below).

1.2. Properness and Topological Degree

An operator B : E1 → E2 is called proper on closed bounded sets if the intersection of the
inverse image of a compact set K ⊂ E2 with any closed bounded set in E1 is compact. For
the sake of brevity, we will call such operators proper. It is an important property because it
implies that the set of solution of the operator equation B(u) = 0 is compact.
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It appears that elliptic (or ordinary differential) operators are not generally proper
when considered in Hölder or Sobolev spaces in unbounded domains. We illustrate this
situation with a simple example. Consider the equation

w′′ +H(w) = 0, x ∈ �, (1.11)

where H(w) = w(w − 1). It can be verified that this equation has a positive solution w(x),
which converges to zero at infinity. This convergence is exponential. So the solution belongs
to Hölder and to Sobolev spaces. Along with the functionw(x), any shifted functionw(x+h),
h ∈ � is also a solution. Hence there is a family of solutions, and the set of solutions is not
compact. Similar examples can be constructed for the integro-differential equation.

In order to obtain proper operators, we introduce weighted spaces Ck+α
μ (�) with a

growing at infinity polynomial weight function μ(x). The norm in this space is given by the
equality

‖u‖Ck+α
μ (�) =

∥∥μu∥∥Ck+α(�). (1.12)

Let us return to the previous example. The family of functions w(x + h) is not uniformly
bounded in the weighted space. If we take any bounded closed set in the function space, it
can contain the solutions w(x + h) only for a compact set of the values of h. Therefore the set
of solutions is compact in any bounded closed set. This example shows the role of weighted
spaces for the properness of the operators.

Properness of general nonlinear elliptic problems in unbounded domains and in
weighted spaces is proved in [18]. In this work, we will prove properness of the integro-
differential operators. After that, using the construction of the topological degree for
Fredholm and proper operators with the zero index [18], we will define the degree for
the integro-differential operators. We will finish this paper with some applications of these
methods to travelling waves solutions.

2. Properness in Weighted Spaces

In this section we study the properness of the semilinear operatorA.

Definition 2.1. If X, Y are Banach spaces, an operator A : X → Y is called proper if for any
compact set D ⊂ Y and any bounded closed set B ⊂ X, the intersection A−1(D) ∩ B is a
compact set in X.

Remark 2.2. The operator A : E = C2+α(�) → E0 = Cα(�) may not be proper from E to E0

(see the comments related to (1.11) from the introduction).

We will show in the sequel that A is proper in some weighted spaces associated to E
and E0.

Let μ : � → � be the function given by μ(x) = 1 + x2, x ∈ �. Denote E = C2+α(�),
E0 = Cα(�) endowed with the usual norms ‖ · ‖E and ‖ · ‖E0 . We will work in the weighted
Holder spaces Eμ and E0

μ, which are E and E0, respectively, with the norms ‖u‖μ = ‖μu‖E and
‖u‖0μ = ‖μu‖E0 .

We begin with the following estimate for the integral term J(u).
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Lemma 2.3. Suppose that μ(x) = 1 + x2 and φ : � → � is a function such that φ ≥ 0 on �,
suppφ = [−N,N] is bounded,

∫∞
−∞ φ(y)dy = 1 and φ ∈ E0. Then

‖J(u)‖0μ ≤ K∥∥μu∥∥C(�), (∀)u ∈ E0, (2.1)

for some constantK > 0.

Proof. If suppφ = [−N,N], then suppφ(x − ·) = [x −N,x +N]. First we write

μ(x)J(u)(x) =
∫x+N

x−N

μ(x)
μ
(
y
)φ(x − y)μ(y)u(y)dy. (2.2)

Since μ(x)/μ(y) is bounded for |x − y| ≤ N and
∫∞
−∞ φ(y)dy = 1, we have ‖μJ(u)‖C(�) ≤

K1‖μu‖C(�), for some positive constant K1.
For every x1, x2 ∈ �, x1 /=x2, denote

H(x1, x2) =

∣∣μ(x1)J(u)(x1) − μ(x2)J(u)(x2)∣∣
|x1 − x2|α

. (2.3)

If |x1 − x2| ≥ 1, we haveH(x1, x2) ≤ 2K1‖μu‖C(�). If |x1 − x2| < 1, then

H(x1, x2) =
1

|x1 − x2|α
∣∣∣∣∣
∫x1+N

x1−N

[
μ(x1)φ

(
x1 − y

) − μ(x2)φ(x2 − y)]u(y)dy

+
∫x1+N

x1−N
μ(x2)φ

(
x2 − y

)
u
(
y
)
dy −

∫x2+N

x2−N
μ(x2)φ

(
x2 − y

)
u
(
y
)
dy

∣∣∣∣∣

≤
∣∣∣∣∣
∫x1+N

x1−N

{[
μ(x1) − μ(x2)

]
φ
(
x1 − y

)
μ
(
y
)|x1 − x2|α +

μ(x2)
[
φ
(
x1 − y

) − φ(x2 − y)]
μ
(
y
)|x1 −x2|α

}

×μ(y)u(y)dy
∣∣∣∣∣

+
1

|x1 − x2|α
∣∣∣∣∣
∫x2−N

x1−N

μ(x2)
μ
(
y
) φ(x2 − y)μ(y)u(y)dy

∣∣∣∣∣

+
1

|x1 − x2|α
∣∣∣∣∣
∫x1+N

x2+N

μ(x2)
μ
(
y
) φ(x2 − y)μ(y)u(y)dy

∣∣∣∣∣.
(2.4)

Since |x1 − x2| < 1 and |x1 −y| ≤N, then |x2 − y| ≤N + 1. In this case, the boundedness
of φ and of (μ(x1) − μ(x2))/μ(y)|x1 − x2|α, implies that

H(x1, x2) ≤ K2
∥∥μu∥∥

C(�) +K3
∥∥φ∥∥

E0

∥∥μu∥∥
C(�) + 2K4|x1 − x2|1−α

∥∥μu∥∥
C(�), (2.5)

for some K2, K3, K4 > 0. Thus the desired estimate holds and the lemma is proved.
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We study the operator A acting from Eμ into E0
μ. In order to introduce a topological

degree (in Section 4), we prove the properness of A in the more general case when the
coefficient c and function F depend also on a parameter τ ∈ [0, 1]. Let Aτ : Eμ → E0

μ,
τ ∈ [0, 1] be the operator defined through

Aτu =
(
u + ψ

)′′ + c(τ)(u + ψ
)′ + Fτ(u + ψ, J

(
u + ψ

))
. (2.6)

We note that the linearization Lτ of Aτ about a function u1 ∈ Eμ is

Lτu = u′′ + c(τ)u′ +
∂Fτ
∂u

(
u1 + ψ, J

(
u1 + ψ

))
u +

∂Fτ
∂U

(
u1 + ψ, J

(
u1 + ψ

))
J(u), (2.7)

while its limiting operators are given by

L±
τ u = u′′ + c(τ)u′ +

∂Fτ
∂u

(
w±, w±)u +

∂Fτ
∂U

(
w±, w±)J(u). (2.8)

Assume that the following hypotheses are satisfied

(H1) For any τ ∈ [0, 1], the function Fτ(u,U) and its derivatives with respect to u andU
satisfy the Lipschitz condition: there exists K > 0 such that

|Fτ(u1, U1) − Fτ(u2, U2)| ≤ K(|u1 − u2| + |U1 −U2|), (2.9)

for any (u1, U1), (u2, U2) ∈ �2 . Similarly for ∂Fτ/∂u and ∂Fτ/∂U:

∣∣∣∣∂Fτ(u1, U1)
∂u

− ∂Fτ(u2, U2)
∂u

∣∣∣∣ ≤ K(|u1 − u2| + |U1 −U2|),
∣∣∣∣∂Fτ(u1, U1)

∂U
− ∂Fτ(u2, U2)

∂U

∣∣∣∣ ≤ K(|u1 − u2| + |U1 −U2|).
(2.10)

(H2) c(τ), Fτ(u,U) and the derivatives of Fτ(u,U) are Lipschitz continuous in τ , that is,
there exists a constant c > 0 such that

|c(τ) − c(τ0)| ≤ c|τ − τ0|, |Fτ(u,U) − Fτ0(u,U)| ≤ c|τ − τ0|,
∣∣∣∣∂Fτ(u,U)

∂u
− ∂Fτ0(u,U)

∂u

∣∣∣∣ ≤ c|τ − τ0|,
∣∣∣∣∂Fτ(u,U)

∂U
− ∂Fτ0(u,U)

∂U

∣∣∣∣ ≤ c|τ − τ0|,
(2.11)

(∀)τ, τ0 ∈ [0, 1], for all (u,U) from any bounded set in �2 .

(H3) (Condition NS) For any τ ∈ [0, 1], the limiting equations

u′′ + c(τ)u′ +
∂Fτ
∂u

(
w±, w±)u +

∂Fτ
∂U

(
w±, w±)J(u) = 0 (2.12)

do not have nonzero solutions in E.
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Lemma 2.4. Suppose that conditions (H1)-(H2) hold. If τn → τ0 and μun → μu0 in C(�), then

∥∥Fτn(un + ψ, J(un + ψ)) − Fτ0(u0 + ψ, J(u0 + ψ))∥∥0μ −→ 0. (2.13)

Proof. We have the equality

Fτn
(
un + ψ, J

(
un + ψ

)) − Fτ0(u0 + ψ, J(u0 + ψ))
= Fτn

(
un + ψ, J

(
un + ψ

)) − Fτn(u0 + ψ, J(u0 + ψ))
+ Fτn

(
u0 + ψ, J

(
u0 + ψ

)) − Fτ0(u0 + ψ, J(u0 + ψ)).
(2.14)

Condition (H1) leads to the estimate of the first difference

∣∣Fτn(un + ψ, J(un + ψ)) − Fτn(u0 + ψ, J(u0 + ψ))∣∣ ≤ K(|un − u0| + |J(un − u0)|). (2.15)

In view of hypothesis μun → μu0 in C(�), the above inequality allows us to conclude that
the weighted norm converges to zero.

In order to estimate the second difference, we begin with the following representation:

Fτn
(
u0 + ψ, J

(
u0 + ψ

)) − Fτn(ψ, J(ψ))

= J(u0)
∫1

0

∂Fτn
(
u0 + ψ, J

(
ψ
)
+ tJ(u0)

)
∂U

dt + u0

∫1

0

∂Fτn
(
tu0 + ψ, J

(
ψ
))

∂u
dt.

(2.16)

Similarly,

Fτ0
(
u0 + ψ, J

(
u0 + ψ

)) − Fτ0(ψ, J(ψ))

= J(u0)
∫1

0

∂Fτ0
(
u0 + ψ, J

(
ψ
)
+ tJ(u0)

)
∂U

dt + u0

∫1

0

∂Fτ0
(
tu0 + ψ, J

(
ψ
))

∂u
dt.

(2.17)

Therefore,

Fτn
(
u0 + ψ, J

(
u0 + ψ

)) − Fτ0(u0 + ψ, J(u0 + ψ))

= J(u0)

(∫1

0

∂Fτn
(
u0 + ψ, J

(
ψ
)
+ tJ(u0)

)
∂U

dt −
∫1

0

∂Fτ0
(
u0 + ψ, J

(
ψ
)
+ tJ(u0)

)
∂U

dt

)

+ u0

(∫1

0

∂Fτn
(
tu0 + ψ, J

(
ψ
))

∂u
dt −

∫1

0

∂Fτ0
(
tu0 + ψ, J

(
ψ
))

∂u
dt

)

+ Fτn
(
ψ, J

(
ψ
)) − Fτ0(ψ, J(ψ)) ≡ A + B + C

(2.18)

(A denotes the first line in the right-hand side, B: the second, C: the third). The expressions
A and B converge to zero in the weighted norm of Eμ = Cα

μ(�), due to the Lipschitz condition
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with respect to τ of the derivatives of Fτ (see (H2)). The expression C is a function with a
finite support. It also converges to zero in the weighted norm as τn → τ0. This concludes the
proof.

We can now prove the properness of the τ-dependent operator Aτ . Denote by

Eloc =
{
u ∈ C2+α(I), (∀)I = bounded interval

}
,

Eμ,loc =
{
μu ∈ C2+α(I), (∀)I = bounded interval

} (2.19)

and similarly E0
loc and E

0
μ,loc.

Theorem 2.5. If φ ∈ E0, under assumptions (H1)–(H3), the operator Aτ(u) : Eμ × [0, 1] → E0
μ

from (2.6) is proper with respect to (u, τ) on Eμ × [0, 1].

Proof. Consider a convergent sequence fn ∈ E0
μ, say fn → f0 in E0

μ. Let (un, τn) be a solution
in Eμ × [0, 1] of the equation Aτn(un) = fn, such that

‖un‖μ ≤M, (∀)n ≥ 1. (2.20)

We prove that one can choose a convergent in Eμ subsequence of the sequence un. Without
loss of generality we may assume that τn → τ0 as n → ∞. Equation Aτn(un) = fn can be
written as

(
un + ψ

)′′ + c(τn)(un + ψ)′ + Fτn(un + ψ, J(un + ψ)) = fn. (2.21)

Multiplying the equation by μ and denoting vn(x) = μ(x)un(x), gn(x) = μ(x)fn(x), we derive
that

v′′n +
[
−2μ

′

μ
+ c(τn)

]
v′n +

[
−μ

′′

μ
+ 2

(
μ′

μ

)2

− c(τn)
μ′

μ

]
vn

+ μFτn
(
un + ψ, J

(
un + ψ

))
+ μ

(
ψ ′′ + c(τn)ψ ′) = gn.

(2.22)

Indeed, since μu′n = (μun)
′ −μ′un = v′n−μ′vn/μ and μu′′n = (μun)

′′ −μ′′un−2μ′u′n = v′′n−μ′′vn/μ−
2μ′(v′n/μ − μ′vn/μ2), by (2.21) one easily obtains (2.22).

The sequence vn = μun is uniformly bounded in E:

‖vn‖E =
∥∥μun∥∥E = ‖un‖μ ≤M, (∀)n ≥ 1. (2.23)

Then it is locally convergent on a subsequence. More exactly, for every bounded interval
[−N,N] of x, there is a subsequence (denoted again vn) converging in C2+α[−N,N] to a
limiting function v0 ∈ C2+α[−N,N]. By a diagonalization process we can prolong v0 to �
such that v0 ∈ E. Since ‖vn‖E ≤ M, (∀)n ≥ 1, we can easily see that ‖v0‖E ≤M.

Let u0 be the limit that corresponds to un. Then μun → μu0 in Eloc and v0 = μu0.
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We now want to pass to the limit as n → ∞ in (2.21) and (2.22). To this end observe
that (H2) implies that

∥∥Fτn(un + ψ, J(un + ψ)) − Fτ0(u0 + ψ, J(u0 + ψ))∥∥0μ

=
∥∥Fτn(un + ψ, J(un + ψ)) − Fτ0(un + ψ, J(un + ψ))∥∥0μ

+
∥∥Fτ0(un + ψ, J(un + ψ)) − Fτ0(u0 + ψ, J(u0 + ψ))∥∥0μ

≤ c1|τn − τ0| +
∥∥Fτ0(un + ψ, J(un + ψ)) − Fτ0(u0 + ψ, J(u0 + ψ))∥∥0μ.

(2.24)

Since Fτ0 is continuous from E0
μ × E0

μ to E0
μ (see (H1)) and J(un + ψ) → J(u0 + ψ) in E0

μ,loc, we
derive that

Fτn
(
un + ψ, J

(
un + ψ

)) −→ Fτ0
(
u0 + ψ, J

(
u0 + ψ

))
as n −→ ∞, in E0

μ,loc. (2.25)

Passing to the limit as n → ∞, uniformly on bounded intervals of x in (2.21) and (2.22), one
obtains that

(
u0 + ψ

)′′ + c(τ0)(u0 + ψ)′ + Fτ0(u0 + ψ, J(u0 + ψ)) = f0, (2.26)

v′′0 +
[
−2μ

′

μ
+ c(τ0)

]
v′0 +

[
−μ

′′

μ
+ 2

(
μ′

μ

)2

− c(τ0)
μ′

μ

]
v0

+μFτ0
(
u0 + ψ, J

(
u0 + ψ

))
+ μ

(
ψ ′′ + c(τ0)ψ ′) = μf0.

(2.27)

Subtracting (2.27) from (2.22) and denoting Vn = vn − v0, one finds

V ′′
n +

[
−2μ

′

μ
+ c(τn)

]
V ′
n +

[
−μ

′′

μ
+ 2

(
μ′

μ

)2

− c(τn)
μ′

μ

]
Vn

+ μ
[
Fτn

(
un + ψ, J

(
un + ψ

)) − Fτ0(u0 + ψ, J(u0 + ψ))]

+ [c(τn) − c(τ0)]
(
v′0 −

μ′

μ
v0 + μψ ′

)
= μfn − μf0.

(2.28)

Recall that Vn = vn−v0 → 0 as n → ∞ in Eloc. We show that Vn → 0 in C(�). Suppose
that it is not the case. Then, without any loss of generality, we can chose a sequence xn → ∞
such that |Vn(xn)| ≥ ε > 0. This means that |vn(xn) − v0(xn)| ≥ ε > 0. Let

Ṽn(x) = Vn(x + xn) = vn(x + xn) − v0(x + xn) = μ(x + xn)[un(x + xn) − u0(x + xn)]. (2.29)

Then,

∣∣∣Ṽn(0)
∣∣∣ = |Vn(xn)| ≥ ε > 0. (2.30)
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Writing (2.28) in x + xn, one obtains

Ṽ ′′
n (x) +

[
−2μ

′(x + xn)
μ(x + xn)

+ c(τn)
]
Ṽ ′
n(x)

+

[
−μ

′′(x + xn)
μ(x + xn)

+ 2
(
μ′(x + xn)
μ(x + xn)

)2

− c(τn)
μ′(x + xn)
μ(x + xn)

]
Ṽn(x)

+ μ(x + xn)
[
Fτn

(
un + ψ, J

(
un + ψ

)) − Fτ0(u0 + ψ, J(u0 + ψ))](x + xn)

+ [c(τn) − c(τ0)]
[
v′0 −

μ′

μ
v0 + μψ ′

]
(x + xn) =

(
μfn − μf0

)
(x + xn).

(2.31)

We will pass to the limit as n → ∞ in (2.31). First we note that by (2.29) and (2.23), there
exists Ṽ0 ∈ E such that Ṽn → Ṽ0 as n → ∞ in Eloc. Next, it is obvious that

1
μ(x + xn)

−→ 0,
μ′(x + xn)
μ(x + xn)

−→ 0,
μ′′(x + xn)
μ(x + xn)

−→ 0, n −→ ∞, (2.32)

while condition fn → f0 in E0
μ leads to (μfn − μf0)(x + xn) → 0. Inequality (2.23) implies a

similar estimate for v0, so v0(x+xn) and v′0(x+xn) are bounded in E. We also have ψ ′(x+xn) =
0 for x + xn > 1 and for x + xn < −1 and

μ(x + xn)
[
Fτn

(
un + ψ, J

(
un + ψ

)) − Fτ0(u0 + ψ, J((u0 + ψ)))](x + xn)

= μ(x + xn)
[
Fτn

(
un + ψ, J

(
un + ψ

)) − Fτ0(un + ψ, J(un + ψ))](x + xn)

+ μ(x + xn)
[
Fτ0

(
un + ψ, J

(
un + ψ

)) − Fτ0(u0 + ψ, J(un + ψ))](x + xn)

+ μ(x + xn)
[
Fτ0

(
u0 + ψ, J

(
un + ψ

)) − Fτ0(u0 + ψ, J(u0 + ψ))](x + xn).

(2.33)

Denote by Tn1 , T
n
2 , and Tn3 the three terms in the right-hand side. Hypothesis (H2) for Fτ0

infers that

Tn1 −→ 0, n −→ ∞ in E0
loc. (2.34)

Next, (2.29) leads to

Tn2 = Ṽn(x)

[
Fτ0

(
un + ψ, J

(
un + ψ

)) − Fτ0(u0 + ψ, J(un + ψ))](x + xn)
un(x + xn) − u0(x + xn)

= Ṽn(x)
∂Fτ0
∂u

(
s
(
un + ψ

)
+ (1 − s)(u0 + ψ), J(un + ψ))(x + xn)

= Ṽn(x)
∂Fτ0
∂u

(
sun + (1 − s)u0 + ψ, J

(
un + ψ

))
(x + xn),

(2.35)
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for some s ∈ [0, 1]. By (2.20)we obtain |un(x+xn)| ≤M/μ(x+xn), |u0(x+xn)| ≤M/μ(x+xn),
hence

(
sun + (1 − s)u0 + ψ

)
(x + xn) −→ w±,

J
(
un + ψ

)
(x + xn) =

∫∞

−∞
φ
(
x + xn − y

)
un

(
y
)
dy +

∫∞

−∞
φ
(
x + xn − y

)
ψ
(
y
)
dy.

(2.36)

By the change of variable xn − y = −z, it follows that

J
(
un + ψ

)
(x + xn) =

∫∞

−∞
φ(x − z)un(xn + z)dz +

∫∞

−∞
φ(x − z)ψ(xn + z)dz −→ w±, (2.37)

uniformly on bounded intervals of x. Hypothesis (H1) shows that

Tn2 −→ ∂Fτ0
∂u

(
w±, w±)Ṽ0, as n −→ ∞ in E0

loc. (2.38)

On the other hand,

Tn3 = μ
(
J
(
un + ψ

) − J(u0 + ψ))

× Fτ0
(
u0 + ψ, J

(
un + ψ

)) − Fτ0(u0 + ψ, J(u0 + ψ))
J
(
un + ψ

) − J(u0 + ψ) (x + xn)

= In(x) ·
∂Fτ0
∂U

(
u0 + ψ, sJ

(
un + ψ

)
+ (1 − s)J(u0 + ψ))(x + xn),

(2.39)

for some s ∈ [0, 1], where In(x) = μ(J(un + ψ) − J(u0 + ψ)). For μ(x) = 1 + x2, x ∈ �, with the
aid of (2.29), we arrive at

In(x) =
∫∞

−∞

μ(x + xn)
μ(z + xn)

φ(x − z)Ṽn(z)dz −→
∫∞

−∞
φ(x − z)Ṽ0(z)dz = J

(
Ṽ0

)
, (2.40)

in E0
loc. As above, since J(un)(x + xn) → 0, J(u0)(x + xn) → 0, J(ψ)(x + xn) → w± uniformly

on bounded intervals of x, we deduce that

Tn3 −→ ∂Fτ0
∂U

(
w±, w±)J(Ṽ0

)
, as n −→ ∞ in E0

loc. (2.41)

Now we may pass to the limit in (2.31). With the aid of (2.33)–(2.41) and (H2), one
arrives at

Ṽ ′′
0 + c(τ0)Ṽ ′

0 +
∂Fτ0
∂u

(
w±, w±)Ṽ0 +

∂Fτ0
∂U

(
w±, w±)J(Ṽ0

)
= 0, (2.42)

which contradicts (H3). Therefore we have proved that Vn → 0 in C(�).
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Now we have to show that Vn → 0 in E = C2+α(�). To this end, we write (2.28) in the
form S(Vn) = hn, where S(Vn) is the linear part from the left-hand side and

hn =
(
μfn − μf0

) − μ[Fτn(un + ψ, J(un + ψ)) − Fτ0(u0 + ψ, J(u0 + ψ))]

− [c(τn) − c(τ0)]
(
v′0 −

μ′

μ
v0 + μψ ′

)
.

(2.43)

Using Lemma 2.1 from [6] for the linear operator S, we can write

‖Vn‖E ≤ C
(
‖S(Vn)‖E0 + ‖Vn‖C(�)

)
. (2.44)

Wemake use of Lemma 2.4, hypothesis (H2) for c(τn)−c(τ0), and of the convergence fn → f0
in E0

μ, to deduce that S(Vn) = hn → 0 in E0 = Cα(�). Since Vn → 0 in C(�), we conclude that
un → u0 in Eμ. The theorem is proved.

3. Fredholm Property in Weighted Spaces

Consider the operator Lτ : Eμ = C2+α
μ → E0

μ = Cα
μ,

Lτu = u′′ + c(τ)u′ +
∂Fτ
∂u

(
u1 + ψ, J

(
u1 + ψ

))
u +

∂Fτ
∂U

(
u1 + ψ, J

(
u1 + ψ

))
J(u), (3.1)

and its limiting operators

L±
τ u = u′′ + c(τ)u′ +

∂Fτ
∂u

(
w±, w±)u +

∂Fτ
∂U

(
w±, w±)J(u). (3.2)

Recall here condition NS for Lτ , that is, hypothesis (H3): for each τ ∈ [0, 1], the limiting
equations L±

τ u = 0 do not have nonzero solutions.
We prove now the Fredholm property of Lτ as an operator acting between the above

weighted Holder spaces.

Theorem 3.1. If condition NS is satisfied, then the operator Lτ : Eμ = C2+α
μ → E0

μ = Cα
μ (acting

between weighted spaces) is normally solvable with a finite-dimensional kernel.

Proof. Like in Theorem 2.2 from [6], we can prove that Lτ from E to E0 is normally solvable
with a finite-dimensional kernel. To verify the property in the weighted spaces, we use
Lemma 2.24 in [18]: if Lτ : E → E0 is normally solvable with a finite-dimensional kernel
and the operator K : Eμ → E0, Ku = μLτu − Lτ(μu) is compact, then Lτ : Eμ → E0

μ is
normally solvable with a finite-dimensional kernel.

Let {ui} be a sequence such that ||ui||Eμ ≤ M. We prove the existence of a subsequence
of {Kui} which converges in E0 = Cα(�). Consider the sequence vi = μui. Since ‖vi‖ =
‖ui‖Eμ ≤ M, one can find a subsequence, denoted again {vi}, which converges locally in C2

to a function v0, which can be prolonged to � by a diagonalization process. We have v0 ∈ E,
‖v0‖E ≤M and vi → v0 in Eloc (in C2+α(I), for every bounded interval I).
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Let u0 be such that v0 = μu0. Then

‖Kui −Ku0‖E0 =
∥∥∥∥K

(
zi
μ

)∥∥∥∥
E0

, zi = vi − v0 = μ(ui − u0). (3.3)

Observe that ‖zi‖E ≤ 2M and zi → 0 in Eloc. Now we can write

K

(
zi
μ

)
= μLτ

(
zi
μ

)
− Lτ(zi) =

(
−μ

′′

μ
+ 2

(
μ′

μ

)2

− c(τ)μ
′

μ

)
zi − 2

μ′

μ
z′i

+
∂Fτ
∂U

(
u1 + ψ, J

(
u1 + ψ

))[
μJ

(
zi
μ

)
− J(zi)

]
.

(3.4)

But

μJ

(
zi
μ

)
− J(zi) =

∫∞

−∞
φ
(
x − y)zi(y)

[
μ(x)
μ
(
y
) − 1

]
dy

=
∫∞

−∞
φ(ξ)zi(x − ξ)

[
μ(x)

μ(x − ξ) − 1
]
dξ.

(3.5)

Since μ(x)/μ(x − ξ)− 1 ≤ h(x), where h(x) → 0 as x → ±∞, zi(x) is uniformly bounded and
zi(x) → 0 as i → ∞ locally with respect to x, it follows that μJ(zi/μ) − J(zi) → 0 as i → ∞,
uniformly with respect to x on �. Similarly, zi, z′i are uniformly bounded, zi → 0, z′i → 0
as i → ∞ locally and μ′′/μ → 0, μ′/μ → 0 as x → ±∞, so the first two terms from (3.4)
tend to zero uniformly with respect to x ∈ �, as i → ∞. This implies that K(zi/μ) → 0 as
i → ∞ in C(�). Therefore, with the aid of the local convergence zi → 0 in C2, we conclude
that Kui → Ku0 as i → ∞ in E0 = Cα(�). The theorem is proved.

We prove now the Fredholm property for Lτ : Eμ → E0
μ, under an additional

hypothesis. To this end, let I be the identity operator on Eμ.

Condition NS[λ]

For each τ ∈ [0, 1], the limiting equations L±
τ u − λu = 0 associated to the operator Lτ − λI do

not have nonzero solutions in Eμ, for any λ ≥ 0.
We recall an auxiliary result from [6] which will be employed below.

Lemma 3.2. Consider the operators L0, L1 : C2+α(�) → Cα(�) defined by L0u = Lτu − ρu, L1u =
u′′ − ρu (ρ ≥ 0) and the homotopy Ls : C2+α(�) → Cα(�), Ls = (1 − s)L0 + sL1, s ∈ [0, 1]. Then
there exists ρ ≥ 0 large enough such that the limiting equations (Ls)±u = 0 do not have nonzero
solutions for any s ∈ [0, 1].

Theorem 3.3. If Condition NS(λ) is satisfied, then Lτ , regarded as an operator from Eμ to E0
μ, has

the Fredholm property and its index is zero.

Proof. We put L0u = Lτu − λu, L1u = u′′ − λu and Ls : Eμ = C2+α
μ (�) → E0

μ = Cα
μ(�),

Ls = (1 − s)L0 + sL1, s ∈ [0, 1]. Condition NS(λ) for Lτ implies Condition NS for L0 = Lτ − λI.
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Then, Theorem 3.1 ensures that L0 = Lτ − λI, regarded from Eμ to E0
μ, is normally solvable

with a finite-dimensional kernel. For operator L1, we have kerL1 = {0}, ImL1 = E0
μ, hence L

1

is a Fredholm operator and its index is indL1 = 0.
By Lemma 3.2 applied for Ls, there exists λ ≥ 0 large enough such that Condition

NS holds for all Ls, s ∈ [0, 1]. In view of Theorem 3.1, it follows that the operators Ls are
normally solvable with a finite-dimensional kernel. In other words, the homotopy Ls gives a
continuous deformation from the operator L0 to the operator L1, in the class of the normally
solvable operators with finite-dimensional kernels. Such deformation preserves the Fredholm
property and the index. Since the index of L1 is zero, we derive that the index of all Ls is zero.
In particular, for s = 0 and λ = 0, one arrives at the conclusion that Lτ has the Fredholm
property and its index is zero. This completes the proof.

4. Topological Degree

In this section we apply the topological degree construction for Fredholm and proper
operators with the zero index constructed in [18] to the integro-differential operators.

Definitions. Recall in the beginning the definition of the topological degree. Consider two
Banach spaces E1, E2, a class Φ of operators acting from E1 to E2 and a class of homotopies

H = {Aτ(u) : E1 × [0, 1] −→ E2, such that Aτ(u) ∈ Φ, (∀)τ ∈ [0, 1]}. (4.1)

LetD ⊂ E1 be an open bounded set andA ∈ Φ such thatA(u)/= 0, u ∈ ∂D, where ∂D is
the boundary of D. Suppose that for such a pair (D,A), there exists an integer γ(A,D) with
the following properties.

(i) Homotopy invariance. If Aτ(u) ∈H and Aτ(u)/= 0, for u ∈ ∂D, τ ∈ [0, 1], then

γ(A0, D) = γ(A1, D). (4.2)

(ii) Additivity. If A ∈ Φ, D is the closure of D and D1, D2 ⊂ D are open sets, such that
D1 ∩D2 = � and A(u)/= 0, for all u ∈ D \ (D1 ∪D2), then

γ(A,D) = γ(A,D1) + γ(A,D2). (4.3)

(iii) Normalization. There exists a bounded linear operator J : E1 → E2 with a bounded
inverse defined on all E2 such that, for every bounded set D ⊂ E1 with 0 ∈ D,

γ(J,D) = 1. (4.4)

The integer γ(A,D) is called a topological degree.
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4.1. Degree for Fredholm and Proper Operators

We now recall a general result concerning the existence of a topological degree which was
proved in [18, 19].

Let E1 and E2 be Banach spaces, E1 ⊆ E2 algebraically and topologically and let G ⊂ E1

be an open bounded set.
Denote by I : E1 → E2 the imbedding operator, Iu = u, and by Φ a class of bounded

linear operators L : E1 → E2 satisfying the following conditions:

(a) the operator L − λI : E1 → E2 is Fredholm for all λ ≥ 0,

(b) for every operator L ∈ Φ, there is λ0 = λ0(L) such that L − λI has a uniformly
bounded inverse for all λ > λ0.

Denote by F the class

F =
{
B ∈ C1(G,E2), B proper, B′(x) ∈ Φ, (∀)x ∈ G

}
, (4.5)

where B′(x) is the Fréchet derivative of the operator B.
Finally, one introduces the class H of homotopies given by

H =
{
B(x, τ) ∈ C1(G × [0, 1], E2), B proper, B(·, τ) ∈ F, (∀)τ ∈ [0, 1]

}
. (4.6)

Here the properness of B is understood in both variables x ∈ G and τ ∈ [0, 1].

Theorem 4.1 (see [18]). For every B ∈ H and every open set D, with D ⊂ G, there exists a
topological degree γ(B,D).

Remark 4.2. Condition (b) can be weakened. Let E′
1 and E′

2 be two Banach spaces such that
Ei ⊂ E′

i, i = 1, 2where the inclusion is understood in the algebraic and topological sense. In the
case of the Hölder space Ck+α(�), this can be the space Ck(�) with an integer nonnegative k.
We can also consider some integral spacesWk,p

∞ (�) [17]. Instead of (b) above we can impose
the following condition [20]:

(b′) for every operator L : E′
1 → E′

2, there is λ0 = λ0(L) such that L − λI has a uniformly
bounded inverse for all λ > λ0.

4.2. Degree for the Integrodifferential Operators

Now, let E1 = Eμ and E2 = E0
μ be the weighted spaces introduced in the previous section, with

μ(x) = 1 + x2, x ∈ �. We will apply Theorem 4.1 for the integro-differential operator A of the
form (1.6), where function ψ ∈ C∞(�), ψ(x) = w+, for x ≥ 1, ψ(x) = w− for x ≤ −1 and

(H4) F(u,U) and its derivatives with respect to u and U are Lipschitz continuous in
(u,U);
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(H5) the limiting equations

u′′ + cu′ +
∂F

∂u

(
w±, w±)u +

∂F

∂U

(
w±, w±)J(u) − λu = 0 (4.7)

do not have nonzero solutions in E, (∀)λ ≥ 0.

Under these hypotheses, Theorem 2.5 assures that operator A is proper. Moreover, its
Fréchet derivative is A′ = L from (1.7) and it is a Fredholm operator with the index zero
(Theorem 3.3).

Consider F the class of operators A defined through (1.6), such that (H4)-(H5) are
satisfied. Consider also the classH of homotopies Aτ : Eμ → E0

μ, τ ∈ [0, 1], of the form (2.6),
satisfying (H1)-(H2) and

(H6) for every τ ∈ [0, 1], the equations

u′′ + c(τ)u′ +
∂Fτ
∂u

(
w±, w±)u +

∂Fτ
∂U

(
w±, w±)J(u) − λu = 0 (4.8)

do not have nonzero solutions in E, (∀)λ ≥ 0. By Theorem 2.5 and Theorem 3.3, we
infer that operators Aτ(u) are Fréchet differentiable, proper with respect to (u, τ)
and their Fréchet derivatives A′

τ = Lτ verify condition (a) above. Condition (b′)
follows from the lemma in the appendix. Hence H has the form (4.6). Applying
Theorem 4.1 for the class of operators F and the class of homotopies H, we are led
to the following result.

Theorem 4.3. Suppose that functions Fτ and c(τ) satisfy conditions (H1)-(H2) and (H4)–(H6).
Then a topological degree exists for the class F of operators and the classH of homotopies.

5. Applications to Travelling Waves

In this section we will discuss some applications of the Fredholm property, properness
and topological degree to study travelling wave solutions of (1.1). Let us begin with the
classification of the nonlinearities. Denote

F0(w) = F(w,w). (5.1)

We obtain this function from F(w, J(w)) if we formally replace the kernel φ(x) of the integral
by the δ-function. The corresponding reaction-diffusion equation

∂u

∂t
=
∂2u

∂x2
+ F0(u) (5.2)

is called bistable if F ′
0(w

±) < 0, monostable if one of these derivatives is positive and another
one negative and, finally, unstable if F ′

0(w
±) > 0. As it is well-known, it can have travelling

wave solutions, that is solutions, which satisfy the problem

w′′ + cw′ + F0(w) = 0, w(±∞) = w±. (5.3)
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Let w0(x) be a solution of (5.3) with some c = c0. The operator L0 linearized about this
solution,

L0u = u′′ + c0u′ + F ′
0(w0)u (5.4)

has the essential spectrum given by two parabolas:

λ0±(ξ) = −ξ2 + c0iξ + F ′
0

(
w±), ξ ∈ �. (5.5)

Therefore the operator L0 satisfies the Fredholm property if and only if F ′
0(w

±)/= 0. If this
condition is satisfied, then the index of the operator is well defined. In the bistable case it
equals 0, in the monostable case 1, in the unstable case 0 [9].

In the case of the integro-differential operator

Lu = u′′ + c0u′ + F ′
u(w, J(w))u + F ′

U(w, J(w))J(u), (5.6)

the essential spectrum is given by the curves

λ±(ξ) = −ξ2 + c0iξ + F ′
u

(
w±, w±) + F ′

U

(
w±, w±)φ̃(ξ), ξ ∈ �, (5.7)

where φ̃(ξ) is the Fourier transform of the function φ(x). If we replace J(u) by u, that is, φ(x)
by the δ -function, then the spectrum of the integro-differential operator coincides with the
spectrum of the reaction-diffusion operator.

We note that

F ′
u

(
w±, w±) + F ′

U

(
w±, w±)φ̃(0) = F ′

0

(
w±),

Re φ̃(ξ) =
∫∞

−∞
φ(x) cos(ξx)dx <

∫∞

−∞
φ(x)dx = 1.

(5.8)

5.1. Fredholm Property

Bistable Case

Let

F ′
0

(
w±) = F ′

u

(
w±, w±) + F ′

U

(
w±, w±) < 0 (5.9)

(we recall that φ̃(0) = 1). Suppose that F ′
u(w+, w+) < 0 and F ′

U(w+, w+) > 0. Then Re λ+(ξ) < 0
for all ξ ∈ � since

F ′
u

(
w±, w±) + ReF ′

U

(
w±, w±)φ̃(ξ) ≤ F ′

u

(
w±, w±) + F ′

U

(
w±, w±) = F ′

0

(
w±). (5.10)

Hence the essential spectrum is completely in the left-half plane. This allows us to prove
properness of the corresponding operators in weighted spaces and to define the topological
degree.
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ci ξ0

−ci ξ0

Figure 1: Schematic representation of a possible location of the essential spectrum of the operator L.

Consider now the case where F ′
u(w+, w+) > 0 and F ′

U(w+, w+) < 0. The principal
difference with the previous case is that the essential spectrum of the integro-differential
operator may not be completely in the left-half plane (Figure 1) though this is the case for the
reaction-diffusion operator. Depending on the parameters, the essential spectrum can cross
the imaginary axis for some pure imaginary values. However the linear operator remains
Fredholm since the essential spectrum does not cross the origin; the nonlinear operator
remains proper in the corresponding weighted spaces.

Thus, the bistable case for the reaction-diffusion equation gives rise to two different
cases for the integro-differential equation. We will call both of them bistable but will
distinguish them when necessary.

Monostable Case

Suppose that F ′
0(w+) > 0 and F ′

0(w−) < 0. Then λ0−(ξ) is in the left-half plane for all ξ ∈ �; λ0+(ξ)
is partially in the right-half plane, λ0+(0) > 0. The essential spectrum of the integro-differential
operator L given by the curves λ±(ξ) has a similar structure. It does not cross the origin, so
that the operator satisfies the Fredholm property. The curve λ+(ξ) is partially in the right-half
plane, λ+(0) = λ0+(0) > 0. The curve λ−(ξ) can be completely in the left-half plane or partially
in the right-half plane (Figure 1). Similar to the bistable case, there are two subcases in the
monostable case.

Index

In order to find the index of the operator L, we consider the operator Lτ which depends on the
parameter τ characterizing the width of the support of the function φτ , supp φτ = [−Nτ,Nτ].
We recall that

∫∞
−∞ φτ(x)dx = 1. Let L1 = L, that is the value τ = 1 corresponds to the function

φ in the operator L.
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Since the essential spectrum of the operator Lτ can be determined explicitly, then we
can affirm that it converges to the essential spectrum of the operator L0 as τ → 0. Moreover,
Lτ converges to L0 in the operator norm. The essential spectrum of the operator Lτ does not
cross the origin. Therefore it is normally solvable with a finite-dimensional kernel. Hence the
index of the operator L equals the index of the operator L0 [12]. It is 0 in the bistable case and
1 in the monostable case (cf. [9]).

5.2. Topological Degree and Existence of Solutions

In the bistable case we can define the topological degree for the integro-differential operator
and use the Leray-Schauder method to prove existence of solutions. In order to use this
method we need to obtain a priori estimates of solutions. In [10], a priori estimates are
obtained in the case where

F(u, J(u)) = J(u)u(1 − u) − αu. (5.11)

Thus, we can now conclude about the existence of waves for this particular form of the
nonlinearity. More general functions will be considered in the subsequent works.

5.3. Local Bifurcations and Branches of Solutions

Other conventional applications of the degree are related to local bifurcations and global
branches of solutions (see, e.g., [14]). We can now use the corresponding results for the
integro-differential operator in the bistable case. Let us emphasize that these results apply
in particular for the case where the essential spectrum of the linearized operator crosses the
imaginary axis (see above). Therefore the wave persists in this case unless a priori estimates
are lost.

Appendix

Sectorial property of an operator implies certain location of its essential spectrum and an
estimate of the resolvent. For general elliptic problems in unbounded domains it is proved in
[20]. A simple particular case of second-order operators on the axis is considered in [21]. In
the lemma below we prove an estimate of the resolvent using this last result.

Lemma A.1. LetM0 : C2(R) → C(R),

M0u = u′′ + b(x)u′(x) + c(x)u + d(x)J(u), (A.1)

where the coefficients of this operator are sufficiently smooth bounded functions. Then the operator
Mλu = M0u − λu, considered as acting in the same spaces, has a bounded inverse with the norm
independent of λ for λ ≥ λ0 > 0, where λ0 is sufficiently large.
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Proof. Consider the equation

Mλu = f. (A.2)

We need to obtain the estimate

‖u‖C2(�) ≤ K
∥∥f∥∥C(�) (A.3)

of this equation where K is independent of λ for all λ sufficiently large. Here and below we
denote by K the constants independent of u, f , and λ.

We first prove the estimate

‖u‖C(�) ≤ K
∥∥f∥∥C(�)

λ
. (A.4)

Since the operator

M̂u = u′′ + b(x)u′(x) + c(x)u (A.5)

is sectorial [21], then

‖u‖C(�) ≤ K

∥∥∥M̂u − λu
∥∥∥
C(�)

λ
= K

∥∥f − d(x)J(u)∥∥C(�)
λ

≤ K

λ

(∥∥f∥∥C(�) + ‖u‖C(�)
)
.

(A.6)

Estimate (A.4) follows from the last one for λ sufficiently large.
We can write (A.2) in the form

M0u − σu = f + λu − σu. (A.7)

We can choose σ > 0 such that the operator in the left-hand side is invertible. Hence

‖u‖C2(�) ≤ K
(∥∥f∥∥

C(�) + λ‖u‖C(�) + σ‖u‖C(�)
)
. (A.8)

This estimate and (A.4) give (A.3). The lemma is proved.

This lemma remains valid for the operators acting in the weighted spaces.
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