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We study the membership of inner functions in Besov, Lipschitz, and Hardy-Sobolev spaces,
finding conditions that enable an inner function to be in one of these spaces. Several results in
this direction are given that complement or extend previous works on the subject from different
authors. In particular, we prove that the only inner functions in either any of the Hardy-Sobolev
spacesHp

α with 1/p ≤ α <∞ or any of the Besov spaces Bp,qα with 0 < p, q ≤ ∞ and α ≥ 1/p, except
when p = ∞, α = 0, and 2 < q ≤ ∞ or when 0 < p < ∞, q = ∞, and α = 1/p are finite Blaschke
products. Our assertion for the spaces B∞,q

0 , 0 < q ≤ 2, follows from the fact that they are included
in the space VMOA. We prove also that for 2 < q < ∞, VMOA is not contained in B∞,q

0 and that
this space contains infinite Blaschke products. Furthermore, we obtain distinct results for other
values of α relating the membership of an inner function I in the spaces under consideration with
the distribution of the sequences of preimages {I−1(a)}, |a| < 1. In addition, we include a section
devoted to Blaschke products with zeros in a Stolz angle.

1. Introduction

One of the central questions about inner functions is that of their membership in some
classical function spaces. This problem was studied in a number of papers in the 70’s and
80’s (see, e. g.,[1–10]) and also recently (see, e. g., [11–18]). In this paper, we shall be mainly
concerned in studying the membership of inner functions in Besov, Lipschitz, and Hardy-
Sobolev spaces.

Denote by � = {z ∈ � : |z| < 1} the open unit disk in the complex plane � , and
byHol(� ) the class of analytic functions on � . The classical Hardy space Hp, 0 < p ≤ ∞,
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consists of those functions f ∈ Hol(� ) for which

∥
∥f
∥
∥
Hp := sup

0<r<1
Mp

(

r, f
)

<∞, (1.1)

whereMp(r, f) = ((1/2π)
∫2π
0 |f(reiθ)|pdθ)1/p if 0 < p < ∞, andM∞(r, f) = max|z|=r |f(z)|.

We mention [19, 20] as references for the theory of Hardy spaces. TheHp spaces form
a decreasing chain as p increases, and any function in Hp has nontangential limits almost
everywhere, with the additional property that the boundary function thus formed defines an
isometry between Hp and Lp(∂� ). The sequence {zk} of zeros of an Hp function, counting
multiplicities, satisfies the so-called Blaschke condition:

∑

k(1 − |zk|) < ∞. This condition
characterizes the zero sequences ofHp functions. By writing ba(z) = (|a|/a)((a−z)/(1−az))
when a ∈ � , a /= 0, and b0(z) = z, the Blaschke condition implies that the product

∏

kbzk(z)
converges absolutely and uniformly in each compact subset of � , hence defining a function
B(z), called the Blaschke product associated to the sequence {zk}, which is analytic in the unit
disk � , and whose exact sequence of zeros, counting multiplicities, is {zk}. Also, ‖B‖H∞ ≤ 1,
and its boundary function has modulus 1 almost everywhere.

An inner function in � is an H∞ function whose nontangential boundary function
has modulus 1 almost everywhere. Thus, Blaschke products are inner functions. Any inner
function I admits a factorization of the type I(z) = eiγB(z)S(z), where γ is a real constant, B
is a Blaschke product (carrying all the zeros of I), and S is what it is called a singular inner
function, having the form

S(z) = exp

(

−
∫2π

0

eiθ + z
eiθ − zdμ(θ)

)

, (1.2)

where μ is a positive Borel measure on [0, 2π), singular with respect to Lebesgue measure.
From now on, a Blaschke product times a unimodular constant (that may be 1) will also be
called a Blaschke product, just to simplify the language. Continuing with the terminology
that may appear in the paper, a Blaschke product with a finite number of zeros will be called
a finite Blaschke product, while that with an infinite number of zeros will be called an infinite
Blaschke product.

The different classes of analytic functions that will be treated in this paper are
presented now. Before, let us say a word about the notational conventions used in this paper.
Constants will usually be denoted by the letter C. Their dependence on other quantities, if
specified, will appear as subindexes. In the same expression, the constant Cmay change from
one occurrence to the other. Two quantities or expressions,A and B, are said to be comparable
(written A � B) if there exists a positive constant C such that C

−1
B ≤ A ≤ CB. If functions

are involved in the quantities that are being compared, the constants relating them do not
usually depend on those functions, neither on their variables.

The weighted Bergman space Ap,α, 0 < p < ∞, −1 < α < ∞ consists of those functions
f ∈ Hol(� ) such that

∥
∥f
∥
∥
Ap,α :=

(
α + 1
π

∫

�

∣
∣f(z)

∣
∣
p
(

1 − |z|2
)α
dA(z)

)1/p

< ∞, (1.3)
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where dA(z) = dxdy denotes the Lebesgue area measure in � . We mention the books [21, 22]
as general references for the theory of Bergman spaces.

If f(z) =
∑∞

k=0 f̂(k)z
k is analytic in � and α > 0, the fractional derivative of order α of f ,

Dαf is defined as

Dαf(z) =
∞∑

k=0

(k + 1)αf̂(k)zk. (1.4)

(This definition also makes sense for α ≤ 0, only that the name “derivative” would
look a bit awkward.) For a positive integer n, it is actually an “n-th derivative”:
Dnf(z) = ((d/dz)z)nf(z). Besides, the integral means Mp(r,Dnf) and Mp(r, f (n)) are
usually interchangeable, in the sense that their quotient is bounded away from 0 and∞ (see,
e.g., [23] for this fact and the formulas that appear below). In general, there is a formula to
recover the function from its fractional derivative, which can be easily verified,

f(z) =
1

Γ(α)

∫1

0
Dαf(sz)logα−1

1
s
ds. (1.5)

This yields the estimate

∣
∣f(z)

∣
∣ ≤ C

∫1

0

∣
∣Dαf(sz)

∣
∣(1 − s)α−1ds. (1.6)

If 0 < p ≤ ∞ and 0 ≤ α < ∞, then a function f ∈ Hol(� ) is said to belong to the
Lipschitz space Λp,α if

∥
∥f
∥
∥
Λp,α := sup

0<r<1
(1 − r)Mp

(

r,D1+αf
)

<∞. (1.7)

The subspace λp,α consists of those f ∈ Hol(� ) for which

lim
r→ 1

(1 − r)Mp

(

r,D1+αf
)

= 0. (1.8)

Notice that Λ∞,0 is another name for the usual Bloch space B, of functions f ∈ Hol(� ) such
that supz∈� (1 − |z|2)|f ′(z)| < ∞. Analogously, λ∞,0 is the little Bloch space B0, of functions
f ∈ Hol(� ) such that lim|z|→ 1(1 − |z|2)|f ′(z)| = 0.

Replacing the sup-norm with an Lq-norm in the above definition gives way to the
Besov space Bp,qα , 0 < p ≤ ∞, 0 < q <∞, 0 ≤ α < ∞, consisting of those functions f ∈ Hol(� ) for
which

∥
∥f
∥
∥
B
p,q
α

:=

(∫1

0
(1 − r)q−1Mq

p

(

r,D1+αf
)

dr

)1/q

< ∞. (1.9)
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The space obtained when q = ∞ is preciselyBp,∞α ≡ Λp,α. Other classes treated in this paper are
the Hardy-Sobolev spaces Hp

α , 0 < p ≤ ∞, 0 ≤ α < ∞, consisting of those functions f ∈ Hol(� )
for which

∥
∥f
∥
∥
H

p
α
:=
∥
∥Dαf

∥
∥
Hp < ∞. (1.10)

The paper of Flett [23] gives many relations between the different types of integrals
just mentioned above. Since they will occur recurrently along this paper, it may be convenient
to state once for all some of them. Starting from the estimate (1.6), and working it out into the
integral means of order p gives

M
p
p

(

r, f
) ≤ C

∫1

0
(1 − s)pα−1Mp

p

(

rs,Dαf
)

ds,
(

0 < p < 1, 0 < α
)

, (1.11)

Mp

(

r, f
) ≤ C

∫1

0
(1 − s)α−1Mp

(

rs,Dαf
)

ds,
(

1 ≤ p ≤ ∞, 0 < α
)

. (1.12)

The same estimate (1.6) combined with variants of Hardy’s inequality gives

sup
0<ρ≤r

(

1 − ρ)αMp

(

ρ,Dβf
)

� sup
0<ρ≤r

(

1 − ρ)α−β+γMp

(

ρ,Dγf
)

,

(

0 < p ≤ ∞, α > max
{

0, β − γ}),
(1.13)

∫1

0
(1 − r)α−1Mq

p

(

r,Dβf
)

dr �
∫1

0
(1 − r)α−q(β−γ)−1Mq

p

(

r,Dγf
)

dr,

(

0 < q < ∞, 0 < p ≤ ∞, α > max
{

0, q
(

β − γ)}).
(1.14)

We continue displaying more estimates. The following one is due essentially to Hardy
and Littlewood (see, e.g., [19, Theorem 5.9], or [24, Lemma 3.4]):

Mq

(

r, f
) ≤ Cp,q(1 − r)1/q−1/pMp

(
1 + r
2

, f

)

,
(

0 < p < q ≤ ∞). (1.15)

Finally, we provide also the following estimates, due to Littlewood and Paley [25,
Theorems 5 and 6], for p ≥ 1, and to Vinogradov [26, Lemma 1.4], for 0 < p < 1.

sup
0≤r<1

Mp

(

r, f
) ≤ Cp

∫1

0
(1 − r)p−1Mp

p

(

r,D1f
)

dr,
(

0 < p ≤ 2
)

, (1.16)

∫1

0
(1 − r)p−1Mp

p

(

r,D1f
)

dr ≤ Cp sup
0≤r<1

Mp

(

r, f
)

,
(

p ≥ 2
)

, (1.17)

which can be restated as Bp,p0 ⊆ Hp, for 0 < p ≤ 2, andHp ⊆ Bp,p0 , for p ≥ 2.
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With the above estimates, we can easily obtain some more relations of inclusion
between the different spaces considered in this paper. We enumerate some of these relations,
with the purpose of having them at hand.

(P1) If q < ∞, Bp,qα ⊆ λp,α: If f ∈ B
p,q
α , then

∫1
r
(1 − ρ)q−1Mq

p(ρ,D1+αf)dρ → 0 as r → 1,
so by using the increasing behavior of the means Mp(r,D1+αf), obtain that (1 −
r)Mp(r,D1+αf) → 0, as r → 1, that is, that f ∈ λp,α.

(P2) If q1 ≤ q2, Bp,q1α ⊆ Bp,q2α , because (1 − r)Mp(r,D1+αf) → 0, as r → 1, for all f ∈ Bp,q1α .

(P3) If p1 ≤ p2, B
p2 ,q
α ⊆ B

p1 ,q
α , and H

p2
α ⊆ H

p1
α , because Mp1(r, g) ≤ Mp2(r, g) for all r ∈

(0, 1) and all g ∈ Hol(� ).

(P4) If α1 ≤ α2, Bp,qα2 ⊆ Bp,qα1 . Indeed, for f ∈ Bp,qα2 , (1.14) gives

∥
∥f
∥
∥
q

B
p,q
α1

�
∫1

0
(1 − r)q−1+q(α2−α1)Mq

p

(

r,D1+α2f
)

dr <
∥
∥f
∥
∥
q

B
p,q
α2

<∞. (1.18)

(P5) If α1 ≤ α2,Hp
α2 ⊆ H

p
α1 , because of (1.11) and (1.12).

(P6) If 0 < p1 ≤ p2, B
p1 ,q

1/p1
⊆ B

p2 ,q

1/p2
. (When q = ∞, this says that Λp,1/p increases with p). A

proof of this lies in an application of (1.15) and (1.14),

∥
∥f
∥
∥
q

B
p2 ,q
1/p2

�
∫1

0
(1 − r)q−1+q(1/p1−1/p2)Mq

p2

(

r,D1+1/p1f
)

dr ≤ C∥∥f∥∥q
B
p1 ,q
1/p1

. (1.19)

(P7) Λp,α ⊆ ∩{Bp,qβ : β < α, 0 < q}. This is again an application of (1.14),

∥
∥f
∥
∥
q

B
p,q

β

�
∫1

0
(1 − r)q(α−β)−1+qMq

p

(

r,D1+αf
)

dr ≤ C∥∥f∥∥Λp,α , (1.20)

where C =
∫1
0 (1 − r)q(α−β)−1dr <∞.

(P8) Hp
α ⊆ ∩{Bp,q

β
: β < α, 0 < q}. Again an application of (1.14).

(P9) If 0 < p ≤ 2, Bp,pα ⊆ Hp
α . This is (1.16).

(P10) If 2 ≤ p,Hp
α ⊆ Bp,pα . And this is (1.17).

In the following, we introduce some notation related to inner functions. Given an inner
function I and a point a ∈ � , its Frostman shift Ia is defined as

Ia(z) =
I(z) − a
1 − aI(z) , z ∈ � . (1.21)
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A classical result of Frostman (see, e.g., [20, Section 2.6] asserts that if I is an inner function
in � then the Frostman shifts Ia are Blaschke products for all a ∈ � except for those in a
set E (depending on I) of logarithmic capacity zero. Even more, if I cannot be analytically
continued across one boundary point, that is, if I is not a finite Blaschke product, then for
all a ∈ � \ E, with E a set of logarithmic capacity zero, the Frostman shift Ia is an infinite
Blaschke product.

The fact that mixed norms of derivatives of an inner function are comparable to those
of its Frostman shifts must be a well known result, which we have not found in the literature.
Since it plays a key role to obtain some of our results, we include a proof just for the sake of
completeness.

Lemma 1.1. Let 0 < p, q ≤ ∞, 0 ≤ α, 0 < δ < 1/2, and a ∈ Kδ = {z ∈ � : δ < |z| < 1 − δ}.
Then ‖Ia‖Bp,qα � ‖I‖Bp,qα , with constants depending only on p, q, α, and δ, but not on I or a. In the case
q = ∞, the formulation is

sup
0≤ρ<r

(

1 − ρ)Mp

(

ρ,D1+αIa
)

� sup
0≤ρ<r

(

1 − ρ)Mp

(

ρ,D1+αI
)

. (1.22)

Proof. Put 1+α = n+β, with n a positive integer and β ∈ [0, 1). We shall only consider the case
q < ∞. The procedure for q = ∞ is rather similar. Also, it is enough to estimate the Bp,qα -norm
of Ia in terms of that of I, for I = (Ia)−a.

Writing ψa(z) = a/(1 − az), z ∈ � observe that the first derivative of Ia can be written
as I ′a = ((1 − |a|2)/a2)(ψa ◦ I)′, and, in general, for a positive integer n, the nth derivative is
given by I(n)a = ((1− |a|2)/a2)(ψa ◦ I)(n). This, together with the Faà di Bruno’s formula for the
nth derivative of a composition, gives

I
(n)
a =

1 − |a|2
a2

(

ψa ◦ I
)(n) =

1 − |a|2
a2

∑ n!
k1! · · ·kn!ψ

(k)
a ◦ I

n∏

j=1

(

I(j)

j!

)kj

, (1.23)

where k =
∑n

j=1 kj , and the sum runs over all n-tuples �k = (k1, . . . , kn) of nonnegative integers

such that
∑n

j=1 jkj = n. Observe that if a ∈ Kδ, the quantities (1 − |a|2)/|a|2 and |ψ(k)
a ◦ I| =

|ψ ◦ I|k+1 are bounded away from 0 and ∞ by constants depending only on k and δ, but not
on a.

Now, to estimate ‖Ia‖qBp,qα , we use, in order, (1.14), (1.23), twice Hölder’s inequality
(Hö) with indices {n/(jkj) : kj /= 0}, again (1.14), and finally we appeal to the fact (I) that
|I(n)(z)| ≤ Cn(1 − |z|)−n (obtained as a result of using Cauchy’s integral formula for the nth
derivative and Lemma 3 in Section 5.5 of Duren’s book [19]),

‖Ia‖qBp,qα =
∫1

0
(1 − r)q−1Mq

p

(

r,Dn+βIa
)

dr
(1.14)
≤ C

∫1

0
(1 − r)q(1−β)−1Mq

p

(

r, I
(n)
a

)

dr

(1.23)
≤ C

∑

�k

∫1

0
(1 − r)q(1−β)−1Mq

p

⎛

⎝r,
n∏

j=1

(

I(j)
)kj

⎞

⎠dr
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(Hö)
≤ C

∑

�k

∫1

0
(1 − r)q(1−β)−1

n∏

j=1

M
qkj
pn/j

(

r, I(j)
)

dr

(Hö)
≤ C

∑

�k

n∏

j=1

(∫1

0
(1 − r)q(1−β)−1Mqn/j

pn/j

(

r, I(j)
)

dr

)jkj/n

(1.14)
≤ C

∑

�k

n∏

j=1

(∫1

0
(1 − r)q(1−β)−1+(qn(n−j))/jMqn/j

pn/j

(

r, I(n)
)

dr

)jkj/n

(I)
≤ C
∑

�k

n∏

j=1

(∫1

0
(1 − r)q(1−β)−1Mq

p

(

r, I(n)
)

dr

)jkj/n (1.14)
≤ C‖I‖q

B
p,q
α
.

(1.24)

2. Inner Functions in the Spaces Bp,qα and H
p
α, α ≥ 1/p

Ahern and Jevtić [5] proved that a Blaschke product lies in the space Bp,∞1/p ≡ Λp,1/p (0 < p <

∞) if and only if its sequence of zeros is a finite union of exponential sequences, (see also
Verbitskiı̆ [27] for the case 1 ≤ p < ∞). We refer the reader to the recent work of Jevtić [15] on
this subject where references to previous works are given. In particular, we have

for 0 < p <∞, the space Bp,∞1/p contains infinite Blaschke products. (2.1)

Our results in this section imply that the opposite is true for all the spaces Bp,qα with 0 < p, q ≤
∞ and α ≥ 1/p, except for the mentioned case, 0 < p < ∞, q = ∞ and α = 1/p, and when
p = ∞, α = 0 and 2 < q ≤ ∞.

Theorem 2.1. (a) Let 0 < p, q ≤ ∞ and α > 1/p. Then the only inner functions in Bp,qα are finite
Blaschke products.

(b) If 0 < p, q < ∞ then the only inner functions in Bp,q1/p are finite Blaschke products.

Proof. To prove (a) observe that Bp,qα ⊆ B
p,∞
α ≡ Λp,α ⊆ Λ∞,α−1/p. The first inclusion comes from

the properties above and the last inclusion may be found in [28, Corollary 2.3], or directly
using (1.13). Now, it is well known (see, e.g., [19, Theorem 5.1] that any function inΛ∞,β, with
β > 0, (even if it is forced to be a constant), belongs to the disk algebra A (that is, it admits
a continuous extension to � ). Thus if we are in the conditions of part (a) and I is an inner
function in Bp,qα then I ∈ A. Then it follows easily that I is a finite Blaschke product. Indeed,
write I(z) = S(z)B(z), where B is a Blaschke product and S is a singular inner function. The
fact that I ∈ A readily implies that B is a finite Blaschke product and then it follows that S
also belongs to A. Then S is a function in the disk algebra without zeros and with |S(ξ)| = 1,
for all ξ ∈ ∂� . A simple application of the maximum-minimum principle readily yields that
S is a unimodular constant. Thus, I is a finite Blaschke product as asserted.
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Let us now turn to prove part (b). The following results come in our aid.

Theorem A (see [8, Corollary 1.6]). Let 0 < p < ∞. If B is a Blaschke product in Hp
1/p, then B is a

finite Blaschke product.

Theorem B (see [5, Theorem 3.2]). For each 0 < p < ∞ there exists εp > 0 such that if B is a
Blaschke product and

lim sup
r→ 1

(1 − r)Mp

(

r,D1+1/pB
)

< εp, (2.2)

then B is a finite Blaschke product. In particular, the only Blaschke products in λp,1/p are the finite
ones.

Using Lemma 1.1, and the fact that the Frostman shifts of a finite Blaschke product
are again finite Blaschke products: we deduce that Theorem A and Theorem B yield the
following.

Proposition 2.2. For 0 < p < ∞, the only inner functions in either Hp

1/p or λp,1/p are the finite
Blaschke products.

Now Theorem 2.1(b) follows from this result and the fact that Bp,q1/p ⊆ λp,1/p.

The fact thatHp
α ⊆ ∩{Bp,q

β
: β < α, 0 < q} immediately implies the following.

Corollary 2.3. Let 0 < p ≤ ∞ and α > 1/p. If f ∈ H
p
α then f admits a continuous extension to � .

Consequently, the only inner functions inHp
α , with α > 1/p, are finite Blaschke products.

It remains to consider the case p = ∞ and α = 0. Of course, H∞
0 ≡ H∞ contains the

whole class of inner functions.
Let us deal now with the spaces B∞,q

0 . First of all, B∞,∞
0 is the Bloch space, and, hence,

it contains all inner functions.
Bishop [29] proved that the little Bloch space, λ∞,0, contains infinite Blaschke products.

Since, for q <∞, B∞,q

0 is a subspace of λ∞,0, the natural question rises as whether B∞,q

0 contains
or not infinite Blaschke products. The answer depends on the result of intersecting B∞,q

0 with
the subspace VMOA of λ∞,0, consisting of those H1 functions whose boundary values have
vanishing mean oscillation. The space VMOA was introduced by Sarason [30] and admits a
number of equivalent definitions. Among them, we mention that a function f ∈H1 is said to
belong to VMOA if

lim
|a| → 1

∥
∥f ◦ ϕa − f(a)

∥
∥
Hp = 0, (2.3)

for some (or, equivalently, for all) finite positive p. Here, ϕa(z) = (a−z)/(1−az) is the typical
involutive automorphism of � interchanging the points 0 and a ∈ � . Using this definition and
the fact that nonconstant inner functions take values as close to 0 as desired, Anderson [31]
proved that VMOA contains no inner functions other than finite Blaschke products. (See also
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[32] for an extensive survey on BMOA and VMOA.) In the following result, we use another
characterization of VMOA; it is the space of functions f ∈ Hol(� ) such that

1
|J |
∫

S(J)

(

1 − |z|2
)∣
∣f ′(z)

∣
∣dA(z) −→ 0, as|J | −→ 0, (2.4)

where J is an interval in ∂� , |J | is its length, and S(J) is the Carleson square defined by
S(J) = {reiθ : eiθ ∈ J, 1 − |J | ≤ r < 1}.

Theorem 2.4. (a), If 0 < q ≤ 2, then B∞,q

0 ⊆ VMOA. Consequently, any inner function in B∞,q

0 is a
finite Blaschke product.

(b) There are infinite Blaschke products in ∩2<q<∞B
∞,q
0 .

Proof. To prove (a) observe that, since B∞,q1
0 ⊆ B∞,q2

0 for 0 < q1 < q2 <∞, it suffices to settle the
result for q = 2.

Thus, take f ∈ B∞,2
0 and take an interval J in ∂� with |J | < 1/2, then

1
|J |
∫

S(J)

(

1 − |z|2
)∣
∣f ′(z)

∣
∣
2
dA(z) ≤ 2

1
|J |
∫1

1−|J |
(1 − r)

∫

J

∣
∣
∣f ′
(

reiθ
)∣
∣
∣

2
dθdr

≤ 2
∫1

1−|J |
(1 − r)M2

∞
(

r, f ′)dr,

(2.5)

and observe that, since f ∈ B∞,2
0 , the right hand side tends to 0 as |J | → 0.

To prove (b), observe that, by Theorem 5.2 of [33], there is a (singular) inner function
I such that

(

1 − |z|2
) |I ′(z)|
1 − |I(z)|2

≤ log−1/2
e

1 − |z| . (2.6)

This implies that I ∈ B
∞,q

0 for all q > 2. Also, as explained also in [33, after (1.1)], such inner
function cannot be analytically continued across any boundary point of � . Therefore, we may
choose a ∈ � such that the Frostman shift Ia is an infinite Blaschke product (actually, this is
true for all a ∈ � except for those in a set of zero logarithmic capacity). Now, Lemma 1.1
shows that Ia is an infinite Blaschke product in ∩2<q<∞B

∞,q
0 .

Once Theorem 2.4 is proved, it is natural to ask whether or not the inclusion VMOA ⊆
B
∞,q

0 holds for 2 < q < ∞. An argument based on duality shows that this is not so.

Theorem 2.5. If 2 < q < ∞, then the class VMOA \ B∞,q
0 is nonempty.

Proof. Observe that the dual of VMOA is H1 under the usual pairing: 〈f, g〉 =
limr→ 1

∑

k f̂(k)ĝ(k)r
k, (see [32, 34]). Also, using the same techniques as in [4], we get that

the dual of B∞,q
0 is B1,q′

0 , 1/q + 1/q′ = 1, under the same pairing as before. Thus, the problem

reduces to show that B1,q′

0 \H1 is nonempty.
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It is shown in Theorem 3 of [35] that the function f(z) = ((1 − z) log(2e/(1 − z)))−1,
z ∈ � is univalent in � and f /∈ H1. Also, an argument given in [24, page 61] shows that there
exist c > 0 and r0 ∈ (0, 1) such that

M1
(

r, f ′) ≤ c

(1 − r)(log(2e/(1 − r))) , r0 < r < 1. (2.7)

It then follows that f ∈ B1,q′

0 , whenever 1 < q′ <∞. This finishes the proof.

3. The Case Max {0, 1/p − 1} < α < 1/p

For this range of values, we shall obtain a number of results relating the membership of an
inner function I in Besov or Hardy-Sobolev spaces with the distribution of the preimages
{I−1(a)}, a ∈ � . We start introducing certain counting functions.

If I is an inner function and a ∈ � , denote by {zk(a)} the exact sequence of zeros,
multiplicities included, of Ia, placed in increasing modulus as the subindex k increases (in
other words, {zk(a)} is the ordered sequence of preimages of a). Writing dk(a) = 1 − |zk(a)|,
the distribution of zeros in each annulus may be studied with the sequences {kn(a)}∞n=0 and
{νn(a)}∞n=0:

kn(a) = Card
{

k : 2−n < dk(a)
}

= max
{

k : 2−n < dk(a)
}

,

νn(a) = Card
{

k : 2−n−1 < dk(a) ≤ 2−n
}

= kn+1(a) − kn(a).
(3.1)

Observe that k0(a) = 0 always. When a = 0, just write {zk}, {dk}, {kn}, and {νn}. The
following relations may be used in the text without further notice.

Lemma 3.1. Under the previous settings, let α, β > 0. Then

(a) {2−nανβn(a)} ∈ �∞ if and only {dα
k
(a)kβ} ∈ �∞, and, in either case, their �∞-norms are

comparable.

(b)
∑

n≥0 2
−nανβn(a) �

∑

k≥1 d
α
k
(a)kβ−1.

Proof. In order to keep up with readability, it is better to omit the letter value a in what
follows, that is, assume a = 0.

To prove (a), assume first that dαkk
β ≤ C for all k, then for each n = 0, 1 . . .,

2−nανβn = 2−nα(kn+1 − kn)β ≤ 2αdαkn+1k
β

n+1 ≤ C. (3.2)
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In the other direction, assume that 2−nανβn ≤ C for all n. Given k find the unique n = n(k) such
that 2−n−1 < dk ≤ 2−n. This implies that k ≤ kn+1, and thus,

dαkk
β ≤ 2−nαkβn+1 =

⎛

⎝

n∑

j=0

2−αj/βνj2−α(n−j)/β
⎞

⎠

β

,

≤ C
⎛

⎝

n∑

j=0

2−α(n−j)/β
⎞

⎠

β

≤ C
(

1 − 2−α/β
)−β

.

(3.3)

To prove (b), assume first that
∑

n≥0 2
−nανβn < ∞. In the case β ≤ 1, use an easy integral

estimate and the fact that kβn+1 − k
β
n ≤ (kn+1 − kn)β, to obtain the desired result,

∑

k≥1
dαkk

β−1 =
∑

n≥0

kn+1∑

k=kn+1

dαkk
β−1 ≤

∑

n≥0
2−nα

kn+1∑

k=kn+1

kβ−1

≤
∑

n≥0
2−nα

∫kn+1

kn

xβ−1dx =
1
β

∑

n≥0
2−nα
(

k
β

n+1 − k
β
n

)

≤ 1
β

∑

n≥0
2−nα(kn+1 − kn)β = 1

β

∑

n≥0
2−nανβn.

(3.4)

In the case β > 1, it is easy to arrive at
∑

k≥1 d
α
k
kβ−1 ≤∑n≥0 2

−nαkβn+1. Nowwe imitate the
proof of Hardy’s inequality given in [36, Theorem 326 in page 239]. Write hn = 2−nα/βkn+1 =
2−nα/β

∑n
j=0 νj , for n ≥ 0, and h−1 = 0. Then νn = 2nα/β(hn − 2−α/βhn−1), for n ≥ 0, and by the

inequality between the geometric and arithmetic means [36, Theorem 9 in page 17],

h
β
n −

1
1 − 2−α/β

h
β−1
n 2−nα/βνn =

1
2α/β − 1

(

h
β−1
n hn−1 − hβn

)

≤ 1
2α/β − 1

⎛

⎝

(

β − 1
)

h
β
n + h

β

n−1
β

− hβn
⎞

⎠

=
1

β
(

2α/β − 1
)

(

h
β

n−1 − h
β
n

)

.

(3.5)

So the sum on n of the left hand side is negative, and, therefore, using Hölder’s inequality
with exponents β/(β − 1) and β,

∑

n≥0
2−nαkβn+1 =

∑

n≥0
h
β
n ≤ 1

1 − 2−α/β
∑

n≥0
h
β−1
n 2−nα/βνn

≤ 1
1 − 2−α/β

(
∑

n≥0
h
β
n

)β−1/β(
∑

n≥0
2−nανβn

)1/β

,

(3.6)

giving as a result that
∑

n≥0 2
−nαkβn+1 ≤ (1 − 2−α/β)−β

∑

n≥0 2
−nανβn, as desired.
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In the other direction, assume that
∑

k≥1 d
α
k
kβ−1 < ∞. In the case β < 1, it is easily

verified that
∑

n≥0 2
−nανβn ≤ ∑n≥0 2

−nαkβn+1. To continue, use that k0 = 0 and that the function
x �→ xβ−1 is decreasing in (0,∞),

∑

n≥0
2−nαkβn+1 =

∑

n≥0
2−nαkβ−1n+1

kn+1∑

k=1

1 ≤
∑

n≥0
2−nα

kn+1∑

k=kn+1

kβ−1 +
∑

n≥1
2−nαkβn

≤ 2α
∑

n≥0

kn+1∑

k=kn+1

dαkk
β−1 + 2−α

∑

n≥0
2−nαkβn+1,

(3.7)

from where it follows that
∑

n≥0 2
−nαkβn+1 ≤ 2α(1 − 2−α)−1

∑

k≥1 d
α
k
kβ−1 < ∞.

It remains to deal with the case β ≥ 1 under the assumption
∑

k≥1 d
α
k
kβ−1 < ∞. Here,

we use that, when 0 ≤ a ≤ b, (b − a)β ≤ bβ − aβ (because ((b − a)β + aβ)1/β ≤ b), and use also
the Mean Value Theorem,

∑

n≥0
2−nανβn =

∑

n≥0
2−nα(kn+1 − kn)β

≤
∑

n≥0
2−nα
(

k
β

n+1 − k
β
n

)

= 2α
∑

n≥0
2−(n+1)α

kn+1∑

k=kn+1

(

kβ − (k − 1)β
)

≤ 2αβ
∑

n≥0

kn+1∑

k=kn+1

dαkk
β−1 = 2αβ

∑

k≥1
dαkk

β−1.

(3.8)

Now we recall the following characterization, due to Ahern [37, Theorem 6].

Theorem C (see [37, Theorem 6]). Assume that 0 < p, q < ∞, that 0 < α < 1, and that I is an
inner function. Then the following quantities are comparable,

‖I‖q
B
p,q
α

=
∫1

0
(1 − r)q−1Mq

p

(

r,D1+αI
)

dr, (3.9)

∫1

0
(1 − r)(1−α)q−1Mq

p

(

r, I ′
)

dr, (3.10)

∫1

0
(1 − r)−αq−1

(

1
2π

∫2π

0

(

1 −
∣
∣
∣I
(

reiθ
)∣
∣
∣

)p
dθ

)q/p

dr, (3.11)

∫1

0
(1 − r)−αq−1

(

1
2π

∫2π

0

∣
∣
∣I
(

eiθ
)

− I
(

reiθ
)∣
∣
∣

p
dθ

) q/p

dr. (3.12)
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Remark 3.2. An examination of the proof in which the quantity (3.12) is controlled by that of
(3.10), shows that it does not really require the function I to be inner. Any bounded function
would just work fine.

In [15], the corresponding characterization for q = ∞ is mentionedwithout proof ((3.2)
of [15]). Its verification is done by following the same steps of the previous result (even easier,
Hardy’s inequality is not needed).

Theorem D. If 0 < p < ∞, 0 < α < 1, and I is an inner function, then the following quantities are
comparable,

‖I‖Λp,α = sup
0≤r<1

(1 − r)Mp

(

r,D1+αI
)

, (3.13)

sup
0≤r<1

(1 − r)1−αMp

(

r, I ′
)

, (3.14)

sup
0≤r<1

(1 − r)−α
(

1
2π

∫2π

0

(

1 −
∣
∣
∣I
(

reiθ
)∣
∣
∣

)p
dθ

)1/p

, (3.15)

sup
0≤r<1

(1 − r)−α
(

1
2π

∫2π

0

∣
∣
∣I
(

eiθ
)

− I
(

reiθ
)∣
∣
∣

p
dθ

)1/p

. (3.16)

For Blaschke products, the third author [15, 38, Theorems 1.2 and 1.4] gave sufficient
(and in special cases, necessary) conditions for their membership in B

p,q
α in terms of the

distribution of their zeros. Recall that a Carleson-Newman sequence is a finite union of
interpolating sequences, and a sequence {zk} in the unit disk is called interpolating if it is
uniformly separated, that is,

inf
n

∏

{k: zk /= zn}

∣
∣
∣
∣

zk − zn
1 − zkzn

∣
∣
∣
∣
> 0. (3.17)

Theorem E (see [15, 38, Theorems 1.2 and 1.4]). Let 0 < p, α <∞ be such thatmax{0, 1/p−1} <
α < 1/p. Assume that 0 < q ≤ ∞, and that B is a Blaschke product. If {(2−n(1−αp)νn)1/p} ∈ �q, then
B ∈ Bp,qα and

‖B‖Bp,qα ≤ C
∥
∥
∥
∥

{(

2−n(1−αp)νn
)1/p
}∥
∥
∥
∥
�q
. (3.18)

On the other hand, if the zero sequence {zk} of B is Carleson-Newman and B ∈ B
p,q
α , then

{(2−n(1−αp)νn)1/p} ∈ �q and their respective norms are equivalent.
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As a consequence of this result, Lemma 1.1, and the fact that the Frostman shifts of
inner functions are Blaschke products almost always, we have that if 0 < p, α < ∞ with
max{0, 1/p − 1} < α < 1/p, 0 < q ≤ ∞, and I is an inner function satisfying

(∫

Kδ

∥
∥
∥
∥

{(

2−n(1−αp)νn(a)
)1/p
}∥
∥
∥
∥

p

�q
dA(a)

)1/p

<∞, (3.19)

for Kδ = {a ∈ � : δ ≤ |a| ≤ 1 − δ}, and 0 < δ < 1/2, then I ∈ B
p,q
α , and the norm ‖I‖Bp,qα is

controlled by the integral in (3.19).
The crux of the matter here is that the above condition is also necessary for I to belong

to Bp,qα .

Theorem 3.3. Let 0 < p, α < ∞ be such that max{0, 1/p − 1} < α < 1/p. Assume that 0 < q ≤ ∞,
and that I is an inner function. Then I ∈ B

p,q
α if and only if (3.19) holds for some δ ∈ (0, 1/2). In

that case, both quantities, ‖I‖Bp,qα and the integral in (3.19), are comparable.

In order to prove this theorem, certain homogeneity property is needed. See [38,
Lemma 4.4], [7, Lemma 2.2] for similar statements onH∞-functions, and also [15, Proposition
3.1] for the case q = ∞.

Lemma 3.4. If 0 < p < ∞, 0 < q ≤ ∞, 0 ≤ α < ∞, and 1 ≤ t < ∞, then Λ∞,0 ∩ Bp,qα ⊆ Bpt,qt
α/t

, that is,

Bloch functions in Bp,qα are also in Bpt,qt
α/t

for any t ≥ 1. Furthermore, the following relation holds:

∥
∥f
∥
∥
B
pt,qt

α/t
≤ C∥∥f∥∥1−1/tΛ∞,0

∥
∥f
∥
∥
1/t
B
p,q
α
. (3.20)

Proof of Lemma 3.4. The case q = ∞ will not be treated due to its similarity with the other
cases. Take 0 < p, q < ∞, 0 ≤ α < ∞, 1 ≤ t < ∞, and f ∈ Λ∞,0 ∩ Bp,qα . We need to show that
f ∈ B

pt,qt

α/t . For that, use (1.14) to find an equivalent quantity to ‖f‖Bpt,qt
α/t

, and then separate it
into two factors, the first will be controlled by ‖f‖Λ∞,0 , and the second by ‖f‖Bp,qα .

∥
∥f
∥
∥
B
pt,qt

α/t
=

(∫1

0
(1 − r)qt−1Mqt

pt

(

r,D1+α/tf
)

dr

)1/qt

(1.14)
≤ C

(∫1

0
(1 − r)qt−1−qα+qαtMqt

pt

(

r,D1+αf
)

dr

)1/qt

= C

⎛

⎝

∫1

0
(1 − r)q(t−1)(1+α)+(q−1)

(∫2π

0

∣
∣
∣D1+αf

(

reiθ
)∣
∣
∣

pt
dθ

)q/p

dr

⎞

⎠

1/qt

≤ C sup
0≤r<1

(

(1 − r)1+αM∞
(

r,D1+αf
))1−1/t

(∫1

0
(1 − r)q−1Mq

p

(

r,D1+αf
)

dr

)1/qt

≤ C∥∥f∥∥1−1/tΛ∞,0

∥
∥f
∥
∥
1/t
B
p,q
α
. (3.21)
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Two more lemmas are needed.

Lemma F (see [15, Corollary 4.5]). If p ≥ 1, I is an inner function, and if 1− 2−n < r ≤ 1− 2−(n+1),
then

2−nνn ≤ Cp

∫2π

0
logp

1
∣
∣I
(

reiθ
)∣
∣
dθ. (3.22)

Lemma G (see [15, Corollary 4.7]). If 0 < p < ∞, 0 < δ < 1/2, I is an inner function, and if
z ∈ � , then

∫

Kδ

logp
1

|Ia(z)|dA(a) ≤ Cp,δ(1 − |I(z)|)p. (3.23)

Proof of Theorem 3.3. Again, we deal only with the case q < ∞. The sufficiency of condition
(3.19) has already been established. To prove its necessity, assume that I ∈ B

p,q
α and, rather

than imposing the whole restriction max{0, 1/p − 1} < α < 1/p, just assume 0 < α, p, q < ∞.
Observe that the integral in (3.19) (without the power 1/p) remains unchanged if we replace
p, q, αwith pt, qt, α/t. Now choose t ≥ 1 such that α/t < 1, pt > 1 and qt > 1. If the result holds
in this situation, then, by the homogeneity property of Lemma 3.4, we have

(∫

Kδ

∥
∥
∥
∥

{(

2−n(1−αp)νn(a)
)1/p
}∥
∥
∥
∥

p

�q
dA(a)

)1/p

=

(∫

Kδ

∥
∥
∥
∥

{(

2−n(1−αp)νn(a)
)1/pt

}∥
∥
∥
∥

pt

�qt
dA(a)

)1/p

≤ C‖I‖t
B
pt,qt

α/t

≤ C‖I‖t−1Λ∞,0 ‖I‖Bp,qα .
(3.24)

So it suffices to prove the result for 0 < α < 1 and 1 < p, q < ∞. In what follows rn = 1 − 2−n.
First assume that p > q. Then use, in order, Minkowski’s inequality for p/q > 1, the fact that
∫ rn+1
rn

r−αq−1dr � 2nαq, and finally Lemmas F and G together with Theorem C to arrive at the
desired estimate for (3.19),

(∫

Kδ

∥
∥
∥
∥

{(

2−n(1−αp)νn(a)
)1/p
}∥
∥
∥
∥

p

�q
dA(a)

)1/p

=

⎛

⎝

∫

Kδ

(
∑

n≥0
2nαq
(

2−nνn(a)
)q/p

)p/q

dA(a)

⎞

⎠

(q/p)(1/q)
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≤
⎛

⎝
∑

n≥0
2nαq
(∫

Kδ

2−nνn(a)dA(a)

)q/p
⎞

⎠

1/q

≤ C
⎛

⎝
∑

n≥0

∫ rn+1

rn
(1 − r)−αq−1

(∫

Kδ

∫2π

0
logp

1
∣
∣Ia
(

reiθ
)∣
∣
dθdA(a)

)q/p

dr

⎞

⎠

1/q

≤ C
⎛

⎝

∫1

0
(1 − r)−αq−1

(∫2π

0

∫

Kδ

logp
1

∣
∣Ia
(

reiθ
)∣
∣
dA(a)dθ

)q/p

dr

⎞

⎠

1/q

≤ C
⎛

⎝

∫1

0
(1 − r)−αq−1

(∫2π

0

(

1 −
∣
∣
∣I
(

reiθ
)∣
∣
∣

)p
dθ

)q/p

dr

⎞

⎠

1/q

≤ C‖I‖Bp,qα .
(3.25)

The case p < q follows the same procedure, only that instead of using Minkowski’s
inequality, we use Hölder’s with exponents q/(q − p) and q/p, and then, after applying
Lemma F and before Lemma G, use again Minkowski’s inequality with q/p > 1,

(∫

Kδ

∥
∥
∥
∥

{(

2−n(1−αp)νn(a)
)1/p
}∥
∥
∥
∥

p

�q
dA(a)

)1/p

=

⎛

⎝

∫

Kδ

(
∑

n≥0
2nαq
(

2−nνn(a)
)q/p

)p/q

dA(a)

⎞

⎠

1/p

≤
(∫

Kδ

dA(a)

)1/p−1/q(∫

Kδ

∑

n≥0
2nαq
(

2−nνn(a)
)q/p

dA(a)

)1/q

= C

(
∑

n≥0
2nαq

∫

Kδ

(

2−nνn(a)
)q/p

dA(a)

)1/q

≤ C

⎛

⎜
⎝

∑

n≥0

∫ rn+1

rn

(1 − r)−αq−1
⎛

⎝

∫

Kδ

(∫2π

0
logp

1
∣
∣Ia
(

reiθ
)∣
∣
dθ

)q/p

dA(a)

⎞

⎠

(p/q)(q/p)

dr

⎞

⎟
⎠

1/q

≤ C

⎛

⎜
⎝

∫1

0
(1 − r)−αq−1

⎛

⎝

∫2π

0

(∫

Kδ

logq
1

∣
∣Ia
(

reiθ
)∣
∣
dA(a)

)p/q

dθ

⎞

⎠

q/p

d

⎞

⎟
⎠

1/q
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≤ C
⎛

⎝

∫1

0
r−αq−1

(∫2π

0

(

1 −
∣
∣
∣I
(

reiθ
)∣
∣
∣

)p
dθ

)q/p

dr

⎞

⎠

1/q

≤ C‖I‖Bp,qα . (3.26)

Remark 3.5. Along the proof of this theorem, we have actually proved that if I is an inner
function in Bp,qα , with 0 < α, p <∞ and 0 < q ≤ ∞, then (3.19) holds and

(∫

Kδ

∥
∥
∥
∥

{(

2−n(1−αp)νn(a)
)1/p
}∥
∥
∥
∥

p

�q
dA(a)

)1/p

≤ C‖I‖Bp,qα . (3.27)

Also, as we observed before, the integral in (3.19), or (3.27), is unchanged if p, q, α
is replaced with pt, qt, α/t, (t > 0). This allows us to extend the homogeneity property of
Lemma 3.4 to other values of t, provided that we can apply Theorem 3.3, that is, that we
work with inner functions and that max{0, 1/(pt) − 1} < α/t < 1/(pt).

Corollary 3.6. Let 0 < p, α < ∞ be such that 0 < α < 1/p. Assume that 0 < q ≤ ∞, and that I is an
inner function in Bp,qα . Then I ∈ Bpt,qt

α/t
for all t > 1/p − α.

Remark 3.7. Of course, when α > 1/p, the class of inner functions in Bp,qα coincides with that
of Bpt,qtα/t for any t > 0 (or any Bp1 ,q1α1 with α1 > 1/p1, whatsoever), because they only contain
the finite Blaschke products. The same reasoning applies when α = 1/p and 0 < q < ∞. Is it
the same for q = ∞? that is, is the class of inner functions in Λp,1/p the same for all p > 0? The
answer is affirmative for the class of Blaschke products [5, Theorem 3.1] and then, using once
more Lemma 1.1 and the fact that the Frostman shifts of inner functions are almost always
Blaschke products, we arrive at an affirmative answer for the whole class of inner functions
in Λp,1/p. We should mention here that we shall prove later (see Remark 4.4 below) that the
only inner functions in Λp,1/p are Blaschke products.

Remark 3.8. In view of the previous remark, we could ask whether the result of the corollary
remains true for the whole range of t > 0. The answer is negative. Ahern and Clark [3, Lemma
2] have constructed a Blaschke productB in B1,1

1/2 but not inH
1/2
1 . By property (P9), we deduce

that B /∈ B1/2,1/2
1 , and this is the space that would be obtained from B1,1

1/2 by taking t = 1/2,
which coincides with 1/p − αwith the usual notation.

Proof of Corollary 3.6. Notice first that Remark 3.5 implies that (3.27) holds for p, q, α, and thus
the integral on the left hand side is unchanged for pt, qt, α/t. Now, take t > 1/p − α > 0.
Then 1/(pt) − 1 < α/t < 1/(pt). If now t ≤ 1/p, then 0 ≤ 1/(pt) − 1, and so max{0, 1/(pt) −
1} < α/t < 1/(pt), proving that I ∈ B

pt,qt

α/t by Theorem 3.3. If, on the contrary, t > 1/p, then

1/(pt) − 1 < 0, and we still have max{0, 1/(pt) − 1} = 0 < α/t < 1/(pt), and again, I ∈ B
pt,qt

α/t
by Theorem 3.3.

Remark 3.9. As an application of these results, we show how to recover a known result by
Protas [9, Theorem 1]. Assume that B is a Blaschke product satisfying

∑

k d
2−p
k < ∞ for some
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p ∈ (1, 2). By Lemma 3.1(b), this condition is equivalent to
∑

n≥0 2
−n(2−p)νn < ∞, which implies

that B ∈ B
p,p

1−1/p by Theorem E. (Notice that this is equivalent to B′ ∈ Ap by (1.14).) Observe

now that we can apply Corollary 3.6 with t = 1/p, obtaining that B ∈ B1,1
p−1, which is the

aforementioned result by Protas, with our notation. On the other hand, notice also that if
B′ ∈ Ap, for some 1 < p < 2, and the zero sequence of B is Carleson-Newman then, by
Theorem E,

∑

k d
2−p
k

<∞.
Next we will turn to study the membership of inner functions in the spaces Hp

α .
Properties (P9) and (P10), that is, the Littlewood-Paley inequalities, relate quite wellHp

α with
B
p,p
α . Our main result in this direction is that these relations of inclusion become equalities

when the spaces are cut with the class of inner functions.

Theorem 3.10. Let 0 < p ≤ ∞ and α > max{0, 1/p − 1}. Then the class of inner functions in Hp
α

coincides with that of inner functions in Bp,pα .

The proof of this result requires again an homogeneity property.

Proposition 3.11. Let 0 < p, α <∞ and let f be a Bloch function inHp
α . Then f ∈ Hpt

α/t
for all t ≥ 1.

This is a straightforward consequence of the following result and the complexmaximal
theorem.

Lemma H (see [5, Lemma 2.1]). For each 0 < α < β < ∞, there is a constant C = Cα,β such that if
f ∈ Λ∞,0 then

∣
∣Dαf(z)

∣
∣ ≤ C

(

max
0≤t≤1

∣
∣
∣Dβf(tz)

∣
∣
∣

)α/β

. (3.28)

The original proof of this lemma runs with H∞ functions instead of Bloch (Λ∞,0)
functions. However, the lemma can be proved for Bloch functions by just noticing the validity
of the estimate |Dβf(z)| ≤ C(1 − |z|)−β for Bloch functions.

Proof of Theorem 3.10. First notice that when α ≥ 1/p, the only inner functions in Hp
α and Bp,pα

are the finite Blaschke products. So we may assume without loss of generality the additional
hypothesis α < 1/p. (This already implies p <∞.)

Now consider the case 0 < p ≤ 2. Then Bp,pα ⊆ H
p
α by (P9). To go in the other direction,

take an inner function I inHp
α . Then, by Proposition 3.11, I ∈Hpt

α/t
for all t ≥ 1. For t ≥ 2/p ≥ 1,

we have pt ≥ 2, and henceHpt

α/t ⊆ B
pt,pt

α/t by (P10). Using now that max{0, 1/p − 1} < α < 1/p,
we get 1/t > 1/(pt) − α/t, and we conclude that I ∈ Bp,pα by Corollary 3.6.

Next consider the case 2 ≤ p < ∞. (Then max{0, 1/p − 1} = 0.) By (P10), Hp
α ⊆ B

p,p
α .

To go in the other direction, take an inner function I in B
p,p
α . Since 0 < α < 1/p then, by

Corollary 3.6, I ∈ B
pt,pt

α/t
for all t > 1/p − α. Choose t ∈ (1/p − α, 2/p]. Thus, as pt ≤ 2, (P9)

gives Bpt,pt
α/t

⊆ Hpt

α/t
. Finally, as 1/t ≥ p/2 ≥ 1, Proposition 3.11 gives I ∈ Hp

α .

Remark 3.12. A careful reading of this proof shows that, in fact, any inner function I in Bp,pα is
also inHp

α , whenever 0 < p ≤ ∞ and 0 < α.

The analogous to Corollary 3.6 is the following.
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Corollary 3.13. Let 0 < p, α < ∞ be such that 0 < α < 1/p. Assume that I is an inner function in
H

p
α . Then I ∈Hpt

α/t
for all t > 1/p − α.

Proof. Take t > 1/p−α. If t ≥ 1 then I ∈ Hpt

α/t by Proposition 3.11. Otherwise we have 1/p−α <
t < 1, which implies 1/p−1 < α, and, together with 0 < α < 1/p, it gives max{0, 1/p−1} < α <
1/p. So, by Theorem 3.10, I ∈ Bp,pα and, by Corollary 3.6, I ∈ Bpt,pt

α/t
and, finally, by Remark 3.12,

I ∈ Hpt

α/t.

Remark 3.14. Again, since it only contains finite Blaschke products, the class of inner functions
in Hp

α , with α ≥ 1/p, coincides with that ofHpt

α/t
for all t > 0, or for the case, with the class of

inner functions of any Hp1
α1 , with α1 ≥ 1/p1. As for the accuracy of the corollary with regards

to whether there is a possibility to establish the result for the whole range of t > 0, the same
example given in Remark 3.8 shows that it is impossible. The Blaschke product B constructed
in [3, Lemma 2] is in B1,1

1/2 but not in H1/2
1 , which is the space that would be obtained from

H1
1/2 by taking t = 1/2(= 1/p − αwith the usual notation). By Theorem 3.10, B ∈ B1,1

1/2 implies
that B ∈ H1

1/2.

Remark 3.15. As an application, we again regain a known result of Protas [9, Theorem 2],
namely, if B is a Blaschke product such that

∑

k d
1−p
k < ∞, for some 1/2 < p < 1, then B ∈ H

p

1 .

Indeed, by Lemma 3.1(b),
∑

k d
1−p
k

� ∑n≥0 2
−n(1−p)νn, and so B ∈ B

p,p

1 by Theorem E, and we
are done with B ∈ H

p

1 by Theorem 3.10. On the other hand, Theorem E also says that if the
zero sequence of B is Carleson-Newman then the condition

∑

k d
1−p
k

< ∞ is also necessary for
B ∈ Hp

1 .

4. The Case 1/(2p) < α < 1/p

Ahern and Clark [2, Theorem 3] proved that the only inner functions in H1/2
1 are Blaschke

products. Later on, Ahern and Jevtic’ obtained the following generalization:

Theorem I (see [5, Theorem 2.1]). If I is an inner function and

M
p
p

(

r,D1/(2p)I
)

= o
(

log
1

1 − r
)

, as r −→ 1, (4.1)

for some 0 < p < ∞, then I is a Blaschke product.

Now, all functions in Hp

1/(2p) satisfy condition (4.1) and, by (P5), the same is true for

allHp
α-functions with α ≥ 1/(2p). So the following is immediate:

Corollary 4.1. Let 0 < p, α <∞ with α ≥ 1/(2p). Then the only inner functions inHp
α are Blaschke

products, finite ones if α ≥ 1/p.

This result finds its analogue for Besov spaces. Its essence may be traced back to the
last corollary in [37].
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Proposition J (see [37]). Let 0 < p, q, α < ∞ with α ≥ 1/(2p). Then the only inner functions in
B
p,q
α are Blaschke products, finite ones if α ≥ 1/p.

Remark 4.2. These results are again accurate, for the “atomic” singular inner function S(z) =
exp(−(1 + z)/(1 − z)) is in Bp,qα ∩Hp

α for all 0 < p, q, α < ∞ with α < 1/(2p). Indeed, in [39], it
is shown that, for any positive integer n,

M1/(2n)

(

r, S(n)
)

� log
1

1 − r . (4.2)

This implies that S ∈ H1/(2n)
β

for all β < n, because by (1.11),

M
1/(2n)
1/(2n)

(

r,DβS
)

≤ C
∫1

0
(1 − s)(n−β)/(2n)−1M1/(2n)

1/(2n)(rs,D
nS)ds

≤ C
∫1

0
(1 − s)(n−β)/(2n)−1log1/(2n)

(
1

1 − rs
)

ds <∞,

(4.3)

and also S ∈ B1/(2n),q̃
β for all β < n and all 0 < q̃ < ∞, because by (1.14),

∫1

0
(1 − r)q̃−1Mq̃

1/(2n)

(

r,D1+βS
)

dr ≤ C
∫1

0
(1 − r)q̃(n−β)−1Mq̃

1/(2n)(r,D
nS)dr

≤ C
∫1

0
(1 − r)q̃(n−β)−1logq̃

(
1

1 − r
)

dr <∞.

(4.4)

Hence, given 0 < p, q, α < ∞with α < 1/(2p), take the smallest integer n such that 1/(2p) ≤ n
and then take β = 2npα < n and q̃ = q/(2np). In this way, S ∈ H

1/(2n)
β ∩ B

1/(2n),q̃
β , so by

the homogeneity properties of Lemma 3.4 and Proposition 3.11 with t = 2np ≥ 1, get that
S ∈ Ht/(2n)

β/t
∩ Bt/(2n),q̃t

β/t
= Hp

α ∩ Bp,qα , as desired.

Remark 4.3. The case p = ∞ would deal with the question of whether the inner functions in
B
∞,q
0 are just Blaschke products. From Theorem 2.4, we know that if q ≤ 2, the inner functions

in B
∞,q

0 are finite Blaschke products, while the example considered to prove its part (b) is
initially a singular inner function in ∩q>2B∞,q

0 .

Remark 4.4. The case q = ∞ corresponds to the Lipschitz spacesΛp,α. By property (P7), Λp,α ⊆
∩{Bp,q

β
: β < α, 0 < q}. Thus, if α > 1/(2p), the only inner functions in Λp,α are Blaschke

products (finite ones if α > 1/p). Combining now the property (P1) and the fact that the
atomic singular inner function S is in Bp,qα for all 0 < p, q, α < ∞ with α < 1/(2p), we obtain
that S ∈ λp,α for all 0 < p, α < ∞ with α < 1/(2p). In fact, we claim that S ∈ λp,1/(2p) for all
p > 0: using the corresponding homogeneity property for λp,α (i.e., Bloch functions in λp,α

are also in λpt,α/t for all t ≥ 1, see [15, Proposition 4.1]), we obtain that the sequence of spaces
Λ∞,0∩λp,1/(2p) increases with p. Therefore, to prove our claim, it suffices to see that S ∈ λ1/(2n),n
for all positive integer n, and this is so by the result in [39],

(1 − r)M1/(2n)

(

r,D1+nS
)

� (1 − r)(1 − r)1/2−(n+1)/(2n) = (1 − r)1−1/(2n) −→ 0. (4.5)
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Now we come to results relating the membership of a Blaschke product in the spaces
under consideration for the range 1/(2p) < α < 1/p with summability properties of the
associated counting sequence {νn}. We start mentioning the following results of Verbitskiı̆.

Theorem K (see [27, Theorem3] and [10, Theorem 5]). Let B be a Blaschke product with zeros
{zk} in a fixed Stolz angle, and let p, q, α satisfy the relations 1 ≤ p < ∞, 1/(2p) < α < 1/p, and
0 < q ≤ ∞. Then

(a) B ∈ Λp,α = Bp,∞α ⇔ {2−n(1/p−α)ναn} ∈ �∞ ⇔ {d1/p−α
k

kα} ∈ �∞,
(b) B ∈ Bp,qα ⇔ {2−n(1/p−α)ναn} ∈ �q ⇔ {d1/p−α

k
kα−1/q} ∈ �q.

We will come back to Blaschke products with zeros in a Stolz angle in Section 5, but
we shall prove next that the implication B ∈ B

p,q
α ⇒ {2−n(1/p−α)ναn} ∈ �q is true for general

Blaschke products whenever 1/(2p) < α < 1/p (even for 0 < p < 1).

Theorem 4.5. Let 0 < p, α < ∞ with 1/(2p) < α < 1/p, and let 0 < q ≤ ∞. Assume that I is an
inner function in Bp,qα . Then (by Proposition J and Remark 4.4) I is a Blaschke product B and for its
sequence of zeros {zk}, we have

(a) If q = ∞, that is, if B ∈ Λp,α, then {2−n(1/p−α)ναn} ∈ �∞ or, equivalently, {d1/p−α
k kα} ∈ �∞.

(b) If q < ∞, then {2−n(1/p−α)ναn} ∈ �q or, equivalently, {d1/p−α
k

kα−1/q} ∈ �q.

Proof. We will make use of the following inequality of Goldberg [40]:

∫2π

0

∣
∣
∣B
(

reiθ
)∣
∣
∣dθ ≤

∫2π

0

∣
∣
∣B̂
(

reiθ
)∣
∣
∣dθ, 0 < r < 1, (4.6)

where B̂ is the Blaschke product whose zeros ẑk are the moduli |zk| of the corresponding
zeros of B. Notice then that the sequence {d̂k} coincides with {dk}. Assume first that q = ∞.
Since 1/p > 1/p − α, Corollary 3.6 implies that B ∈ Λ1,αp. Now, since αp < 1, Theorem D gives
the following growth order:

∫2π

0

(

1 −
∣
∣
∣B
(

reiθ
)∣
∣
∣

)

dθ = O
(

(1 − r)αp), as r −→ 1. (4.7)

Combining this with (4.6), we obtain that B̂ ∈ Λ1,αp. So, by Theorem K(a), we arrive at
{2−n(1−αp)ναpn } ∈ �∞, which is Theorem 4.5(a).

To prove part (b), we proceed analogously. Assume that q < ∞. Since 1/p > 1/p − α,
Corollary 3.6 implies that B ∈ B1,q/p

αp . Since αp < 1, Theorem C gives

∫1

0
(1 − r)−αq−1

(

1
2π

∫2π

0

(

1 −
∣
∣
∣B
(

reiθ
)∣
∣
∣

)

dθ

)q/p

dr < ∞, (4.8)

which combined with (4.6), gives the same estimate for B̂ in place of B, implying that
B̂ ∈ B

1,q/p
αp . So, by Theorem K(b), {2−n(1−αp)ναpn } ∈ �q/p , and this is equivalent to the desired

conclusion of Theorem 4.5(b).
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Theorem 4.5 has some obvious consequences regarding the spacesHp
α .

Corollary 4.6. Let 0 < p, α <∞ with 1/(2p) < α < 1/p. Assume that I is an inner function inHp
α .

Then (by Corollary 4.1) I is a Blaschke product B whose sequence of zeros, {zk}, satisfies,

(a)
∑

k d
1−αp
k

kαp−1 < ∞ if 1/p − 1 < α,

(b)
∑

k d
t−αp
k

kαp−1 <∞ for all t > 1 if 1/(2p) < α ≤ 1/p − 1.

Proof. Part (a) follows directly from the fact that B ∈ B
p,p
α by Corollary 4.6. As for part (b), it

is because, by Property (P8), B ∈ Bp,qβ for all β < α and all q > 0.

Results of this kind can be also obtained using Theorem 8 of [2], where it is proved
that B ∈ Hp

1 , 1/2 < p < 1 implies
∑

k d
(1−p)/p
k < ∞.

Theorem 4.7. Let 0 < p, α < ∞ with 1/(2p) < α < 1/p. Assume that I is an inner function
in Hp

α. Then (by Corollary 4.1) I is a Blaschke product B whose sequence of zeros, {zk}, satisfies
∑

k d
(1−αp)/(αp)
k

<∞.

Proof. Since α > 1/p − α, then B ∈ H
αp

1 by Corollary 3.13. Now, by Theorem 8 of [2], we

conclude that
∑∞

k=1 d
(1−αp)/(αp)
k <∞.

5. Blaschke Products with Zeros in a Nontangential Region

This section will be mainly focussed on Blaschke products whose zeros lie in a fixed
nontangential region, also called Stolz angle.

Given ξ ∈ ∂� , a Stolz angle with vertex at ξ is one of the following regions Ωσ(ξ) ⊂ � ,
with σ ∈ [1,∞),

Ωσ(ξ) =
{

z ∈ � :
∣
∣
∣1 − ξz

∣
∣
∣ ≤ σ(1 − |z|)

}

. (5.1)

The Stolz angles with vertex at ξ = 1 will be simply denoted by Ωσ .
Let us start with the following result.

Theorem L (see [7, Theorem 2.3]). If B is a Blaschke product whose zeros lie in a fixed Stolz angle,
then B ∈ Λp,1/(2p) for all p > 0.

An improvement of this result for 1/2 < p < ∞ is given in [15, Theorem 1.6], where it
is actually proved that B ∈ λp,1/(2p). Anyhow, Theorem L provides the following result almost
immediately.

Theorem 5.1. If 0 < p, α <∞ with α < 1/(2p), 0 < q ≤ ∞, and B is a Blaschke product whose zeros
lie in a fixed Stolz angle, then B ∈ Bp,qα ∩Hp

α .

Proof. That B ∈ B
p,q
α is a direct application of Theorem L and property (P7). That B ∈ H

p
α

follows directly from the fact that B ∈ Bp,pα and Remark 3.12.
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This result is quite accurate, as the following one shows.

Theorem 5.2. If 0 < p, q < ∞, then there exists a Blaschke product B whose zeros lie on the radius
(0, 1) and such that B /∈ B

p,q

1/(2p). Also, there exists a Blaschke product B, with its sequence of zeros

lying on the radius (0, 1), and such that, independently of p, B /∈ H
p

1/(2p).

Proof. By Corollary 3.6, as 1/p > 1/p − 1/(2p), any inner function in Bp,q1/(2p) is also in B1,q/p
1/2 .

So, for the first part of the proposition, it will suffice to give a Blaschke product B (depending
on q/p) with its zeros lying on the radius (0, 1) and such that B /∈ B

1,q/p
1/2 . On the other hand,

since all inner functions inHp

1/(2p) are also inH1
1/2 by Corollary 3.13, and sinceH1

1/2 and B
1,1
1/2

contain the same inner functions by Theorem 3.10, it thus suffices to say that the Blaschke
product sought in the second part of the proposition is one of the above that is not in B1,1

1/2.
Now let B be the Blaschke product whose sequence of zeros is given by zk = 1 −

(k logβ k)−1, k = 2, 3 . . ., where β = 1+2p/q > 1. This example has beenmentioned by Gluchoff
[6, Example 2 after Corollary 1.15] to assert that, for all r sufficiently close to 1,

∫2π

0

(

1 −
∣
∣
∣B
(

reiθ
)∣
∣
∣

)

dθ � (1 − r)1/2log−p/q 1
1 − r . (5.2)

This implies that

∫1

0
(1 − r)−q/(2p)−1

(∫2π

0

(

1 −
∣
∣
∣B
(

reiθ
)∣
∣
∣

)

dθ

)q/p

dr = ∞. (5.3)

which, by Theorem C, yields

∫1

0
(1 − r)q/p−1Mq/p

1

(

r,D1+1/2B
)

dr = ∞, (5.4)

that is, B /∈ B
1,q/p
1/2 . This finishes the proof of the theorem.

Remark 5.3. The just mentioned example of a Blaschke product B not in B1,1
1/2 is that one that

places its zeros at [1−(k log3k)−1], k ≥ 2. This Blaschke product does not belong to anyHp

1/(2p),

0 < p < ∞, neither to any Bp,p1/(2p). In particular, B does not belong to B3/2,3/2
1/3 which, by (1.14),

is another way to say that B′ /∈ A3/2. We remark that Girela and Peláez [12] proved that the
Blaschke B with zeros ak = [1 − (k log2k)−1], k ≥ 2, also has this property. Actually, arguing
as in the proof of [12], Theorem 2.1, we can deduce the following:

If β ≥ 2 andB is the Blaschke product with zeros ak = [1−(k logβk)−1], k ≥ 2, thenB′ /∈ A3/2.

Regarding Theorem K, we note that Jevtic’ [7, Theorem 2.1] extended part (a) to the
case 0 < p < 1. It would be interesting to know whether a similar extension holds for part
(b). Of course, our Theorem 4.5 answers affirmatively the question for the implication “B ∈
B
p,q
α ⇒ {2−n(1/p−α)ναn} ∈ �q”. We have a partial result regarding the other implication.
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Theorem 5.4. Let B be a Blaschke product with zeros {zk} in a fixed Stolz angle, and let 0 < p, q, α <
∞ be such thatmax{1/p − 1, 1/(2p)} < α < 1/p. If {d1/p−α

k kα−1/q} ∈ �q then B ∈ Bp,qα .

Proof. That {d1/p−α
k kα−1/q} ∈ �q, it means that

∑

k d
q/p−αq
k kαq−1 < ∞. Such sum remains

unchanged if p, q, α are replaced, respectively, with pt, qt, α/t for any t > 0. Thus, by Theorem
K(b), B ∈ B1,q/p

αp because 1/2 < αp < 1. Now, since p > 1 − αp too, Corollary 3.6 can be applied
to obtain that B ∈ Bp,qα .

Using Theorem 9 of [2], we obtain the following result for Hardy-Sobolev spaces.

Theorem 5.5. Let 0 < p, α < ∞withmax{1/p−1, 1/(2p)} < α < 1/p. Assume that B is a Blaschke
product whose sequence of zeros {zk} lies in a fixed Stolz angle, and satisfies

∑

k d
(1−αp)/(αp)
k

< ∞.

Then B ∈ Hp̃
α , for all 0 < p̃ < p.

Proof. Observe that the condition max{1/p− 1, 1/(2p)} < α < 1/p is equivalent to saying that
max{1/(2α), 1/(1 + α)} < p < 1/α. Thus, by property (P3), the result will be proved if we
show that B ∈ Hp̃

α , for all max{1/(2α), 1/(1 + α)} < p̃ < p.
For such p̃, 1/2 < αp̃ < αp and, also, (1−αp)/(αp) < (1−αp̃)/(αp̃). So, by Theorem 9 of

[2], B′ ∈ Hαp̃, that is, B ∈ Hαp̃

1 . Now, the fact that 1/(1 + α) < p̃ implies that 1/α > 1/(αp̃) − 1.

So, by Corollary 3.13, we conclude that B ∈ Hp̃
α .
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[5] P. Ahern and M. Jevtić, “Mean modulus and the fractional derivative of an inner function,” Complex
Variables. Theory and Application, vol. 3, no. 4, pp. 431–445, 1984.

[6] A. Gluchoff, “The mean modulus of a Blaschke product with zeroes in a nontangential region,”
Complex Variables. Theory and Application, vol. 1, no. 4, pp. 311–326, 1983.
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