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We consider the weighted q-Genocchi numbers and polynomials. From the construction of the
weighted q-Genocchi numbers and polynomials, we investigate many interesting identities and
relations satisfied by these new numbers and polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, C, and Cp, will, respec-
tively, denote the ring of p-adic integers, the field, of p-adic rational numbers, the complex
number field and the completion of algebraic closure of Qp. Let νp be the normalized expo-
nential valuation of Cp such that |p|p = p−νp(p) = 1/p (see [1–16]).

As well-known definition, the Euler numbers and Genocchi numbers are defined by

2
et + 1

= eEt =
∞∑

n=0
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n!
, (1.1)

with the usual convention of replacing En by En and
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et + 1

= eGt =
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n=0
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n!
, (1.2)
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with the usual convention of replacing Gn by Gn. We assume that q ∈ Cp with |1 − q|p < 1 and
that the q-number of x is defined by

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

(1.3)

(see [1–19]).
In [9], Kim introduced ordinary fermionic p-adic integral on Zp, and he studied

some interesting relations and identities related to q-extension of Euler numbers and poly-
nomials. In [8], he also introduced the q-extension of the ordinary fermionic p-adic in-
tegral on Zp and he investigated many physical properties related to q-Euler numbers and
polynomials. Recently, Kim firstly introduced the meaning of the weighted q-Euler num-
bers and polynomials associated with the weighted q-Bernstein polynomials by using the
fermionic invariant p-adic integral on Zp (see [14, 15]). In [16], Ryoo tried to study the
weighted q-Euler number and polynomials by the same method of Kim et al. in [14] and
the q-extension of the fermionic p-adic invariant integrals on Zp. As well-known properties,
the Genocchi numbers are integers. The first few Genocchi numbers for n = 2, 4, . . . are
−1, 1,−3, 17,−155, 2073, . . .. The first few prime Genocchi numbers are −3 and 17, which occur
for n = 6 and 8. There are no others with n < 105. These properties are very important to
study in the area of fermionic distribution and p-adic numbers theory. By this reason, many
mathematicians and physicians have studied Genocchi and Euler numbers which are in the
different areas. By the same motivation, we consider weighted q-Genocchi polynomials and
numbers by using the fermionic p-adic q-integral on Zp which are constructed by Kim and
Ryoo (cf. [8, 16]).

In this paper, we consider the q-Genocchi numbers and polynomials with weighted
α (α ∈ Q). From the construction of the weighted q-Genocchi numbers and polynomials,
we investigate many interesting identities and relations satisfied by these new numbers and
polynomials.

2. The Weighted q-Genocchi Numbers and Polynomials

Let UD(Zp) be the space of uniformly differentiable functions and, for f ∈ UD(Zp), the ferm-
ionic p-adic invariant integral of f on Zp is defined by Kim as follows:

I−1
(
f
)
=
∫

Zp

f(x)dμ−1(x) = lim
N→∞

1
[
pN
]
−1

pN−1∑

x=0

f(x)(−1)x (2.1)

(see [1–16]). If we take f(x) = text, then we get

t

∫
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et + 1
. (2.2)
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By (1.2) and (2.2), we get

∞∑

n=0

Gn
tn

n!
=

∞∑

n=0

∫

Zp

xndμ−1(x)
tn+1

n!

=
∞∑

n=0
(n + 1)

∫

Zp

xndμ−1(x)
tn+1

(n + 1)!

=
∞∑

n=1

n

∫

Zp

xn−1dμ−1(x)
tn

n!
.

(2.3)

From (2.3),

G0 = 0,
Gn

n
=
∫

Zp

xn−1dμ−1(x), n ∈ N. (2.4)

For f ∈ UD(Zp), the fermionic p-adic q-integral of f on Zp is defined by Kim as follows:
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(
f
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=
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N→∞

1
[
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]
−q
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f(x)
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(see [1–16]). From (2.5), we note that

qnI−q
(
fn
)
= (−1)nI−q

(
f
)
+ [2]q

n−1∑

l=0

(−1)n−1−lqlf(l), (2.6)

where n ∈ N and fn(x) = f(x + n).
For α ∈ Q, we consider the following fermionic p-adic q-integral on Zp:

t
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, (2.7)

where G̃(α)
n,q are called the nth q-Genocchi numbers with weight α. From (2.7), we get
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By comparing the coefficients on the both sides of (2.7) and (2.8), we get

n

∫

Zp

[x]n−1qα dμ−q(x) = G̃
(α)
n,q, n ∈ N, G̃

(α)
0,q = 0. (2.9)

From (2.9), we obtain the following theorem.

Theorem 2.1. For n ∈ N and α ∈ Q, one has
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n
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By the definition of fermionic p-adic q-integrals, we get

t

∫

Zp

[x]n−1qα dμ−q(x) =
1

(
1 − qα

)n−1
n−1∑

l=0

(
n − 1

l

)
(−1)l

∫

Zp

qαlxdμ−q(x)

=
[2]q

(
1 − qα

)n−1
n−1∑

l=0

(
n − 1

l

)
(−1)l 1

1 + qαl+1
.

(2.11)

Therefore, we obtain the following theorem.

Theorem 2.2. For n ∈ N and α ∈ Q, we have
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By Theorem 2.2, we have the generating function of G̃(α)
n,q as follows:

∞∑

n=0

G̃
(α)
n,q

tn

n!
= [2]q

∞∑

n=0

n
(
1 − qα

)n−1
n−1∑

l=0

(
n − 1

l

)
(−1)l

∞∑

m=0
(−1)mqαlm+m tn

n!

= [2]q
∞∑

m=0
(−1)mqm

∞∑

n=0

n
(
1 − qα

)n−1
n−1∑

l=0

(
n − 1

l

)
(−1)lqαlm tn

n!

= [2]q
∞∑

m=0
(−1)mqm

∞∑

n=0

n
(
1 − qα

)n−1
(
1 − qαm

)n−1 tn

n!

= [2]q
∞∑

m=0
(−1)mqm

∞∑

n=0

n[m]n−1qα
tn

n!



Journal of Applied Mathematics 5

= [2]q
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Let F̃(α)
q (t) be the generating function of G̃(α)

n,q. Then, by (2.9) and (2.13), we get

F̃
(α)
q (t) = [2]qt

∞∑

m=0
(−1)mqme[m]qα t

=
∞∑

n=0

G̃
(α)
n,q

tn

n!
.

(2.14)

The q-Genocchi polynomials with weight α are defined by
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From (2.15), we get

t

∫

Zp

e[x+y]qα tdμ−q
(
y
)
=

∞∑

n=0

∫

Zp

[
x + y

]n
qαdμ−q

(
y
) tn+1

n!

=
∞∑

n=0
(n + 1)

∫

Zp

[
x + y

]n
qαdμ−q

(
y
) tn+1

(n + 1)!

=
∞∑

n=1

n

∫

Zp

[
x + y

]n−1
qα dμ−q

(
y
) tn

n!
.

(2.16)

By (2.15) and (2.16), we obtain the following theorem.

Theorem 2.3. For n ∈ N and α ∈ Q, one has

n

∫

Zp

[
x + y
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We note that
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From (2.17) and (2.18), we obtain the following theorem.
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Therefore, we obtain the following theorem.

Theorem 2.5. For α ∈ Q, one has
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From (2.15) and (2.21), we obtain that

G̃
(α)
n,q(x) =

dn

dtn
F̃
(α)
q (t, x)

∣∣∣∣
t=0

= n[2]q
∞∑

m=0
(−1)mqm[x +m]m−1

qα

= n[2]q
1

(
1 − qα

)n−1
n−1∑

l=0

(
n−1
l

)
qαlx(−1)l

1 + qαl+1

=
n[2]q

(
1 − q

)n−1[α]n−1q

n−1∑

l=0

(
n − 1

l

)
(−1)lqαlx 1

1 + qαl+1
.

(2.22)

Therefore, we obtain the following theorem.

Theorem 2.6. For n ∈ N and α ∈ Q, one has
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From (2.6), if we take f(x) = [x]mqα = ((1 − qαx)/(1 − qα))m, then we get
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By (2.17) and (2.24), we obtain the following theorem.
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Theorem 2.7. For n ∈ N, m ∈ Z+ = N ∪ {0}, and α ∈ Q, one has
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We remark that if we take n = 2s (s ∈ Z+) in Theorem 2.7, then we have
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From (2.27) with s = 0, we obtain the following corollary.

Corollary 2.8. For α ∈ Q and m ∈ Z+, one has
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with the usual convention about replacing (G̃(α)
q )n by G̃

(α)
n,q. By (2.28) and (2.30), we get

q1−αqαG̃(α)
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m
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(2.31)

From (2.28) and (2.31), we obtain the following theorem.

Theorem 2.9. For α ∈ Q and m ∈ Z+, one has
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q

)m+1
+ G̃

(α)
m+1,q =

⎧
⎨

⎩
[2]q if m = 0,

0 if m > 0.
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