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This paper considers the approximate controllability for a class of semilinear delay control systems
described by a semigroup formulation with boundary control. Sufficient conditions for approx-
imate controllability are established provided the approximate controllability of corresponding
linear systems.

1. Introduction

In this paper, we consider the boundary control system described by the following delay
differential equation:

y′(t) = σy(t) + f
(
t, yt

)
, τy(t) = B1u(t) for t ∈ I = [0, T], y0 = ξ, (1.1)

where system state y(t) takes values in a Banach space E; control function u(t) takes values
in another Banach space U and u(·) ∈ Lp(I;U) for p ≥ 1; σ : D(σ) → E is a closed, densely
defined linear operator; τ : E → X is a linear operator from E to a Banach space X; B1 :
U → X is a linear bounded operator; f : I × C → E is a nonlinear perturbation function,
where C := C([−Δ, 0];E) is the Banach space of all continuous functions from [−Δ, 0] to E
endowed with the supremum norm. For any y ∈ C([−Δ, b];E) and t ∈ I, yt ∈ C is defined by
yt(θ) = y(t + θ) for θ ∈ [−Δ, 0].

In most applications, the state space E is a space of functions on some domain Ω of
the Euclidean space R

n, σ is a partial differential operator on Ω, and τ is a partial differential
operator acting on the boundary Γ of Ω.
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Several abstract settings have been developed to describe control systems with
boundary control; see Barbu [1], Fattorini [2], Lasiecka [3], and Washburn [4]. In this paper,
we use the setting developed in [2] to discuss the approximate controllability of system (1.1).

The norms in spaces E and C are denoted by ‖ · ‖ and | · |, respectively. In other spaces,
we use the norm notation with a space name in the subindex such as ‖ · ‖U, ‖ · ‖X , and ‖ · ‖Lp .

Let A : E → E be the linear operator defined by

D(A) =
{
y ∈ D(σ) : τy = 0

}
, Ay = σy, ∀y ∈ D(A). (1.2)

We impose the following assumptions throughout the paper.

(H1) D(σ) ⊂ D(τ) and the restriction of τ to D(σ) is continuous relative to the graph
norm of D(σ).

(H2) The operatorA is the infinitesimal generator of an analytic semigroup S(t) for t ≥ 0
on E.

(H3) There exists a linear continuous operator B : U → E and a positive constantK such
that

σB ∈ L(U,E), τ(Bu) = B1u, ∀u ∈ U,

‖Bu‖E ≤ K‖B1u‖X, ∀u ∈ U.
(1.3)

(H4) For each t ∈ (0, T] and u ∈ U, one has S(t)Bu ∈ D(A). Also, there exists a positive
function γ(·) ∈ Lq(I)with 1/p + 1/q = 1 such that

‖AS(t)B‖L(U,E) ≤ γ(t) a.e. t ∈ (0, T]. (1.4)

(H5) There exists a positive number L such that

∥∥f
(
t, η1
) − f

(
t, η2
)∥∥ ≤ L

∣∣η1 − η2
∣∣ (1.5)

for all η1, η2 ∈ C and t ∈ I.

Based on the discussions in [2], system (1.1) can be reformulated as

y(t) = S(t)ξ(0) +
∫ t

0
S(t − s)

[
σBu(s) + f

(
s, ys

)]
ds +

∫ t

0
AS(t − s)Bu(s)ds, t ∈ I,

y0 = ξ.

(1.6)

The following system is called the corresponding linear system of (1.6)

y(t) = S(t)ξ(0) +
∫ t

0
S(t − s)σBu(s)ds +

∫ t

0
AS(t − s)Bu(s)ds. (1.7)
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Approximate controllability for semilinear control systems with distributed controls
has been extensively studied in the literature under different conditions; see Fabre et al.
[5], Fernandez and Zuazua [6], Li and Yong [7], Mahmudov [8], Naito [9], Seidman [10],
Wang [11, 12], and many other papers. However, only a few papers dealt with approximate
boundary controllability for semilinear control systems, in particular, semilinear delay control
systems; the main difficulty is encountered in the construction of suitable integral equation
to apply for different versions of fixed-point theorem. Balachandran and Anandhi [13]
considered the controllability of boundary control integrodifferential system, Han and Park
[14] studied the boundary controllability of nonlinear systemswith nonlocal initial condition.
MacCamy et al. [15] discussed the approximate controllability for the heat equations. The
purpose of this paper is to study the approximate controllability for a class of semilinear
delay systems with boundary control.

2. Mild Solutions

By solutions of system (1.6) we mean mild solutions, that is, solutions in the space
C([−Δ, b];E). In the following, we provide an existence and uniqueness theorem for (1.6).

Theorem 2.1. If (H1)–(H5) are satisfied, then system (1.6) has a unique solution for each control
u(·) ∈ Lp(I;U).

Proof. Define

ξ̂(t) =

⎧
⎨

⎩

S(t)ξ(0), t ∈ I,

ξ(t), t ∈ [−Δ, 0],
(2.1)

and define y(t) = x(t) + ξ̂(t). It is easy to know that x satisfies

x(t) =
∫ t

0
S(t − s)

[
σBu(s) + f

(
s, xs + ξ̂s

)]
ds +

∫ t

0
AS(t − s)Bu(s)ds, t ∈ I,

x0 = 0.
(2.2)

Let Y = {x ∈ C([−Δ, b];E) : x(t) = 0, ∀t ∈ [−Δ, 0]}. Then, Y is a Banach spacewith supremum
norm. For any u(·) ∈ Lp(I;U), define an operator J : Y → Y as follows:

(Jx)(t) =

⎧
⎪⎨

⎪⎩

∫ t

0
S(t − s)

[
σBu(s) + f

(
s, xs + ξ̂s

)]
ds +

∫ t

0
AS(t − s)Bu(s)ds, t ∈ I,

0, t ∈ [−Δ, 0].
(2.3)

We need to show that J is well defined. First, we show that (Jx)(t) ∈ E for any x ∈ Y and
t ∈ I. Indeed, we have from (H5) that ‖f(t, η)‖ ≤ L|η| +M1, where M1 = supt∈I‖f(t, 0)‖. For
any s ∈ I and θ ∈ [−Δ, 0], we have

‖x(s + θ)‖ ≤ sup
t∈[−Δ,T]

‖x(t)‖ ≤ ‖x‖Y , (2.4)

and ‖ξ̂(s + θ)‖ ≤ max(|ξ|,M‖ξ(0)‖), where M = maxt∈I‖S(t)‖.
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Note that

∥
∥
∥
∥
∥

∫ t

0
AS(t − s)Bu(s)ds

∥
∥
∥
∥
∥
≤
(∫ t

0
‖AS(t − s)B‖q

)1/q(∫ t

0
‖u(s)‖p

)1/p

≤ ∥∥γ∥∥Lq‖u‖Lp , (2.5)

and that

∥
∥∥
∥
∥

∫ t

0
S(t − s)

[
σBu(s) + f

(
s, xs + ξ̂s

)]
ds

∥
∥∥
∥
∥

≤ M

∫ t

0

[
‖σBu(s)‖ + L

∣
∣
∣xs + ξ̂s

∣
∣
∣ +M1

]
ds

≤ M‖σB‖L(U,E)
q
√
T‖u‖Lp +MM1T +MLT(max(|ξ|,M‖ξ(0)‖) + ‖x‖Y ).

(2.6)

Combining (2.5) and (2.6), we prove that (Jx)(t) ∈ E for any x ∈ Y and t ∈ I.
Next, we show that J maps Y into Y , in other words, Jx ∈ Y for any x ∈ Y . Taking t,

t + δ ∈ I with δ > 0, then

‖(Jx)(t + δ) − (Jx)(t)‖

=

∥∥∥∥∥

∫ t+δ

0
S(t + δ − s)

[
σBu(s) + f

(
s, xs + ξ̂s

)]
ds +

∫ t+δ

t

AS(t + δ − s)Bu(s)ds

−
∫ t

0
S(t − s)

[
σBu(s) + f

(
s, xs + ξ̂s

)]
ds −

∫ t

0
AS(t − s)Bu(s)ds

∥∥∥∥∥

≤
∥∥∥∥∥

∫ t

0
[S(t + δ − s) − S(t − s)]

[
σBu(s) + f

(
s, xs + ξ̂s

)]
ds

∥∥∥∥∥

+

∥∥∥∥∥

∫ t

0
[AS(t + δ − s)Bu(s) −AS(t − s)Bu(s)]ds

∥∥∥∥
∥

+

∥∥∥∥∥

∫ t+δ

t

S(t + δ − s)
[
σBu(s) + f

(
s, xs + ξ̂s

)]
ds

∥∥∥∥∥

+

∥∥∥∥∥

∫ t+δ

t

AS(t + δ − s)Bu(s)ds

∥∥∥∥∥

:= I1 + I2 + I3 + I4.

(2.7)

Since S(t) is an analytic semigroup, (2.6) implies that as δ → 0

I1 = (S(δ) − I)
∫ t

0
S(t − s)

[
σBu(s) + f

(
s, xs + ξ̂s

)]
ds −→ 0. (2.8)
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Also, from (2.5), we have

I2 = (S(δ) − I)
∫ t

0
AS(t − s)Bu(s)ds −→ 0. (2.9)

Notice that I3 → 0 and I4 → 0 as δ → 0 follow from estimates

I3 ≤ M

∫ t+δ

t

(
‖σB‖‖u(s)‖ + L

∣
∣
∣xs + ξ̂s

∣
∣
∣ +M1

)
ds

≤ M‖σB‖L(U,E)
q
√
δ ‖u‖Lp +ML(max(|ξ|,M‖ξ(0)‖) + ‖x‖Y )δ +MM1δ,

I4 ≤
(∫ t+δ

t

γq(s)ds

)1/q

‖u‖Lp .

(2.10)

We have ‖(Jx)(t + δ) − (Jx)(t)‖ → 0 as δ → 0 and, hence, Jx ∈ Y .
Now, we prove that Jn is a contraction mapping for sufficiently large n. In fact, for any

x1, x2 ∈ Y ,

|x1s − x2s| = sup
θ∈[−Δ,0]

‖x1(s + θ) − x2(s + θ)‖ ≤ ‖x1 − x2‖Y . (2.11)

Therefore,

‖(Jx1)(t) − (Jx2)(t)‖ =

∥∥∥∥∥

∫ t

0
S(t − s)

[
f
(
s, x1s + ξ̂s

)
− f
(
s, x1s + ξ̂s

)]
ds

∥∥∥∥∥

≤ ML

∫ t

0
|x1s − x2s|ds ≤ MLt‖x1 − x2‖Y ,

|(Jx1)s − (Jx2)s| = sup
θ∈[−Δ,0]

‖(Jx1)(s + θ) − (Jx2)(s + θ)‖ ≤ MLs‖x1 − x2‖Y .

(2.12)

Similarly,

∥∥∥
(
J2x1

)
(t) −

(
J2x2

)
(t)
∥∥∥ ≤ ML

∫ t

0
|(Jx1)s − (Jx2)s|ds ≤ M2L2t2

2
‖x1 − x2‖Y . (2.13)

By mathematical induction, we have

‖(Jnx1)(t) − (Jnx2)(t)‖ ≤ (MLT)n

n!
‖x1 − x2‖Y . (2.14)

Hence,

‖Jnx1 − Jnx2‖Y ≤ (MLT)n

n!
‖x1 − x2‖Y , (2.15)
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and Jn is a contraction mapping for sufficiently large n. The contraction mapping principle
implies that J has a unique fixed-point in Y , which is the unique solution of (1.6). The proof
of the theorem is complete.

3. Approximate Controllability

The solution of (1.6) is denoted by y(t; t0, ξ, u) to emphasize the initial time t0, initial state
ξ ∈ C, and control function u(·). y(t1; t0, ξ, u) is called the system state at time t1 corresponding
to initial pair (t0, ξ) and the control function u. The set

R(t1; t0, ξ)(N) =
{
y(t1; t0, ξ, u) : u(·) ∈ Lp(t0, T ;U)

}
(3.1)

is called the reachable set of system (1.6) at time t1 corresponding to initial pair (t0, ξ).
R(t1; t0, ξ)(N) is the closure of R(t1; t0, ξ)(N) in E.

Definition 3.1. System (1.6) is said to be approximately controllable on [t0, t1] if
R(t1; t0, ξ)(N) = E for any ξ ∈ C.

Definition 3.2. System (1.6) is said to be approximately null controllable on [t0, t1] if for any
ξ ∈ C and ε > 0, there is a control function u(·) ∈ Lp(t0, t1;U) such that ‖y(t1; t0, ξ, u)‖ < ε.

Similar to nonlinear system (1.6), we define the reachable set of system (1.7) at time
t1 corresponding to the initial pair (t0, y0) as R(t1; t0, y0)(L). The approximate controllability
and approximate null controllability for system (1.7) can also be defined similarly.

To consider the approximate controllability of system (1.6), we need two new
operators. For any t1, t2 ∈ I with t2 > t1, E(t1, t2) : Lp(t1, t2;U) → E, and N(t1, t2) :
Lp(t1, t2;U) → E are defined as:

E(t1, t2)u =
∫ t2

t1

S(t2 − s)σBu(s)ds +
∫ t2

t1

AS(t2 − s)Bu(s)ds,

N(t1, t2)u =
∫ t2

t1

S(t2 − s)f
(
s, ys

)
ds,

(3.2)

where y(t;u) is the solution of (1.6) with the initial pair (t1, ξ) and control function u(·) ∈
Lp(t1, t2;U) in the definition of N(t1, t2).

The following result provides sufficient conditions for the approximate controllability
of system (1.6).

Theorem 3.3. Assume that system (1.7) is approximately controllable on the interval [b, T] for any
b ≥ 0. If there exists a function Q(·) ∈ L1(I) such that

∥∥f(t, z)
∥∥ ≤ Q(t), ∀(t, z) ∈ I × C, (3.3)

then system (1.6) is approximately controllable on I.
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Proof. We need to show that the reachable set of system (1.6) at time T is dense in Banach
space E, in other words,

R(T ; 0, ξ)(N) = E (3.4)

for any ξ ∈ C. To this end, given any ε > 0 and x ∈ E. Since (1.7) is approximately controllable
on [0, T], there exists a control function v0(·) ∈ Lp(0, T ;U) such that

‖S(T)ξ(0) + E(0, T)v0 − x‖ <
ε

2
. (3.5)

Note that Q(·) ∈ L1(I), we can select a sequence tn ∈ I such that tn > tn−1 and

∫T

tn

Q(t)dt −→ 0, as n −→ ∞. (3.6)

Let y1 := y(t1; 0, ξ, v0). Again, the approximate controllability of (1.7) on [t1, T] implies that a
control v1(·) ∈ Lp(t1, T ;U) exists such that

∥∥S(T − t1)y1 + E(t1, T)v1 − x
∥∥ <

ε

2
. (3.7)

Define

u1(t) =

⎧
⎨

⎩

v0(t), 0 ≤ t ≤ t1,

v1(t), t1 < t ≤ T.
(3.8)

Then u1(·) ∈ Lp(0, T ;U). Repeating the procedure, we have three sequences yn, vn, and un

such that vn(·) ∈ Lp(tn, T ;U), un(·) ∈ Lp(0, T ;U),

un(t) =

⎧
⎨

⎩

un−1(t), 0 ≤ t ≤ tn,

vn(t), tn < t ≤ T,

yn = y(tn; 0, ξ, un−1),
∥∥S(T − tn)yn + E(tn, T)vn − x

∥∥ <
ε

2
.

(3.9)

The solution of (1.6) under the control function un(·) is

y(t; 0, ξ, un) = S(t − tn)[S(tn)ξ(0) + E(0, tn)un +N(0, tn)un] + E(tn, t)un +N(tn, t)un

= S(t − tn)[S(tn)ξ(0) + E(0, tn)un−1 +N(0, tn)un−1] + E(tn, t)un +N(tn, t)un

= S(t − tn)yn + E(tn, t)vn +N(tn, t)un.

(3.10)
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Therefore,

∥
∥y(T ; 0, ξ, un) − x

∥
∥ ≤ ∥∥S(T − tn)yn + E(tn, T)vn − x

∥
∥ + ‖N(tn, T)un‖

<
ε

2
+
∫T

tn

∥
∥S(T − s)f

(
s, ys

)∥∥ds

≤ ε

2
+M

∫T

tn

Q(s)ds < ε

(3.11)

for a sufficient large n such that M
∫T
tn
Q(s)ds < ε/2. Hence, (3.4) follows, and the proof is

complete.

The next theorem is about the approximate null controllability of system (1.6).

Theorem 3.4. Assume that system (1.7) is approximately null controllable on the interval [b, T] for
any b ≥ 0, and (3.3) is satisfied. Then system (1.6) is approximately null controllable on I.

Proof. For any ε > 0 and ξ ∈ C, we need to show that there exists a control function u(·) ∈
Lp(I;U) such that ‖S(T)ξ(0) + E(0, T)u +N(0, T)u‖ < ε. Since system (1.7) is approximately
null controllable on [0, T], there is a control function v0(·) ∈ Lp(0, T ;U) such that ‖S(T)ξ(0) +
E(0, T)v0‖ < ε/2. Select a sequence tn as in the proof of Theorem 3.3. Let y1 := y(t1; 0, ξ, v0).
There exists a control function v1(·) ∈ Lp(t1, T ;U) such that

∥∥S(T − t1)y1 + E(t1, T)v1
∥∥ <

ε

2
(3.12)

due to the assumption that (1.7) is approximately null controllable on [t1, T].
Similar to the proof of Theorem 3.3, we obtain three sequences yn, vn, and un such that

vn(·) ∈ Lp(tn, T ;U), un(·) ∈ Lp(I;U),

un(t) =

⎧
⎨

⎩

un−1(t), 0 ≤ t ≤ tn,

vn(t), tn < t ≤ T,

yn = y(tn; 0, ξ, un−1),
∥
∥S(T − tn)yn + E(tn, T)vn

∥∥ <
ε

2
.

(3.13)

Note that

y(t; 0, ξ, un) = S(t)ξ(0) + E(0, t)un +N(0, t)un

= S(t − tn)yn + E(tn, t)vn +N(tn, t)un,
(3.14)

we have
∥∥y(T ; 0, ξ, un)

∥∥ ≤ ∥∥S(T − tn)yn + E(tn, T)vn

∥∥ + ‖N(tn, T)un‖

<
ε

2
+M

∫T

tn

Q(s)ds < ε.
(3.15)

The proof of the theorem is complete.
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4. Example

In this section, we provide an example to illustrate the application of the results established
in Section 3.

Example 4.1. Consider the following heat control system:

yt(t, x) = Δy(t, x) + f
(
t, y(t, x), y(t −Δ, x)

)
, t ∈ I, x ∈ Ω,

y(t, x) = u(t), t ∈ I, x ∈ Γ,

y(t, x) = ξ(t, x), t ∈ [−Δ, 0], x ∈ Ω,

(4.1)

where Ω is a bounded and open subset of the Euclidean space R
n with a sufficiently smooth

boundary Γ.
To formulated this system as a boundary control system (1.1), we let E = L2(Ω), X =

H−1/2(Γ), U = L2(Γ), B1 = I, D(σ) = {y ∈ L2(Ω) : Δy ∈ L2(Ω)}, and σ = Δ. The operator A
is given by D(A) = H1

0(Ω) ∩H2(Ω), A = Δ. Then A generates an analytic semigroup S(t) in
E. The operator τ is the trace operator γ0y which is well defined and belongs to H−1/2(Γ) for
each y ∈ D(σ). Clearly, assumptions (H1) and (H2) are satisfied. Define the linear operator
B : L2(Γ) → L2(Ω) by Bu = wu, where wu ∈ L2(Ω) is the unique solution to the Dirichlet
boundary-value problem

Δwu = 0 in Ω,

wu = u on Γ.
(4.2)

It is proved in [1] that for every u ∈ H−1/2(Γ), (4.2) has a unique solution wu ∈ L2(Ω)
satisfying ‖Bu‖L2(Ω) = ‖wu‖L2(Ω) ≤ C1‖u‖H−1/2(Γ). This shows that (H3) is satisfied. It is proved
in [4] that there exists a positive constant K1 independent of u and t such that

‖AS(t)Bu‖L2(Ω) ≤ K1t
−3/4‖u‖L2(Γ) (4.3)

for all u ∈ L2(Γ) and t > 0. In other words, (H4) holds with γ(t) = K1t
−3/4. Therefore, system

(4.1) can be formulated to the form (1.6). Since the corresponding linear system of (4.1)

yt(t, x) = Δy(t, x), t ∈ I, x ∈ Ω,

y(t, x) = u(t), t ∈ I, x ∈ Γ,

y(0, x) = ξ(0, x), x ∈ Ω

(4.4)

is approximately controllable on any interval [b, T] with b ≥ 0; see [15]. It follows from
Theorem 3.3 that system (4.1) is approximately controllable on I if the nonlinear perturbation
function f satisfies (H5).
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