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We give some sufficient conditions for mappings defined on vector ultrametric spaces to be
modular locally constant.

1. Introduction and Preliminaries

A metric space (X, d) in which the triangle inequality is replaced by

d
(
x, y

) ≤ max
{
d(x, z), d

(
z, y

)}
,

(
x, y, z ∈ X

)
, (1.1)

is called an ultrametric space. Generalized ultrametric spaces were given in [1, 2] via
partially ordered sets and some applications of them appeared in logic programming [3],
computational logic [4], and quantitative domain theory [5].

In [6], the notion of a metric locally constant function on an ultrametric space was
given in order to investigate certain groups of isometries and describe various Galois
groups over local fields. Locally constant functions also appear in contexts such as higher
ramification groups of finite extensions ofQp, and the Fontaine ring B+

dR. Also, metric locally
constant functions were studied in [7, 8]. On the other hand, vector ultrametric spaces are
given in [9] as vectorial generalizations of ultrametrics. Hence, locally constant functions,
in modular sense, can play the same role in vector ultrametric spaces as they do in usual
ultrametric spaces.
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In this paper, we introduce modular locally constant mappings in vector ultrametric
spaces. Some sufficient conditions are given for mappings defined on vector ultrametric
spaces to be modular locally constant.

We first present some basic notions.
Recall that a modular on a real linear space A is a real valued functional ρ on A

satisfying the conditions:

(1) ρ(x) = 0 if and only if x = 0,

(2) ρ(x) = ρ(−x),
(3) ρ(αx + βy) ≤ ρ(x) + ρ(y), for all x, y ∈ A and α, β ≥ 0, α + β = 1.

Then, the linear subspace

Aρ =
{
x ∈ A : ρ(αx) −→ 0 as α −→ 0

}
(1.2)

of A is called a modular space.
A sequence (xn)∞n=1 inAρ is called ρ-convergent (briefly, convergent) to x ∈ Aρ if ρ(xn −

x) → 0 as n → ∞, and is called Cauchy sequence if ρ(xm − xn) → 0 as m,n → ∞. By
a ρ-closed (briefly, closed) set in Aρ we mean a set which contains the limit of each of its
convergent sequences. Then, Aρ is a complete modular space if every Cauchy sequence in Aρ

is convergent to a point of Aρ. We refer to [10, 11] for more details.
A cone P in a complete modular spaceAρ is a nonempty set such that
(i) P is ρ-closed, and P /= {0};
(ii) a, b ∈ �, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P;
(iii) P ∩ (−P) = {0}, where −P = {−x : x ∈ P}.
Let 	 be the partial order on Aρ induced by the cone P, that is, x 	 y whenever

y − x ∈ P. The cone P is called normal if

0 	 x 	 y =⇒ ρ(x) ≤ ρ
(
y
)
,

(
x, y ∈ Aρ

)
. (1.3)

The cone P is said to be unital if there exists a vector e ∈ P with modular 1 such that

x 	 ρ(x)e, (x ∈ P). (1.4)

Example 1.1. Consider the real vector space C[0, 1] consisting of all real-valued continuous
functions on [0, 1] equipped with the modular ρ defined by

ρ(x) = max
t∈[0,1]

|x(t)|2, (x ∈ C[0, 1]). (1.5)

It is not difficult to see that C[0, 1] is a complete modular space and

P = {x ∈ C[0, 1] : x(t) ≥ 0, ∀t ∈ [0, 1]} (1.6)

is a normal cone in C[0, 1].
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Example 1.2. The vector spaceC1[0, 1] consisting of all continuously differentiable real-valued
functions on [0, 1] equipped with the modular ρ defined by

ρ(x) = max
t∈[0,1]

|x(t)| + max
t∈[0,1]

∣
∣x′(t)

∣
∣,

(
x ∈ C1[0, 1]

)
(1.7)

constitutes a complete modular space. The subset

P =
{
x ∈ C1[0, 1] : x(t) ≥ 0, ∀t ∈ [0, 1]

}
(1.8)

is a unital cone in C1[0, 1] with unit 1. The cone P is not normal since, for example, x(t) =
tn 	 1, for n ≥ 1 does not imply that ρ(x) ≤ ρ(1).

Throughout this note, we suppose that P is a cone in complete modular spaceAρ, and
	 is the partial order induced by P.

Definition 1.3. A vector ultrametric on a nonempty set X is a mapping d : X × X → Aρ

satisfying the conditions:

(CUM1) d(x, y) � 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(CUM2) d(x, y) = d(y, x) for all x, y ∈ X;

(CUM3) If d(x, z) 	 p and d(y, z) 	 p, then d(x, y) 	 p, for any x, y, z ∈ X, and p ∈ P.

Then the triple (X, d,P) is called a vector ultrametric space. If P is unital and normal, then
(X, d,P) is called a unital-normal vector ultrametric space.

For unital-normal vector ultrametric space (X, d,P), since

d
(
x, y

) 	 ρ
(
d
(
x, y

))
e, d

(
y, z

) 	 ρ
(
d
(
y, z

))
e, (1.9)

from (CUM3)we get

d(x, z) 	 max
{
ρ
(
d
(
x, y

))
, ρ
(
d
(
y, z

))}
e, (1.10)

and therefore

ρ(d(x, z)) ≤ max
{
ρ
(
d
(
x, y

))
, ρ
(
d
(
y, z

))}
. (1.11)

Let (X, d,P) be a unital-normal vector ultrametric space. If x ∈ X and p ∈ P \ {0}, the ball
B(x, p) centered at x with radius p is defined as

B
(
x, p

)
:=

{
y ∈ X : ρ

(
d
(
x, y

)) ≤ ρ
(
p
)}

. (1.12)

The unital-normal vector ultrametric space (X, d,P) is called spherically complete if every chain
of balls (with respect to inclusion) has a nonempty intersection.
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The following lemma may be easily obtained.

Lemma 1.4. Let (X, d,P) be a unital-normal vector ultrametric space.

(1) If a, b ∈ X, 0 	 p and b ∈ B(a, p), then B(a, p) = B(b, p).

(2) If a, b ∈ X, 0 ≺ p 	 q, then either B(a, p)
⋂
B(b, q) = ∅ or B(a, p) ⊆ B(b, q).

Definition 1.5. Let (X, d,P) be a unital-normal vector ultrametric space. A mapping f : X →
P\{0} is said to bemodular locally constant provided that for any x ∈ X and any y ∈ B(x, f(x))
one has ρ(f(x)) = ρ(f(y)).

2. Main Theorem

Theorem 2.1. Let (X, d,P) be a spherically complete unital-normal vector ultrametric space and
T : X → X be a mapping such that for every x, y ∈ X, x /=y, either

ρ
(
d
(
Tx, Ty

))
< max

{
ρ(d(x, Tx)), ρ

(
d
(
y, Ty

))}
(2.1)

or

ρ
(
d
(
Tx, Ty

)) ≤ ρ
(
d
(
x, y

))
. (2.2)

Then there exists a subset B of X such that T : B → B and the mapping

f(x) = d(x, Tx), (x ∈ B) (2.3)

is modular locally constant.

Proof. Let E = {Ba}a∈X where Ba = B(a, d(a, Ta)). Consider the partial order � on E defined
by

Ba � Bb iff Bb ⊆ Ba, (2.4)

where a, b ∈ X. If E1 is any chain in E, then the spherical completeness of (X, d,P) implies
that the intersection Ω of elements of E1 is nonempty.
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Suppose that (2.1) holds. Let b ∈ Ω and Ba ∈ E1. Obviously b ∈ Ba, so ρ(d(a, b)) ≤ ρ(d(a, Ta)).
For any x ∈ Bb, we have

ρ(d(x, b)) ≤ ρ(d(b, Tb))

≤ max
{
ρ(d(b, a)), ρ(d(a, Ta)), ρ(d(Ta, Tb))

}

< max
{
ρ(d(b, a)), ρ(d(a, Ta)),max

{
ρ(d(a, Ta)), ρ(d(b, Tb))

}} (
by (2.1)

)

≤ max
{
ρ(d(b, a)), ρ(d(a, Ta)), ρ(d(b, Tb))

}

≤ max
{
ρ(d(a, Ta)), ρ(d(b, Tb))

}

= ρ(d(a, Ta)),

ρ(d(x, a)) ≤ max
{
ρ(d(x, b)), ρ(d(b, a))

} ≤ ρ(d(a, Ta)).

(2.5)

So for every Ba ∈ E1, Bb ⊆ Ba; that is, Bb is an upper bound in E for the family E1. By Zorn’s
lemma, there exists a maximal element in E1, say Bz. If b ∈ Bz, ρ(d(b, z)) ≤ ρ(d(z, Tz)), and
we get

ρ(d(b, Tb)) ≤ max
{
ρ(d(b, z)), ρ(d(z, Tz)), ρ(d(Tz, Tb))

}

< max
{
ρ(d(b, z)), ρ(d(z, Tz)),max

{
ρ(d(z, Tz)), ρ(d(b, Tb))

}} (
by (2.1)

)

≤ max
{
ρ(d(b, z)), ρ(d(z, Tz)), ρ(d(b, Tb))

}

≤ max
{
ρ(d(z, Tz)), ρ(d(b, Tb))

}

= ρ(d(z, Tz)).

(2.6)

Then

ρ(d(b, Tb)) ≤ ρ(d(z, Tz)). (2.7)

Since b ∈ Bb ∩Bz, we have Bb ⊆ Bz by Lemma 1.4. But Tb ∈ Bb, so T : Bz → Bz. Nowwe show
that ρ(f(b)) = ρ(f(z)) for every b ∈ Bz. It is clear that ρ(d(b, Tb)) ≤ ρ(d(z, Tz)), for all b ∈ Bz.
Suppose ρ(d(b, Tb)) < ρ(d(z, Tz)) for some b ∈ Bz. We have ρ(d(b, z)) ≤ ρ(d(z, Tz)), and

ρ(d(z, Tz)) ≤ max
{
ρ(d(z, b)), ρ(d(b, Tb)), ρ(d(Tb, Tz))

}

< max
{
ρ(d(b, z)), ρ(d(b, Tb)),max

{
ρ(d(b, Tb)), ρ(d(z, Tz))

}} (
by (2.1)

)

≤ max
{
ρ(d(b, z)), ρ(d(b, Tb)), ρ(d(z, Tz))

}

≤ max
{
ρ(d(b, Tb)), ρ(d(z, Tz))

}

= ρ(d(z, Tz)).

(2.8)

which is a contradiction. Thus f is modular locally constant on Bz.
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Suppose that (2.2) holds. As above, let b ∈ Ω and Ba ∈ E1. Obviously b ∈ Ba, so ρ(d(a, b)) ≤
ρ(d(a, Ta)). For any x ∈ Bb, we have

ρ(d(x, b)) ≤ ρ(d(b, Tb))

≤ max
{
ρ(d(b, a)), ρ(d(a, Ta)), ρ(d(Ta, Tb))

}

≤ max
{
ρ(d(b, a)), ρ(d(a, Ta))

} (
by (2.2)

)

= ρ(d(a, Ta)).

(2.9)

Thus

ρ(d(x, a)) ≤ max
{
ρ(d(x, b)), ρ(d(b, a))

} ≤ ρ(d(a, Ta)),

ρ(d(x, a)) ≤ max
{
ρ(d(x, b)), ρ(d(b, a))

} ≤ ρ(d(a, Ta)).
(2.10)

So, for every Ba ∈ E1, Bb ⊆ Ba; that is, Bb is an upper bound for the family E1. Again, by Zorn’s
lemma there exists a maximal element in E1, say Bz. For any b ∈ Bz, we have

ρ(d(b, Tb)) ≤ max
{
ρ(d(b, z)), ρ(d(z, Tz)), ρ(d(Tz, Tb))

}

≤ max
{
ρ(d(b, z)), ρ(d(z, Tz)), ρ(d(z, b))

} (
by (2.2)

)

= ρ(d(z, Tz)).

(2.11)

This implies that b ∈ Bb ∩ Bz, and Lemma 1.4 gives Bb ⊆ Bz. Since Tb ∈ Bb, so T : Bz → Bz.
If z = Tz, then f(x) = 0 on Bz and this yields the result. If z/= Tz, we show that

ρ(f(b)) = ρ(f(z)) for every b ∈ Bz. Since ρ(d(b, Tb)) ≤ ρ(d(z, Tz)) for any b ∈ Bz, let us
suppose that for some b ∈ Bz, ρ(d(b, Tb)) < ρ(d(z, Tz)). So ρ(d(b, z)) ≤ ρ(d(z, Tz)) and

ρ(d(z, Tz)) ≤ max
{
ρ(d(z, b)), ρ(d(b, Tb)), ρ(d(Tb, Tz))

}

≤ max
{
ρ(d(b, z)), ρ(d(b, Tb)), ρ(d(z, b))

} (
by (2.2)

)

= ρ(d(b, z)),

(2.12)

thus ρ(d(b, z)) = ρ(d(z, Tz)). But ρ(d(b, z)) = ρ(d(z, Tz)) > ρ(d(b, Tb)) implies that z ∈ Bz,
but z /∈ Bb and hence Bb � Bzwhich contradicts the maximality of Bz. This completes the
proof.

In the following, we assume that (X, d,P) is a spherically complete unital-normal
vector ultrametric space.

Corollary 2.2. Let T : X → X be a mapping such that for all x, y ∈ X, x /=y,

ρ
(
d
(
Tx, Ty

))
< max

{
ρ
(
d
(
y, Tx

))
, ρ
(
d
(
x, Ty

))}
. (2.13)

Then there exists a subset B ofX such that T : B → B and the mapping f defined in (2.3) is modular
locally constant.
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Proof. Since

ρ
(
d
(
y, Tx

)) ≤ max
{
ρ
(
d
(
y, x

))
, ρ(d(x, Tx))

}
,

ρ
(
d
(
x, Ty

)) ≤ max
{
ρ
(
d
(
x, y

))
, ρ
(
d
(
y, Ty

))}
,

(2.14)

for all x, y ∈ X, x /=y, we get

ρ
(
d
(
x, y

)) ≤ max
{
ρ(d(x, Tx)), ρ

(
d
(
Tx, Ty

))
, ρ
(
d
(
Ty, y

))}
(2.15)

for all x, y ∈ X, x /=y. Now, if

max
{
ρ(d(x, Tx)), ρ

(
d
(
y, Ty

))}
< ρ

(
d
(
Tx, Ty

))
, (2.16)

then

ρ
(
d
(
Tx, Ty

))
< max

{
ρ
(
d
(
y, Tx

))
, ρ
(
d
(
x, Ty

))} (
by (2.13)

)

≤ max
{
ρ
(
d
(
x, y

))
, ρ(d(x, Tx)), ρ

(
d
(
y, Ty

))} (
by (2.14)

)

≤ max
{
ρ(d(x, Tx)), ρ

(
d
(
Tx, Ty

))
, ρ
(
d
(
Ty, y

))}

= ρ
(
d
(
Tx, Ty

))
,

(
by (2.16)

)

(2.17)

which is a contradiction. Thus ρ(d(Tx, Ty)) ≤ max{ρ(d(x, Tx)), ρ(d(y, Ty))}, and so

ρ
(
d
(
x, y

)) ≤ max
{
ρ(d(x, Tx)), ρ

(
d
(
y, Ty

))}
. (2.18)

Therefore

ρ
(
d
(
Tx, Ty

))
< max

{
ρ
(
d
(
y, Tx

))
, ρ
(
d
(
x, Ty

))}
,

(
by (2.13)

)

≤ max
{
ρ
(
d
(
x, y

))
, ρ(d(x, Tx)), ρ

(
d
(
y, Ty

))} (
by (2.14)

)

≤ max
{
ρ(d(x, Tx)), ρ

(
d
(
y, Ty

))}
.

(
by (2.18)

)
(2.19)

Now, Theorem 2.1 completes the proof.

Corollary 2.3. Let T : X → X be a mapping such that for all x, y ∈ X, x /=y,

ρ
(
d
(
Tx, Ty

))
< ρ

(
d
(
x, y

))
. (2.20)

Then there exists a subset B ofX such that T : B → B and the mapping f defined in (2.3) is modular
locally constant.
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Proof. We have

ρ
(
d
(
x, y

)) ≤ max
{
ρ(d(x, Tx)), ρ

(
d
(
Tx, Ty

))
, ρ
(
d
(
Ty, y

))}

< max
{
ρ
(
d
(
x, y

))
, ρ(d(x, Tx)), ρ

(
d
(
Ty, y

))} (
by (2.20)

)

≤ max
{
ρ(d(x, Tx)), ρ

(
d
(
y, Ty

))}
,

(2.21)

for all x, y ∈ X, x /=y. Again, Theorem 2.1, completes the proof.
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