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We adapt the part metric and use it in studying positive solutions of a certain family of discrete
dynamic systems. Some examples are presented, and we also compare some results in the
literature.

1. Introduction

There has been an increasing interest in studying discrete dynamic systems recently (see, e.g.,
[1–37]). For some recent papers on the systems of difference equations which are not derived
from differential equations, see, for example, [4, 12, 14, 15], and the related references therein.
In particular, in [4], were considered some cyclic systems of difference equations for the first
time.Motivated by [4], in [12], the global attractivity of four k-dimensional systems of higher-
order difference equations with two or three delays was investigated. The results in [12] can
be easily extended to the corresponding systems with arbitrary number of delays by using
the main results in [28].

In [9], the authors used Thompson’s part-metric [32] to investigate the behaviour of
positive solutions to a difference equation from the William Lowell Putman Mathematical
Competition [33] by applying a result on discrete dynamic systems in finite dimensional
complete metric spaces. Further investigations devoted to applying various part-metric-
related inequalities and some asymptotic methods in order to study (scalar) difference
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equations related to the equation in [33] can be found, for example, in [1, 3, 5, 18–22, 34–37]
(see also the related references therein).

In this paper, we adapt the part-metric and apply it in studying of the behaviour of
positive solutions to the following family of discrete dynamic systems

Yn = Φ
(
Yn−k1 , Yn−k2 , . . . , Yn−kq

)
, n ∈ �0 , (1.1)

where q ∈ � \ {1}, 1 ≤ k1 < k2 < · · · < kq, k1, . . . , kq ∈ �, Yn = (y(1)
n , y

(2)
n , . . . , y

(q)
n )T ,

Y−kq , Y−kq+1, . . . , Y−1 are positive initial vectors and Φ : �q×q
+ → �

q
+ is a continuous mapping

which will be specified later.
In Section 2, we present some preliminary results which will be applied in the proofs

of main results, given in Section 3. Some applications of the main result are given in Sections
4 and 5. In Section 6, we show that some recent results follow from a result in [9].

2. Auxiliary Results

Let � be the whole set of reals and let �+ = (0,+∞). Denote by �n
+ the set of all positive n-

dimensional vectors and by �m×n
+ the set of all m × n matrices with positive entries, that is,

�
m×n
+ = {(aij)m×n | aij ∈ �+},m,n ∈ �.

The following theorem was proved in [9, Theorem 1].

Theorem 2.1. Let (M,d) be a complete metric space, where d denotes a metric and M is an open
subset of �n , and let T : M → M be a continuous mapping with the unique equilibrium x∗ ∈ M.
Suppose that for the discrete dynamic system

xn+1 = Txn, n ∈ �0 , (2.1)

there is a k ∈ � such that for the kth iterate of T, the next inequality holds

d
(
Tkx, x∗

)
< d(x, x∗) (2.2)

for all x /=x∗. Then, x∗ is globally asymptotically stable with respect to metric d.

The part-metric (see [9, 32]) is a metric defined on �n
+ by

p(X, Y) = log2 max
1≤i≤n

{
xi

yi
,
yi

xi

}
, (2.3)

for arbitrary vectors X = (x1, x2, . . . , xn)T ∈ �n
+ and Y = (y1, y2, . . . , yn)T ∈ �n

+ .
Recall that the part-metric p has the following properties [9, 10]:

(1) p is a continuous metric on �n
+ ,

(2) (�n
+ , p) is a complete metric space,

(3) the distances induced by the part-metric and by the Euclidean norm ‖ · ‖ are
equivalent on �n

+ .
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Based on these properties and Theorem 2.1, Kruse and Nesemann in [9] obtained the
following result.

Lemma 2.2 (see [9, Corollary 2]). Let T : �n
+ → �

n
+ be a continuous mapping with a unique

equilibrium x∗ ∈ �n
+ . Suppose that for the discrete dynamic system (2.1) there is some k ∈ � such

that for the part-metric p inequality p(Tkx, x∗) < p(x, x∗) holds for all x /=x∗. Then, x∗ is globally
asymptotically stable.

Our idea is to adapt the part-metric to matrices. For any two matrices with positive
entries A = (aij)m×n ∈ �

m×n
+ and B = (bij)m×n ∈ �

m×n
+ , we define the part-metric in the

following natural way:

P(A,B) = log2 max
1≤i≤m,1≤j≤n

{
aij

bij
,
bij

aij

}
. (2.4)

Note that anm × n matrix (aij)m×n is equivalent to a vector with mn elements, such as

(
aij

)
m×n ←→ (a1,1, a2,1, . . . , am,1, a1,2, a2,2, . . . , am,2, . . . , a1,n, a2,n, . . . , am,n)T . (2.5)

Thus, for the above matrices A and B, we have that

P(A,B) = p

((
AT

1 , A
T
2 , . . . , A

T
n

)T
,
(
BT
1 , B

T
2 , . . . , B

T
n

)T
)

= max
1≤j≤n

{
p
(
Aj, Bj

)}
, (2.6)

where Aj = (a1j , a2j , . . . , amj)T , Bj = (b1j , b2j , . . . , bmj)T , j = 1, 2, . . . , n.
From this and the above-mentioned properties for the part-metric we have the

following:
(1) the part-metric P is a continuous metric on �m×n

+ ,

(2) (�m×n
+ ,P) is a complete metric space,

(3) the distances induced by the part-metric P and the Euclidean norm are
equivalent on �m×n

+ .

From this and by Lemma 2.2, we have that the next result holds.

Theorem 2.3. Let T : �m×n
+ → �

m×n
+ be a continuous mapping with the unique equilibrium C ∈

�
m×n
+ . Suppose that for the discrete dynamic system

Xn+1 = TXn, n ∈ �0 , (2.7)

there is a k ∈ � such that for metric P, the inequality P(TkX,C) < P(X,C) holds for each X/=C.
Then, C is globally asymptotically stable.

Remark 2.4. Note that if we do not assume in Theorem 2.3 that C is the unique equilibrium of
(2.7), then if C̃ is another equilibrium it must be

P
(
C̃,C

)
= P

(
TkC̃,C

)
< P

(
C̃,C

)
, (2.8)

which is impossible. Hence, there is only one equilibrium of (2.7).
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3. Main Result

Let Y = (Y1, Y2, . . . , Yq) be a square q × q matrix, where Yi = (y(1)
i , y

(2)
i , . . . , y

(q)
i )T , i = 1, 2, . . . , q,

and Φ is defined by

Φ(Y) = Φ
(
Y1, Y2, . . . , Yq

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
(
y
(1)
1 , y

(2)
2 , . . . , y

(q)
q

)

φ
(
y
(2)
1 , y

(3)
2 , . . . , y

(1)
q

)

...

φ
(
y
(q)
1 , y

(1)
2 , . . . , y

(q−1)
q

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.1)

where φ : �q
+ → �+ is a continuous mapping. Clearly, Φ is a continuous mapping and our

system becomes

Yn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y
(1)
n

y
(2)
n

...

y
(q)
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
(
y
(1)
n−k1 , y

(2)
n−k2 , . . . , y

(q)
n−kq

)

φ
(
y
(2)
n−k1 , y

(3)
n−k2 , . . . , y

(1)
n−kq

)

...

φ
(
y
(q)
n−k1 , y

(1)
n−k2 , . . . , y

(q−1)
n−kq

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, n ∈ �0 , (3.2)

where q ∈ � \ {1}, 1 ≤ k1 < k2 < · · · < kq, k1, k2, . . . , kq ∈ �.
As an application of Theorem 2.3, we will establish a theorem regarding the global

asymptotic stability of cyclic system of difference equations in (3.2), as follows.

Theorem 3.1. Consider system (3.2), where φ : �q
+ → �+ , q ≥ 2 is a continuous mapping. Let

C = (c, c, . . . , c)T , c > 0, be an equilibrium of (3.2). If for (x1, x2, . . . , xq)T /=C,

min
1≤i≤q

{
xi,

c2

xi

}
< φ

(
x1, x2, . . . , xq

)
< max

1≤i≤q

{
xi,

c2

xi

}
, (3.3)

then C is globally asymptotically stable.

Proof. Define a matrix mapping T : �
q×kq
+ → �

q×kq
+ such that

T
(
X1, X2, . . . , Xkq

)
=
(
Φ
(
Xk1 , Xk2 , . . . , Xkq

)
, X1, X2, . . . , Xkq−1

)
, (3.4)

where Xi = (x1i, x2i, . . . , xqi)T , i = 1, 2, . . . , kq. Then, (3.2) can be converted into the first-order
recursive q × kq matrix equation

Mn = T(Mn−1), n ∈ �, (3.5)

with M0 initial matrix, with positive entries.
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Clearly C = (C,C, . . . , C) is an equilibrium of (3.5).
Let (Yn)+∞n=−kq be an arbitrary positive solution to (3.2), and denote

Mn =
(
Yn−1, Yn−2, . . . , Yn−kq

)
, n ∈ �0 , (3.6)

then we get a matrix sequence (Mn)∞n=0. Apparently, the matrix sequence (Mn)∞n=0 is a solution
to (3.5).

When M0 = C, it is clear that Mn = C holds for n ∈ �0 . Hence, in what follows, we
assume that M0 /=C.

Let the relation “
j” be either “=” or “<” for each j ∈ �0 . Since

T(Mn) = Mn+1 =
(
Yn, Yn−1, . . . , Yn−kq+1

)
, n ∈ �0 , (3.7)

then

Yn = Φ
(
Yn−k1 , Yn−k2 , . . . , Yn−kq

)
. (3.8)

By (3.2) and condition (3.3), we get that for each j ∈ {1, 2, . . . , q}

y
(j)
n

c
=
φ
(
y
(j)
n−k1 , . . . , y

(θ(j+q−1))
n−kq

)

c

j max

1≤i≤q

⎧
⎨
⎩

y
(θ(j+i−1))
n−ki

c
,

c

y
(θ(j+i−1))
n−ki

⎫
⎬
⎭,

c

y
(j)
n

=
c

φ
(
y
(j)
n−k1 , . . . , y

(θ(j+q−1))
n−kq

)
j max
1≤i≤q

⎧
⎨
⎩

y
(θ(j+i−1))
n−ki

c
,

c

y
(θ(j+i−1))
n−ki

⎫
⎬
⎭,

(3.9)

where θ(n) ≡ n (modq) with θ(q) = q.
Let Bn = (Yn−k1 , Yn−k2 , . . . , Yn−kq).

Case 1. If Bn /= (C,C, . . . , C), then there exists at least one j ∈ {1, 2, . . . , q} such that the relation
“
j” in (3.9) is “<”. Thus,

p
(
Yn, C

)
< max

{
p
(
Yn−k1 , C

)
, p
(
Yn−k2 , C

)
, . . . , p

(
Yn−kq , C

)}
, n ∈ �0 . (3.10)

Case 2. If Bn = (C,C, . . . , C), then Yn = C and “
j” is always “=” for each j ∈ {1, 2, . . . , q},
which implies that

p
(
Yn, C

)
= max

{
p
(
Yn−k1 , C

)
, p
(
Yn−k2 , C

)
, . . . , p

(
Yn−kq , C

)}
= 0, n ∈ �0 . (3.11)

From relations (3.10) and (3.11), we obtain that

p
(
Yn, C

)

n max

{
p
(
Yn−k1 , C

)
, p
(
Yn−k2 , C

)
, . . . , p

(
Yn−kq , C

)}
, n ∈ �0 . (3.12)
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From the following set of inequalities

p
(
Y0, C

)

0 max

{
p
(
Y−k1 , C

)
, p
(
Y−k2 , C

)
, . . . , p

(
Y−kq , C

)}
,

p
(
Y1, C

)

1 max

{
p
(
Y1−k1 , C

)
, p
(
Y1−k2 , C

)
, . . . , p

(
Y1−kq , C

)}
,

...

p
(
Ykq−1, C

)

kq−1 max

{
p
(
Ykq−1−k1 , C

)
, p
(
Ykq−1−k2 , C

)
, . . . , p

(
Ykq−1−kq , C

)}
,

(3.13)

and since M0 /=C, it follows that there exists at least one index j ∈ {0, 1, . . .,kq − 1} such that
the relation “
j” is “<”, which implies

max
0≤i≤kq−1

{
p
(
Yi, C

)}
< max
−kq≤i≤−1

{
p
(
Yi, C

)}
. (3.14)

From the definition of the part-metric, we have that

P(Mn,C) = log2 max
1≤i≤kq,1≤j≤q

⎧
⎨
⎩

c

y
(j)
n−i

,
y
(j)
n−i
c

⎫
⎬
⎭ = P

((
Yn−1, . . . , Yn−kq

)
,C
)
. (3.15)

Then, we derive

P
(
Tkq(M0),C

)
= P

(
Mkq ,C

)
= P

((
Ykq−1, Ykq−2, . . . , Ykq−kq

)
,C
)

= max
0≤i≤kq−1

{
p
(
Yi, C

)}
< max
−kq≤i≤−1

{
p
(
Yi, C

)}
= P(M0,C).

(3.16)

Because M0 is arbitrary and M0 /=C, then by Theorem 2.3 (see also Remark 2.4) we have that
C is a globally asymptotically stable equilibrium of (3.5), which implies that the equilibrium
C of system (3.2) is globally asymptotically stable, as desired.

4. On Some Symmetric Discrete Dynamic Systems

For the sake of convenience, first we define two continuous mappings f, g : �q
+ → �+ , q ≥ 2,

as follows:

f
(
x1, x2, . . . , xq

)
=

∏q

j=1

(
xr
j + 1

)
−
∏q

j=1

(
xr
j − 1

)

∏q

j=1

(
xr
j + 1

)
+
∏q

j=1

(
xr
j − 1

) ,

g
(
x1, x2, . . . , xq

)
=

∏q

j=1

(
xr
j + 1

)
+
∏q

j=1

(
xr
j − 1

)

∏q

j=1

(
xr
j + 1

)
−
∏q

j=1

(
xr
j − 1

) ,

(4.1)

where r is a real parameter belonging to the interval (0, 1].
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Many researchers have studied the symmetric difference equation

xn = φ
(
xn−k1 , xn−k2 , . . . , xn−kq

)
, n ∈ �0 , (4.2)

where q ∈ � \ {1}, 1 ≤ k1 < k2 < · · · < kq, k1, k2, . . . , kq ∈ �, and φ ∈ {f, g}.
In the following, we mainly investigate the behaviour of positive solutions to the

following class of cyclic difference equation systems

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y
(1)
n

y
(2)
n

...

y
(q)
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
(
y
(1)
n−k1 , y

(2)
n−k2 , . . . , y

(q)
n−kq

)

φ
(
y
(2)
n−k1 , y

(3)
n−k2 , . . . , y

(1)
n−kq

)

...

φ
(
y
(q)
n−k1 , y

(1)
n−k2 , . . . , y

(q−1)
n−kq

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, n ∈ �0 , (4.3)

where q ∈ � \ {1}, 1 ≤ k1 < k2 < · · · < kq, k1, k2, . . . , kq ∈ �, and φ ∈ {f, g}.
In order to establish the main result concerning (4.3), we need some preliminary

lemmas.

Lemma 4.1. System (4.3) has unique positive equilibrium (1, 1, . . . , 1︸ ︷︷ ︸
q

)T .

Proof. Let (c1, c2, . . . , cq)T be an arbitrary positive equilibrium of system (4.3). Since the
mappings f and g are both symmetric, then we derive that

ci = φ
(
c1, c2, . . . , cq

)
, i = 1, 2, . . . , q, (4.4)

from which it follows that ci = c > 0, i = 1, 2, . . . , q, and then

c = φ(c, c, . . . , c). (4.5)

By Lemma 2.1 in [13], we obtain c = 1, as desired.

Lemma 4.2. Let a1 and a2 be positive real numbers with (a1, a2)/= (1, 1), and φ ∈ {f, g}. Then,

min
{
a1, a2,

1
a1

,
1
a2

}
< φ(a1, a2) < max

{
a1, a2,

1
a1

,
1
a2

}
. (4.6)

Proof. From the next identities

x −
x + y

1 + xy
=
y
(
x2 − 1

)

1 + xy
, y −

x + y

1 + xy
=
x
(
y2 − 1

)

1 + xy
,

1
x
−

x + y

1 + xy
=

1 − x2

x
(
1 + xy

) , 1
y
−

x + y

1 + xy
=

1 − y2

y
(
1 + xy

) ,
(4.7)
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it is easy to see that when (a1, a2)/= (1, 1) the following inequalities hold:

min
{
a1, a2,

1
a1

,
1
a2

}
<

a1 + a2

1 + a1a2
< max

{
a1, a2,

1
a1

,
1
a2

}
. (4.8)

Because r ∈ (0, 1], then for the case φ = f , we easily obtain that

min
{
a1, a2,

1
a1

,
1
a2

}
≤ min

{
ar
1, a

r
2,

1
ar
1
,
1
ar
2

}
< f(a1, a2)

=
ar
1 + ar

2

1 + ar
1a

r
2
< max

{
ar
1, a

r
2,

1
ar
1
,
1
ar
2

}
≤ max

{
a1, a2,

1
a1

,
1
a2

}
.

(4.9)

The case φ = g follows immediately from the case φ = f due to the fact that fg ≡ 1.

Lemma 4.3. Let q ≥ 2 be an integer and φ ∈ {f, g}. Let a1, a2, . . . , aq be positive real numbers with
(a1, a2, . . . , aq)/= (1, 1, . . . , 1). Then,

min
1≤i≤q

{
ai,

1
ai

}
< φ

(
a1, a2, . . . , aq

)
< max

1≤i≤q

{
ai,

1
ai

}
. (4.10)

Proof. For the case q = 2, the assertion follows from Lemma 4.2. Next, we argue by the
induction and assume that the assertion is true for q = k (k ≥ 2). Then, it suffices to prove
that the assertion holds when q = k+1. Now, let a1, a2, . . . , ak+1 be positive real numbers with
(a1, a2, . . . , ak+1)/= (1, 1, . . . , 1). Consider the following function h in a variable x

h(x; a1, a2, . . . , ak) =
(xr + 1)

∏k
j=1

(
ar
j + 1

)
− (xr − 1)

∏k
j=1

(
ar
j − 1

)

(xr + 1)
∏k

j=1

(
ar
j + 1

)
+ (xr − 1)

∏k
j=1

(
ar
j − 1

) , (4.11)

where a1, a2, . . . , ak are arbitrary (but fixed) positive numbers. Clearly,

h(ak+1; a1, a2, . . . , ak) = f(a1, a2, . . . , ak+1). (4.12)

The first derivative of the function h regarding the variable x is equal to

h′(x; a1, a2, . . . , ak) =
−4rxr−1∏k

j=1

(
a2r
j − 1

)

(
(xr + 1)

∏k
j=1

(
ar
j + 1

)
+ (xr − 1)

∏k
j=1

(
ar
j − 1

))2
. (4.13)

In the following, we distinguish three possibilities.
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Case 1 (
∏k

j=1(a
2r
j −1) < 0). Then, h′(x; a1, a2, . . . , ak) > 0 holds for all x > 0, which implies that

the function h(x; a1, a2, . . . , ak) is strictly increasing in variable x. From this, we obtain

h(ak+1; a1, a2, . . . , ak) < lim
x→+∞

h(x; a1, a2, . . . , ak) =

∏k
j=1

(
ar
j + 1

)
−
∏k

j=1

(
ar
j − 1

)

∏k
j=1

(
ar
j + 1

)
+
∏k

j=1

(
ar
j − 1

)

= f(a1, a2, . . . , ak) ≤ max
1≤i≤k

{
ai,

1
ai

}
≤ max

1≤i≤k+1

{
ai,

1
ai

}
,

h(ak+1; a1, a2, . . . , ak) > lim
x→ 0+

h(x; a1, a2, . . . , ak) =

∏k
j=1

(
ar
j + 1

)
+
∏k

j=1

(
ar
j − 1

)

∏k
j=1

(
ar
j + 1

)
−
∏k

j=1

(
ar
j − 1

)

= g(a1, a2, . . . , ak) ≥ min
1≤i≤k

{
ai,

1
ai

}
≥ min

1≤i≤k+1

{
ai,

1
ai

}
.

(4.14)

Case 2 (
∏k

j=1(a
2r
j − 1) > 0). Then, h′(x; a1, a2, . . . , ak) < 0 holds for all x > 0, implying that the

function h(x; a1, a2, . . . , ak) is strictly decreasing in variable x. From this, we obtain that

h(ak+1; a1, a2, . . . , ak) < lim
x→ 0+

h(x; a1, a2, . . . , ak) =

∏k
j=1

(
ar
j + 1

)
+
∏k

j=1

(
ar
j − 1

)

∏k
j=1

(
ar
j + 1

)
−
∏k

j=1

(
ar
j − 1

)

= g(a1, a2, . . . , ak) ≤ max
1≤i≤k

{
ai,

1
ai

}
≤ max

1≤i≤k+1

{
ai,

1
ai

}
,

h(ak+1; a1, a2, . . . , ak) > lim
x→+∞

h(x; a1, a2, . . . , ak) =

∏k
j=1

(
ar
j + 1

)
−
∏k

j=1

(
ar
j − 1

)

∏k
j=1

(
ar
j + 1

)
+
∏k

j=1

(
ar
j − 1

)

= f(a1, a2, . . . , ak) ≥ min
1≤i≤k

{
ai,

1
ai

}
≥ min

1≤i≤k+1

{
ai,

1
ai

}
.

(4.15)

Case 3 (
∏k

j=1(a
2r
j − 1) = 0). This implies h(x; a1, a2, . . . , ak) = 1 for all x > 0. From

this relation and the inspection that the condition (a1, a2, . . . , ak+1)/= (1, 1, . . . , 1) implies
max1≤i≤k+1{ai, 1/ai} > 1 and min1≤i≤k+1{ai, 1/ai} < 1, we obtain that

min
1≤i≤k+1

{
ai,

1
ai

}
< h(ak+1; a1, a2, . . . , ak) < max

1≤i≤k+1

{
ai,

1
ai

}
. (4.16)

Hence, by induction, the assertion immediately holds for φ = f , and then the case φ = g
follows directly from the case φ = f because f · g ≡ 1

By Lemmas 4.1 and 4.3 and Theorem 3.1, we obtain the following theorem.

Theorem 4.4. The unique equilibrium of system (4.3) is globally asymptotically stable.
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Remark 4.5. Note that the following two systems (particular cases q = 2 and q = 3 of the
system (4.3), resp.)

un = φ(un−k, vn−l),

vn = φ(vn−k, un−l),
n ∈ �0 ,

un = φ(un−k, vn−l, wn−m),

vn = φ(vn−k,wn−l, un−m),

wn = φ(wn−k, un−l, vn−m),

n ∈ �0 ,

(4.17)

where 1 ≤ k < l < m, φ ∈ {f, g}, were studied in [12].

5. On a System of Difference Equations

Let μ : �q
+ → �+ , q ≥ 4 be a continuous mapping defined by

μ
(
t1, t2, . . . , tq

)
=
∑q−2

i=1 ti + tq−1tq

t1t2 +
∑q

i=3 ti
. (5.1)

Then, the following difference equation

xn+1 = μ(xn, xn−1, xn−2, xn−3), n ∈ �0 , (5.2)

is an extension of the difference equation in [33], which was studied in [9].
First, we consider the next four-dimensional system of difference equations:

⎛
⎜⎜⎜⎜⎜⎝

wn

xn

yn

zn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

μ
(
wn−k1 , xn−k2 , yn−k3 , zn−k4

)

μ
(
xn−k1 , yn−k2 , zn−k3 , wn−k4

)

μ
(
yn−k1 , zn−k2 , wn−k3 , xn−k4

)

μ
(
zn−k1 , wn−k2 , xn−k3 , yn−k4

)

⎞
⎟⎟⎟⎟⎟⎠

, n ∈ �0 , (5.3)

where 1 ≤ k1 < k2 < k3 < k4, ki ∈ � for i ∈ {1, 2, 3, 4}.

Lemma 5.1. System (5.3) has unique positive equilibrium (1, 1, 1, 1)T .

Proof. Let (a, b, c, d)T be an arbitrary positive equilibrium of the system (5.3). Then, we get

a =
a + b + cd

ab + c + d
, b =

b + c + da

bc + d + a
, c =

c + d + ab

cd + a + b
, d =

d + a + bc

da + b + c
, (5.4)

which imply

ac = 1, bd = 1. (5.5)
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Applying (5.5), the system in (5.4) is reduced to

a
(
a2 − 1

)
b2 + a(1 − a)b + a2 − 1 = 0,

b3 + a(a − 1)b2 + (a − 1)b − a2 = 0.

(5.6)

If a = 1, then it follows from the second identity that b = 1. Now, assume a ∈ �+ \ {1}. By
solving the first equation in (5.6) with respect to variable b, we get that the discriminant

Δ = a2(1 − a)2 − 4a
(
a2 − 1

)2
= a(a − 1)2

(
−4a2 − 7a − 4

)
< 0, (5.7)

which implies the first equation in (5.6) has no real roots. This contradicts b > 0. Hence,
a = b = 1, which along with (5.5) implies c = d = 1, finishing the proof.

The following lemma follows directly from Lemma 3.3 in [34] or the proof of Lemma
4 in [35].

Lemma 5.2. Let a1, a2, a3, and a4 be positive real numbers with (a1, a2, a3, a4)/= (1, 1, 1, 1). Then,

min
1≤i≤4

{
ai,

1
ai

}
< μ(a1, a2, a3, a4) < max

1≤i≤4

{
ai,

1
ai

}
. (5.8)

By Lemmas 5.1 and 5.2, and Theorem 3.1, we easily derive the next theorem.

Theorem 5.3. Unique positive equilibrium (1, 1, 1, 1)T of system (5.3) is globally asymptotically
stable.

In the following, we consider the next q-dimensional (q ≥ 5) generalization of
system (5.3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y
(1)
n

y
(2)
n

...

y
(q)
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ
(
y
(1)
n−k1 , y

(2)
n−k2 , . . . , y

(q)
n−kq

)

μ
(
y
(2)
n−k1 , y

(3)
n−k2 , . . . , y

(1)
n−kq

)

...

μ
(
y
(q)
n−k1 , y

(1)
n−k2 , . . . , y

(q−1)
n−kq

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, n ∈ �0 , (5.9)

where 5 ≤ q ∈ �, 1 ≤ k1 < k2 < · · · < kq, k1, k2, . . . , kq ∈ �.
It is easy to see that (1, 1, . . . , 1)T is a positive equilibrium of system (5.9), but it is not so

easy to confirm its uniqueness as in the proof of Lemma 5.1. However, we have the following
lemma which follows directly from Lemmas 3.4 and 3.5 in [34].
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Lemma 5.4. Let r be an integer with r ≥ 4. Let a1, a2, . . . , ar be positive numbers with
(a1, a2, . . . , ar)/= (1, 1, . . . , 1). Then,

min
1≤i≤r

{
ai,

1
ai

}
<

∑r−2
i=1 ai + ar−1ar

a1a2 +
∑r

i=3 ai
< max

1≤i≤r

{
ai,

1
ai

}
. (5.10)

Hence, we can apply Theorem 3.1 to establish the following theorem.

Theorem 5.5. The positive equilibrium (1, 1, . . . , 1)T of system (5.9) is globally asymptotically stable.

6. An Application of a Kruse-Nesseman Result

Numerous papers studied particular cases of (4.2) by using semi-cycle analysis of their
solutions. It was shown by Berg and Stević in [1] that this analysis is unnecessarily
complicated and useful only for lower-order difference equations. They also described some
methods for determining rules of semi-cycles which can be used in many classes of difference
equations. On the other hand, it has been noticed in several papers (see, e.g., [18]) that
the stability results in many of these papers follow from the following result by Kruse and
Nesemann in [9].

Theorem 6.1. Consider the difference equation

yn = F
(
yn−1, . . . , yn−m

)
, n ∈ �0 , (6.1)

where F : �m
+ → �+ is a continuous function with a unique equilibrium x∗ ∈ �+ . Suppose that there

is a k0 ∈ � such that for each solution (yn) of (6.1),

(
yn − yn−k0

)
(
yn −

(x∗)2

yn−k0

)
≤ 0 (6.2)

with equality if and only if yn = x∗. Then, x∗ is globally asymptotically stable.

Motivated by [18], in recent paper [2], Berg and Stević also applied Theorem 6.1 by
proving the next result, which covers numerous particular cases appearing in the literature.
We formulate the proposition here as a useful information to the reader. Before we formulate
it we need some notation. Let Sj = {1, 2, . . . , j}, j = 1, . . . , k, let

Tk
r :=

∑
{t1,t2,...,tr}⊆Sk

t1<t2<···<tr

xt1xt2 · · ·xtr , (6.3)

for r = 0, 1, . . . , k, where we define Tk
0 = 1 and Tk

−1 = Tk−1
k

= 0, and let

∑′
Tk
r =

k∑
r=1
r odd

Tk
r ,

∑′′
Tk
r =

k∑
r=0

r even

Tk
r , (6.4)

or reversed,
∑′ Tk

r is the sum over the even, and
∑′′ Tk

r is the sum over the odd r.
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Theorem 6.2. Suppose χ is a nonnegative continuous function on �k
+ , k ∈ �, and 1 ≤ i1 < i2 < · · · <

ik . If a sequence (yi) satisfies the difference equation

yn =
f
(
yn−i1 , yn−i2 , . . . , yn−ik

)

g
(
yn−i1 , yn−i2 , . . . , yn−ik

) , n ∈ �0 , (6.5)

where f(x1, x2, . . . , xk) = χ +
′∑

Tk
r ,

g(x1, x2, . . . , xk) = χ +
′′∑

Tk
r ,

(6.6)

with y−ik , . . . , y−1 ∈ �+ , then it converges to the unique positive equilibrium 1.

Another proof of the previous result, in the case χ = 0, can be also find in recent paper
[28] by Stević.

Recently Sun and Xi in [31] gave an interesting proof of the following result. At first
sight their result looked new and not so closely related to Theorem 6.1. However, we prove
here that it is also a consequence of Theorem 6.1.

Theorem 6.3. Let f ∈ C(Rk
+, R+) and g ∈ C(Rl

+, R+) with k, l ∈ �, 0 ≤ r1 < · · · < rk and
0 ≤ m1 < · · · < ml and satisfy the following two conditions:

(H1) [f(u1, u2, . . . , uk)]∗ = f(u∗1, u
∗
2, . . . , u

∗
k
) and [g(u1, u2, . . . , ul)]∗ = g(u∗1, u

∗
2, . . . , u

∗
l
).

(H2) f(u∗1, u
∗
2, . . . , u

∗
k) ≤ u∗1.

Then, x = 1 is the unique positive equilibrium of the difference equation

xn =
f(xn−r1−1, . . . , xn−rk−1)g(xn−m1−1, . . . , xn−ml−1) + 1
f(xn−r1−1, . . . , xn−rk−1) + g(xn−m1−1, . . . , xn−ml−1)

, n ∈ �, (6.7)

which is globally asymptotically stable (here u∗ = max{u, 1/u}).

Proof. Let

fn = f(xn−r1−1, . . . , xn−rk−1), gn = g(xn−m1−1, . . . , xn−ml−1). (6.8)

We should determine the sign of the product of the next expressions

Pn :=
fngn + 1
fn + gn

− xn−r1−1

=
1

fn + gn

(
fngn

(
1 −

xn−r1−1

fn

)
+ 1 − xn−r1−1fn

)
,

(6.9)

Qn :=
fngn + 1
fn + gn

− 1
xn−r1−1

=
1

xn−r1−1
(
fn + gn

)
(
gn
(
xn−r1−1fn − 1

)
+ fn

(
xn−r1−1

fn
− 1

))
.

(6.10)
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From (6.9) and (6.10), we see if we show that xn−r1−1fn − 1 and (xn−r1−1/fn) − 1 have
the same sign for n ∈ �, then PnQn will be nonpositive.

There are four cases to be considered.

Case 1 (xn−r1−1 ≥ 1, fn ≥ 1). Clearly, in this case, xn−r1−1fn − 1 ≥ 0. By (H1) and (H2), we have
that

1 ≤ fn =
(
fn
)∗ = f

(
x∗n−r1−1, . . . , x

∗
n−rk−1

)
≤ x∗n−r1−1 = xn−r1−1. (6.11)

Hence, (xn−r1−1/fn) − 1 ≥ 0 and consequently

(
xn−r1−1fn − 1

)(xn−r1−1

fn
− 1

)
≥ 0. (6.12)

Case 2 (xn−r1−1 ≥ 1, fn ≤ 1). Since 1/fn ≥ 1 we obtain (xn−r1−1/fn) − 1 ≥ 0. On the other hand,
by (H1) and (H2)we have

1
fn

=
(
fn
)∗ = f

(
x∗n−r1−1, . . . , x

∗
n−rk−1

)
≤ x∗n−r1−1 = xn−r1−1, (6.13)

so that xn−r1−1fn − 1 ≥ 0. Hence, (6.12), follows in this case.

Case 3 (Case xn−r1−1 ≤ 1, fn ≥ 1). Then we have that 1/fn ≤ 1 and consequently (xn−r1−1/fn)−
1 ≤ 0. On the other hand, we have

fn =
(
fn
)∗ = f

(
x∗n−r1−1, . . . , x

∗
n−rk−1

)
≤ x∗n−r1−1 =

1
xn−r1−1

, (6.14)

so that xn−r1−1fn − 1 ≤ 0. Hence, (6.12) follows in this case too.

Case 4 (Case xn−r1−1 ≤ 1, fn ≤ 1). Then xn−r1−1fn − 1 ≤ 0. On the other hand, we have

1
fn

=
(
fn
)∗ = f

(
x∗n−r1−1, . . . , x

∗
n−rk−1

)
≤ x∗n−r1−1 =

1
xn−r1−1

, (6.15)

so that (xn−r1−1/fn) − 1 ≤ 0. Hence, (6.12) also holds in this case. Thus PnQn ≤ 0, for every
n ∈ �.

Assume that PnQn = 0, then, Pn = 0 or Qn = 0. Using (6.9) or (6.10) along with (6.12)
in any of these two cases, we have that

fn =
1

xn−r1−1
= xn−r1−1, n ∈ �. (6.16)

Hence, xn−r1−1 = 1, n ∈ �.
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Finally, let y∗ be a solution of the equation

0 =
f
(
�y∗
k

)
g
(
�y∗
l

)
+ 1

f
(
�y∗
k

)
+ g

(
�y∗
l

) − y∗ = 1
f
(
�y∗
k

)
+ g

(
�y∗
l

)
(
f
(
�y∗k
)
g
(
�y∗l
)
(
1 −

y∗

f
(
�y∗
k

)
)

+ 1 − y∗f
(
�y∗k
)
)
,

(6.17)

where �y∗j = (y∗, . . . , y∗) denotes the vector consisting of j copies of y∗. Then according to the
considerations in Cases 1–4 it follows that f(�y∗

k
) = y∗ = 1/y∗, so that y∗ = 1. Hence y∗ = 1 is

a unique positive equilibrium of (6.7).
From all above mentioned and by Theorem 6.1, we get the result.
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[16] S. Stević, “The recursive sequence xn+1 = g(xn, xn−1)/(A + xn),” Applied Mathematics Letters, vol. 15,
no. 3, pp. 305–308, 2002.
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