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Let A, B be two unital C∗-algebras. We prove that every almost unital almost linear mapping h :
A → Bwhich satisfies h(3nuy+3nyu) = h(3nu)h(y)+h(y)h(3nu) for all u ∈ U(A), all y ∈ A, and all
n = 0, 1, 2, . . ., is a Jordan homomorphism. Also, for a unital C∗-algebra A of real rank zero, every
almost unital almost linear continuous mapping h : A → B is a Jordan homomorphism when
h(3nuy+3nyu) = h(3nu)h(y)+h(y)h(3nu) holds for all u ∈ I1 (Asa), all y ∈ A, and all n = 0, 1, 2, . . ..
Furthermore, we investigate the Hyers- Ulam-Aoki-Rassias stability of Jordan ∗-homomorphisms
between unital C∗-algebras by using the fixed points methods.

1. Introduction

The stability of functional equations was first introduced by Ulam [1] in 1940.More precisely,
he proposed the following problem: given a group G1, a metric group (G2, d) and a positive
number ε, does there exist a δ > 0 such that if a function f : G1 → G2 satisfies the inequality
d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there exists a homomorphism T : G1 → G2

such that d(f(x), T(x)) < ε for all x ∈ G1?. As mentioned above, when this problem has a
solution, we say that the homomorphisms from G1 to G2 are stable. In 1941, Hyers [2] gave
a partial solution of Ulam’s problem for the case of approximate additive mappings under
the assumption that G1 and G2 are Banach spaces. Hyers theorem was generalized by Aoki
[3] for additive mappings and by Th. M. Rassias [4] for linear mappings by considering an
unbounded Cauchy difference. This phenomenon of stability is called the Hyers-Ulam-Aoki-
Rassias stability.
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J. M. Rassias [5–7] established the stability of linear and nonlinear mappings with new
control functions.

During the last decades, several stability problems of functional equations have been
investigated by many mathematicians. A large list of references concerning the stability of
functional equations can be found in [8–10].

Bourgin is the first mathematician dealing with the stability of ring homomorphisms.
The topic of approximate ring homomorphisms was studied by a number of mathematicians,
see [11–19] and references therein.

Jun and Lee [20] proved the following: Let X and Y be Banach spaces. Denote by
φ : X−{0}× Y − {0} → [0,∞) a function such that ˜φ(x, y) =

∑∞
n=0 3

−nφ(3nx, 3ny) < ∞ for all
x, y ∈ X − {0}. Suppose that f : X → Y is a mapping satisfying

∥

∥

∥

∥

2f
(

x + y

2

)

− f(x) − f
(

y
)

∥

∥

∥

∥

≤ φ
(

x, y
)

(1.1)

for all x, y ∈ X − {0}. Then there exists a unique additive mapping T : X → Y such that

∥

∥f(x) − f(0) − T(x)
∥

∥ ≤ 1
3

(

˜φ(x,−x) + ˜φ(−x, 3x)
)

(1.2)

for all x ∈ X − {0}.
Recently, C. Park and W. Park [21] applied the Jun and Lee’s result to the Jensen’s

equation in Banach modules over a C∗-algebra. Johnson (Theorem 7.2 of [22]) also
investigated almost algebra ∗-homomorphisms between Banach ∗-algebras: Suppose that U
and B are Banach ∗-algebras which satisfy the conditions of (Theorem 3.1 of [22]). Then for
each positive ε and K, there is a positive δ such that if T ∈ L(U,B) with ‖T‖ < K, ‖T∨‖ < δ
and ‖T(x∗)∗ − T(x)‖ < δ ‖x‖(x ∈ U), then there is a ∗-homomorphism T ′ : U → B
with ‖T − T ′‖ < ε. Here L(U,B) is the space of bounded linear maps from U into B, and
T∨(x, y) = T(xy) − T(x)T(y)(x, y ∈ U). See [22] for details. Throughout this paper, let A
be a unital C∗-algebra with unit e, and B a unital C∗-algebra. Let U(A) be the set of unitary
elements in A, Asa := {x ∈ Ax = x∗}, and I1(Asa) = {v ∈ Asa | ‖v‖ = 1, v ∈ Inv(A)}.
In this paper, we prove that every almost unital almost linear mapping h : A → B is
a Jordan homomorphism when h(3nuy + 3nyu) = h(3nu)h(y) + h(y)h(3nu) holds for all
u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, . . ., and that for a unital C∗-algebra A of real rank
zero (see [23]), every almost unital almost linear continuous mapping h : A → B is a Jordan
homomorphism when h(3nuy + 3nyu) = h(3nu)h(y) + h(y)h(3nu) holds for all u ∈ I1(Asa),
all y ∈ A, and all n = 0, 1, 2 . . .. Furthermore, we investigate the Hyers-Ulam-Aoki-Rassias
stability of Jordan ∗-homomorphisms between unital C∗-algebras by using the fixed point
methods.

Note that a unital C∗-algebra is of real rank zero, if the set of invertible self-adjoint
elements is dense in the set of self-adjoint elements (see [23]). We denote the algebric center
of algebra A by Z(A).

2. Jordan ∗-Homomorphisms on Unital C∗-Algebras

By a following similar way as in [24], we obtain the next theorem.
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Theorem 2.1. Let f : A → B be a mapping such that f(0) = 0 and that

f
(

3nuy + 3nyu
)

= f(3nu)f
(

y
)

+ f
(

y
)

f(3nu) (2.1)

for all u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, . . .. If there exists a function φ : (A − {0})2 × A →
[0,∞) such that ˜φ(x, y, z) =

∑∞
n=0 3

−nφ(3nx, 3ny, 3nz) < ∞ for all x, y ∈ A − {0} and all z ∈ A
and that

∥

∥

∥

∥

2f
(

μx + μy

2

)

− μf(x) − μf
(

y
)

+ f(u∗) − f(u)∗
∥

∥

∥

∥

≤ φ
(

x, y, u
)

, (2.2)

for all μ ∈ � and all x, y ∈ A, u ∈ (U(A) ∪ {0}). If limn(f(3ne)/3n) ∈ U(B) ∩ Z(B), then the
mapping f : A → B is a Jordan ∗-homomorphism.

Proof. Put u = 0, μ = 1 in (2.2), it follows from of [20, Theorem 1] that there exists a unique
additive mapping T : A → B such that

‖f(x) − T(x)‖ ≤ 1
3

(

˜φ(x,−x, 0) + ˜φ(−x, 3x, 0)
)

(2.3)

for all x ∈ A − {0}. This mapping is given by

T(x) = lim
n

f(3nx)
3n

(2.4)

for all x ∈ A. By the same reasoning as the proof of [24, Theorem 1], T is � -linear and ∗-
preserving. It follows from (2.1) that

T
(

uy + yu
)

= lim
n

f
(

3nuy + 3nyu
)

3n
= lim

n

[

f(3nu)
3n

f
(

y
)

+f
(

y
)f(3nu)

3n

]

=T(u)f
(

y
)

+f
(

y
)

T(u)

(2.5)

for all u ∈ U(A), all y ∈ A. Since T is additive, then by (2.5), we have

3nT
(

uy + yu
)

= T
(

u
(

3ny
)

+
(

3ny
)

u
)

= T(u)f
(

3ny
)

+ f
(

3ny
)

T(u) (2.6)

for all u ∈ U(A) and all y ∈ A. Hence,

T
(

uy + yu
)

= lim
n

[

T(u)
f
(

3ny
)

3n
+
f
(

3ny
)

3n
T(u)

]

= T(u)T
(

y
)

+ T
(

y
)

T(u) (2.7)

for all u ∈ U(A) and all y ∈ A. By the assumption, we have

T(e) = lim
n

f(3ne)
3n

∈ U(B)
⋂

Z(B) (2.8)
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hence, it follows by (2.5) and (2.7) that

2T(e)T
(

y
)

= T(e)T
(

y
)

+ T
(

y
)

T(e) = T
(

ye + ey
)

= T(e)f
(

y
)

+ f
(

y
)

T(e) = 2T(e)f
(

y
)

(2.9)

for all y ∈ A. Since T(e) is invertible, then T(y) = f(y) for all y ∈ A. We have to show that
f is Jordan homomorphism. To this end, let x ∈ A. By Theorem 4.1.7 of [25], x is a finite
linear combination of unitary elements, that is, x =

∑n
j=1 cjuj (cj ∈ � , uj ∈ U(A)), and then it

follows from (2.7) that

f
(

xy + yx
)

= T
(

xy + yx
)

= T

⎛

⎝

n
∑

j=1

cjujy +
n
∑

j=1

cjyuj

⎞

⎠ =
n
∑

j=1

cjT
(

ujy + yuj

)

=
n
∑

j=1

cj
(

T
(

ujy
)

+ T
(

yuj

))

=
n
∑

j=1

cj
(

T
(

uj

)

T
(

y
)

+ T
(

y
)

T
(

uj

))

= T

⎛

⎝

n
∑

j=1

cjuj

⎞

⎠T
(

y
)

+ T
(

y
)

T

⎛

⎝

n
∑

j=1

cjuj

⎞

⎠ = T(x)T
(

y
)

+ T
(

y
)

T(x)

= f(x)f
(

y
)

+ f
(

y
)

f(x)

(2.10)

for all y ∈ A. And this completes the proof of theorem.

Corollary 2.2. Let p ∈ (0, 1), θ ∈ [0,∞) be real numbers. Let f : A → B be a mapping such that
f(0) = 0 and that

f
(

3nuy + 3nyu
)

= f(3nu)f
(

y
)

+ f
(

y
)

f(3nu) (2.11)

for all u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, . . .. Suppose that

∥

∥

∥

∥

2f
(

μx + μy

2

)

− μf(x) − μf
(

y
)

+ f(z∗) − f(z)∗
∥

∥

∥

∥

≤ θ
(‖x‖p + ∥

∥y
∥

∥

p + ‖z‖p) (2.12)

for all μ ∈ � and all x, y, z ∈ A. If limn(f(3ne)/3n) ∈ U(B) ∩ Z(B), then the mapping f : A → B
is a Jordan ∗-homomorphism.

Proof. Setting φ(x, y, z) := θ(‖x‖p + ‖y‖p + ‖z‖p) for all x, y, z ∈ A. Then by Theorem 2.1, we
get the desired result.

Theorem 2.3. Let A be a C∗-algebra of real rank zero. Let f : A → B be a continuous mapping such
that f(0) = 0 and that

f
(

3nuy + 3nyu
)

= f(3nu)f
(

y
)

+ f
(

y
)

f(3nu) (2.13)
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for all u ∈ I1(Asa), all y ∈ A, and all n = 0, 1, 2, . . .. Suppose that there exists a function φ :
(A − {0})2 ×A → [0,∞) satisfying (2.2) and ˜φ(x, y, z) < ∞ for all x, y ∈ A − {0} and all z ∈ A.
If limn(f(3ne)/3n) ∈ U(B) ∩ Z(B), then the mapping f : A → B is a Jordan ∗-homomorphism.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique involutive
� -linear mapping T : A → B satisfying (2.3). It follows from (2.13) that

T
(

uy + yu
)

= lim
n

f
(

3nuy + 3nyu
)

3n
= lim

n

[

f(3nu)
3n

f
(

y
)

+ f
(

y
)f(3nu)

3n

]

=T(u)f
(

y
)

+ f
(

y
)

T(u)

(2.14)

for all u ∈ I1(Asa), and all y ∈ A. By additivity of T and (2.14), we obtain that

3nT
(

uy + yu
)

= T
(

u
(

3ny
)

+
(

3ny
)

u
)

= T(u)f
(

3ny
)

+ f
(

3ny
)

T(u) (2.15)

for all u ∈ I1(Asa) and all y ∈ A. Hence,

T
(

uy + yu
)

= lim
n

[

T(u)
f
(

3ny
)

3n
+
f
(

3ny
)

3n
T(u)

]

= T(u)T
(

y
)

+ T
(

y
)

T(u) (2.16)

for all u ∈ I1(Asa) and all y ∈ A. By the assumption, we have

T(e) = lim
n

f(3ne)
3n

∈ U(B) ∩ Z(B). (2.17)

Similar to the proof of Theorem 2.1, it follows from (2.14) and (2.16) that T = f on A. So T is
continuous. On the other hand, A is real rank zero. One can easily show that I1(Asa) is dense
in {x ∈ Asa : ‖x‖ = 1}. Let v ∈ {x ∈ Asa : ‖x‖ = 1}. Then there exists a sequence {zn} in
I1(Asa) such that limnzn = v. Since T is continuous, it follows from (2.16) that

T
(

vy + yv
)

= T

(

lim
n

(

zny + yzn
)

)

= lim
n

T
(

zny + yzn
)

= lim
n

T(zn)T
(

y
)

+ lim
n

T
(

y
)

T(zn)

= T

(

lim
n

zn

)

T
(

y
)

+ T
(

y
)

T

(

lim
n

zn

)

= T(v)T
(

y
)

+ T
(

y
)

T(v)

(2.18)

for all y ∈ A. Now, let x ∈ A. Then we have x = x1 + ix2, where x1 := (x + x∗)/2 and
x2 = (x − x∗)/2i are self adjoint.
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First consider x1 = 0, x2 /= 0. Since T is � -linear, it follows from (2.18) that

f
(

xy + yx
)

= T
(

xy + yx
)

= T
(

ix2y + y(ix2)
)

= T

(

i‖x2‖ x2

‖x2‖y + y

(

i‖x2‖ x2

‖x2‖
))

= T

(

i‖x2‖ x2

‖x2‖
)

T
(

y
)

+ T
(

y
)

T

(

i‖x2‖ x2

‖x2‖
)

= T(ix2)T
(

y
)

+ T
(

y
)

T(ix2) = T(x)T
(

y
)

+ T
(

y
)

T(x)

= f(x)f
(

y
)

+ f
(

y
)

f(x)

(2.19)

for all y ∈ A.
If x2 = 0, x1 /= 0, then by (2.18), we have

f
(

xy + yx
)

= T
(

xy + yx
)

= T
(

x1y + y(x1)
)

= T

(

‖x1‖ x1

‖x1‖y + y

(

‖x1‖ x1

‖x1‖
))

= T

(

‖x1‖ x1

‖x1‖
)

T
(

y
)

+ T
(

y
)

T

(

‖x1‖ x1

‖x1‖
)

= T(x1)T
(

y
)

+ T
(

y
)

T(x1)

= T(x)T
(

y
)

+ T
(

y
)

T(x) = f(x)f
(

y
)

+ f
(

y
)

f(x)

(2.20)

for all y ∈ A.
Finally, consider the case that x1 /= 0, x2 /= 0. Then it follows from (2.18) that

f
(

xy + yx
)

= T
(

xy + yx
)

= T
(

x1y + ix2y + yx1 + y(ix2)
)

= T

(

‖x1‖ x1

‖x1‖y + y

(

‖x1‖ x1

‖x1‖
))

+ T

(

i‖x2‖ x2

‖x2‖y + y

(

i‖x2‖ x2

‖x1‖
))

= ‖x1‖
[

T

(

x1

‖x1‖
)

T
(

y
)

+T
(

y
)

T

(

x1

‖x1‖
)]

+i‖x2‖
[

T

(

x2

‖x2‖
)

T
(

y
)

+T
(

y
)

T

(

x2

‖x1‖
)]

= [T(x1) + T(ix2)]T
(

y
)

+ T
(

y
)

[T(x1) + T(ix2)]

= T(x)T
(

y
)

+ T
(

y
)

T(x) = f(x)f
(

y
)

+ f
(

y
)

f(x)
(2.21)

for all y ∈ A. Hence, f(xy + yx) = f(x)f(y) + f(y)f(x) for all x, y ∈ A, and f is Jordan
∗-homomorphism.

Corollary 2.4. Let A be a C∗-algebra of rank zero. Let p ∈ (0, 1), θ ∈ [0,∞) be real numbers. Let
f : A → B be a mapping such that f(0) = 0 and that

f
(

3nuy + 3nyu
)

= f(3nu)f
(

y
)

+ f
(

y
)

f(3nu) (2.22)
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for all u ∈ I1(Asa), all y ∈ A, and all n = 0, 1, 2, . . .. Suppose that

∥

∥

∥

∥

2f
(

μx + μy

2

)

− μf(x) − μf
(

y
)

+ f(z∗) − f(z)∗
∥

∥

∥

∥

≤ θ
(‖x‖p + ∥

∥y
∥

∥

p + ‖z‖p) (2.23)

for all μ ∈ � and all x, y, z ∈ A. If limnf(3ne)/3n ∈ U(B) ∩ Z(B), then the mapping f : A → B is
a Jordan ∗-homomorphism.

Proof. Setting φ(x, y, z) := θ(‖x‖p + ‖y‖p + ‖z‖p) for all x, y, z ∈ A. Then by Theorem 2.3, we
get the desired result.

3. Stability of Jordan ∗-Homomorphisms: A Fixed Point Approach

We investigate the generalized Hyers-Ulam-Aoki-Rassias stability of Jordan ∗-homomor-
phisms on unital C∗-algebras by using the alternative fixed point.

Recently, Cădariu and Radu applied the fixed point method to the investigation of the
functional equations. (See also [18, 26–43]).

Theorem 3.1. Let f : A → B be a mapping with f(0) = 0 for which there exists a function
φ : A5 → [0,∞) satisfying

∥

∥

∥

∥

f

(

μx + μy + μz

3

)

+ f

(

μx − 2μy + μz

3

)

+ f

(

μx + μy − 2μz
3

)

− μf(x) + f(uv + uv)

−f(v)f(u) − f(u)f(v) + f(w∗) − f(w)∗
∥

∥

∥

∥

≤ φ
(

x, y, z, u, v,w
)

,

(3.1)

for all μ ∈ �, and all x, y, z, u, v ∈ A,w ∈ U(A) ∪ {0}. If there exists an L < 1 such that
φ(x, y, z, u, v,w) ≤ 3Lφ(x/3, y/3, z/3, u/3, v/3, w/3) for all x, y, z, u, v,w ∈ A, then there
exists a unique Jordan ∗-homomorphism h : A → B such that

∥

∥f(x) − h(x)
∥

∥ ≤ L

1 − L
φ(x, 0, 0, 0, 0, 0) (3.2)

for all x ∈ A.

Proof. It follows from φ(x, y, z, u, v,w) ≤ 3Lφ(x/3, y/3, z/3, u/3, v/3, w/3) that

lim
j

3−jφ
(

3jx, 3jy, 3jz, 3ju, 3jv, 3jw
)

= 0 (3.3)

for all x, y, z, u, v,w ∈ A.
Put y = z = w = u = 0 and μ = 1 in (3.1) to obtain

∥

∥

∥

∥

3f
(

x

3

)

− f(x)
∥

∥

∥

∥

≤ φ(x, 0, 0, 0, 0, 0) (3.4)
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for all x ∈ A. Hence,

∥

∥

∥

∥

1
3
f(3x) − f(x)

∥

∥

∥

∥

≤ 1
3
φ(3x, 0, 0, 0, 0, 0) ≤ Lφ(x, 0, 0, 0, 0, 0) (3.5)

for all x ∈ A.
Consider the set X := {g | g : A → B} and introduce the generalized metric on X:

d
(

h, g
)

:= inf
{

C ∈ �+ :
∥

∥g(x) − h(x)
∥

∥ ≤ Cφ(x, 0, 0, 0, 0, 0) ∀x ∈ A
}

. (3.6)

It is easy to show that (X, d) is complete. Now we define the linear mapping J : X → X by

J(h)(x) =
1
3
h(3x) (3.7)

for all x ∈ A. By Theorem 3.1 of [44],

d
(

J
(

g
)

, J(h)
) ≤ Ld

(

g, h
)

(3.8)

for all g, h ∈ X.
It follows from (3.5) that

d
(

f, J
(

f
)) ≤ L. (3.9)

Now, from the fixed point alternative [45], J has a unique fixed point in the setX1 := {h ∈ X :
d(f, h) < ∞}. Let h be the fixed point of J . h is the unique mapping with

h(3x) = 3h(x) (3.10)

for all x ∈ A satisfying there exists C ∈ (0,∞) such that

∥

∥h(x) − f(x)
∥

∥ ≤ Cφ(x, 0, 0, 0, 0, 0) (3.11)

for all x ∈ A. On the other hand, we have limnd(Jn(f), h) = 0. It follows that

lim
n

1
3n

f(3nx) = h(x) (3.12)

for all x ∈ A. It follows from d(f, h) ≤ (1/(1 − L))d(f, J(f)), that

d
(

f, h
) ≤ L

1 − L
. (3.13)
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This implies the inequality (3.2). It follows from (3.1), (3.3), and (3.12) that

∥

∥

∥

∥

h

(

x + y + z

3

)

+ h

(

x − 2y + z

3

)

+ h

(

x + y − 2z
3

)

− h(x)
∥

∥

∥

∥

= lim
n

1
3n

∥

∥

∥f
(

3n−1
(

x + y + z
)

)

+ f
(

3n−1
(

x − 2y + z
)

)

+ f
(

3n−1
(

x + y − 2z
)

)

− f(3nx)
∥

∥

∥

≤ lim
n

1
3n

φ
(

3nx, 3ny, , 3nz, 0, 0, 0
)

= 0
(3.14)

for all x, y, z ∈ A. So

h

(

x + y + z

3

)

+ h

(

x − 2y + z

3

)

+ h

(

x + y − 2z
3

)

= h(x) (3.15)

for all x, y, z ∈ A. Put w = (x + y + z)/3, t = (x − 2y + z)/3 and s = (x + y − 2z)/3 in above
equation, we get h(w+t+s) = h(w)+h(t)+h(s) for allw, t, s ∈ A. Hence, h is Cauchy additive.
By putting y = z = x, v = w = 0 in (3.1), we have

∥

∥f
(

μx
) − μf(x)

∥

∥ ≤ φ(x, x, , x, 0, 0, 0) (3.16)

for all μ ∈ � and all x ∈ A. It follows that

∥

∥h
(

μx
) − μh(x)

∥

∥ = lim
m

1
3m

∥

∥f
(

μ3mx
) − μf(3mx)

∥

∥ ≤ lim
m

1
3m

φ(3mx, 3mx, 3mx, 0, 0, 0) = 0

(3.17)

for all μ ∈ �, and all x ∈ A. One can show that the mapping h : A → B is � -linear. By putting
x = y = z = u = v = 0 in (3.1), it follows that

∥

∥h(w∗) − (h(w))∗
∥

∥ = lim
m

∥

∥

∥

∥

1
3m

f
(

(3mw)∗
) − 1

3m
(

f(3mw)
)∗
∥

∥

∥

∥

≤ lim
m

1
3m

φ(0, 0, 0, 0, 0, 3mw)

= 0

(3.18)

for all w ∈ U(A). By the same reasoning as the proof of Theorem 2.1, we can show that
h : A → B is ∗-preserving.
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Since h is � -linear, by putting x = y = z = w = 0 in (3.1), it follows that

‖h(uv + vu) − h(u)h(v) − h(v)h(u)‖

= lim
m

∥

∥

∥

∥

1
9m

f(9m(uv + vu)) − 1
9m

[

f(3mu)f(3mv) + f(3mv)f(3mu)
]

∥

∥

∥

∥

≤ lim
m

1
9m

φ(0, 0, 0, 3mu, 3mv, 0) ≤ lim
m

1
3m

φ(0, 0, 0, 3mu, 3mv, 0)

= 0

(3.19)

for all u, v ∈ A. Thus h : A → B is Jordan ∗-homomorphism satisfying (3.2), as desired.

We prove the following Hyers-Ulam-Aoki-Rassias stability problem for Jordan ∗-
homomorphisms on unital C∗-algebras.

Corollary 3.2. Let p ∈ (0, 1), θ ∈ [0,∞) be real numbers. Suppose f : A → A satisfies

∥

∥

∥

∥

f

(

μx + μy + μz

3

)

+ f

(

μx − 2μy + μz

3

)

+ f

(

μx + μy − 2μz
3

)

− μf(x) + f(uv + uv)

−f(v)f(u) − f(u)f(v) + f(w∗) − f(w)∗
∥

∥

∥

∥

≤ θ
(‖x‖p + ∥

∥y
∥

∥

p + ‖z‖p + ‖u‖p + ‖v‖p + ‖w‖p),
(3.20)

for all μ ∈ � and all x, y, z, u, v ∈ A,w ∈ U(A) ∪ {0}. Then there exists a unique Jordan ∗-
homomorphism h : A → B such that such that

∥

∥f(x) − h(x)
∥

∥ ≤ 3pθ
3 − 3p

‖x‖p (3.21)

for all x ∈ A.

Proof. Setting φ(x, y, z, u, v,w) := θ(‖x‖p+‖y‖p+‖z‖p+‖u‖p+‖v‖p+‖w‖p) all x, y, z, u, v,w ∈
A. Then by L = 3p−1 in Theorem 3.2, one can prove the result.
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