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Preisach model is a well-known hysteresis identification method in which the hysteresis is
modeled by linear combination of hysteresis operators. Although Preisach model describes the
main features of system with hysteresis behavior, due to its rigorous numerical nature, it is
not convenient to use in real-time control applications. Here a novel neural network approach
based on the Preisach model is addressed, provides accurate hysteresis nonlinearity modeling
in comparison with the classical Preisach model and can be used for many applications
such as hysteresis nonlinearity control and identification in SMA and Piezo actuators and
performance evaluation in some physical systems such as magnetic materials. To evaluate the
proposed approach, an experimental apparatus consisting one-dimensional flexible aluminum
beam actuated with an SMA wire is used. It is shown that the proposed ANN-based Preisach
model can identify hysteresis nonlinearity more accurately than the classical one. It also has
powerful ability to precisely predict the higher-order hysteresis minor loops behavior even though
only the first-order reversal data are in use. It is also shown that to get the same precise results
in the classical Preisach model, many more data should be used, and this directly increases the
experimental cost.

1. Introduction

Today hysteresis modeling is one of the most interesting and challenging field of study in
many engineering applications such as shape memory alloy (SMA), piezoelectric, piezo-
cermaic, magnetostrictive, and electromechanical actuators. Since unmodeled hysteresis
causes inaccuracy in trajectory tracking and decreases the performance of control systems,
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an accurate modeling of hysteresis behavior for performance evaluation and identification as
well as controller design is essentially needed. To overcome this drawback, it is necessary
to develop hysteresis models that not only their parameters can easily and precisely be
identified but also are suitable for real-time control and compensation system design [1].

Two different methods of modeling have been proposed to capture the observed
hysteretic characteristics [2]. The first group of models is derived from the underlying physics
of hysteresis and combined with empirical factors to describe the observed characteristics
[3–5]. However, these models have limited applicability, as the physical basis of some of
the hysteresis characteristics is not completely understood [6]. Furthermore, considerable
effort is required in identifying and tuning the model parameters to accurately describe the
hysteresis nonlinearity. Another major drawback of these physical models is that they are
specific to a particular type of system, and this implies separate controller design techniques
for each system [7].

The second group of models is based on the phenomenological nature and mathemat-
ically describes the observed phenomenon without necessarily providing physical insight
into the problems [8–14]. Among these models, the Preisach model has found extensive
application for modeling hysteresis in SMAs and other smart actuators [8, 10, 14]. Although
the Preisach model does not provide physical insight into the problem, it provides a means of
developing phenomenological model that is capable of predicting behaviors similar to those
of the physical systems. Therefore, it is a convenient tool for hysteresis identification and
compensation [13].

In Preisachmodeling technique overall system with hysteresis behavior is modeled by
weighted parallel connections of nonideal relays termed as Preisach elemental operators, γα,β
(Figures 1 and 2). Every elemental operator with output +1 or −1 (zero in some models)
as a nonlinear operator consists of two parameters, α, β, which denote upper and lower
switching values of input, respectively. Along with the set of operators γα,β is an arbitrary
weight function μ(α, β), called the Preisach density function (PDF), which works as a local
influence of each operator in overall hysteresis model.

There are two general approaches to implement the Preisachmodel. The first approach
is trying to approximate the PDF by some predefined special forms with a few undetermined
parameters. Each material has an optimal distribution function and parameter, which deliver
the best result with respect to the experimental data [15]. In the identification process of this
approach, the unknown parameters are determined in order to minimize the error between
the output of the model and experimental data by numerical curve fitting algorithms such
as minimum least square method. In other words, optimal fitting of the calculated outputs to
measured data of the real system can determine the values of parameters used in the assumed
function.

The main disadvantage of this approach is the fact that the accuracy of the model is
strongly dependent on the type of the candidate function and the number of its parameters.
Moreover, it is not easy to determine the suitable shape of the distribution functions by less
experimental data. Also, to simulate the hysteresis loops of different materials, the different
distribution functions and parameters are needed. In order to overcome this drawback,
a numerical density function approximation method based on mapping Preisach model
into a linear equation system was proposed by Shirley and Venkatraman [16]. Another
solution is identifying the Preisach function by using artificial neural networks (ANNs) or
fuzzy approximators. As a matter of fact, the neural networks or fuzzy engines provide the
parameters necessary for describing a given hysteresis loop, under the assumption that the
type of the Preisach function is already known. In [17], the identification of the Preisach
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Figure 1: Preisach elemental operator.
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Figure 2: Block representation of the classical Preisach model.

function of a material is performed by using a neural network trained by a collection of
hysteresis curves, whose Preisach functions are known. When a new hysteresis curve is given
as input to this neural network, it is able to give as output both the functional dependence of
the Preisach function and its numerical parameters. Moreover, the proposed method allows
to determine any usual analytical structure of the Preisach function provided that a suitable
training set is adopted. The method has been applied to the prediction of hysteresis loops of
magnetic sheets by using Preisach method and it has shown a good numerical accuracy. In
[18], two different identification techniques have been proposed. In this paper, hysteresis
is modeled by applying the classical Preisach model whose identification procedure is
performed by the adoption of both a fuzzy approximator and a feed-forward neural network
to analytically reconstruct the Preisach distribution function, without any special smoothing
of the measured data, owing to the filtering capabilities of the neurofuzzy interpolators.
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Since, in the first form of Preisach model, the numerical evaluation of double integral
is a time consuming process that hinders the practical application of the Preisach model,
in the second approach, a numerical evaluation of double integral instead of density
function approximation developed by Mayergoyz was proposed [14]. Despite that the
Mayergoyz approach has received general acceptance to capture the main features of
hysteresis phenomena, it is not suitable for real-time control applications. There have been
some limitations on the accuracy of this method in addition to its computation time for the
model inversion. These are caused by the restrictions of switching points in the Preisach
plane, the inaccuracy of data measurement, and the geometrical interpolation error appeared
in the identification process of classical Preisach model [13].

Several extensions and modifications of the numerical classical Preisach model using
fuzzy inference engine, artificial neural networks as well as neurofuzzy identifier have been
presented in order to remedy these problems [6, 19, 20]. However, it is known that these tools
can only be available for the approximation of the continuous systems with one-to one and
multi-to-one mappings and they are unable to directly model the systems with multi-valued
mapping such as hysteresis [21]. Therefore, they are needed to utilize the local memory
property of the classical Preisach model.

Ahn and Kha [6] presented a new modification of the numerical classical Preisach
based on geometrical implementation model using a fuzzy inference engine. The experimen-
tal evaluation showed that the model is suitable in predicting the hysteresis phenomenon of
the SMA actuators. They also used the fuzziness based inverse Preisach model incorporated
in a closed loop internal model control to investigate the control performance and the
effect of hysteresis compensation for SMA actuators. In spite of strong power modeling
of fuzzy inference engines (FIE) through a simple linguistic computation paradigm, these
tools suffer from a lack of learning algorithms to adjust the best membership functions of
input domains. But, on the other hand, the artificial neural networks have a good ability to
map input-output patterns through straightforward learning algorithms. To overcome the
aforementioned problems of FIEs and utilizing the excellent learning capability of neural
networks, neurofuzzy tools are developed in the field of computational intelligent [22]. Dlala
and Arkkio [19] proposed a method that identified the numerical classical Preisach model by
using a neurofuzzy approximator instead of interpolation which is used in the Mayergoyz
approach. This novel method utilizes the available data in the major loop in the identification
process and omits the need of measuring the first-order reversal curves. They also applied
their method to predict cyclic minor loops of a soft magnetic composite and verified the
accuracy of proposed method with respect to experimental data. Since the adaptive learning
process of neurofuzzy approach is much time, consuming, there is a limitation on the number
of fuzzy rules. Therefore, often there is a trade-off between the system accuracy, computation
run time and fuzzy rules number [20].

ANNs have powerful fault tolerant computing ability which has been used to model
a wide range of systems for mathematical models which either cannot be defined or are ill-
defined. Similarly, ANNs are well suited for systems that involve complex, multivariable
processes. One of the advantages of using neural networks for hysteresis modeling is
that their parameters can be updated online to track the change of the environment or
operating condition. It is demonstrated in this paper that ANNs are individually capable of
modeling hysteresis based on classical Preisach approaches without suffering the mentioned
problems of fuzzy inference engines as well as neurofuzzy systems. To evaluate this approach
in hysteresis modeling, a one-dimensional flexible aluminum beam, whose deflection is
controlled by an SMA wire as an actuator, is used. Experimental results show the power
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of the proposed ANN based Preisach hysteresis model in comparison with classical Preisach
model and mentioned Shirley et al. approach.

The paper is organized as follows. Section 2 is dedicated to the classical Preisachmodel
and its geometrical interpretation. In this section an introduction of the classical Preisach
model is presented. The Numerical Preisach model is discussed in more detail in Section 3
and its implementation method is discussed in Section 4. Then, in Section 5 a method
developed by Shirley et al. for PDF approximation is presented. In Section 6 the structure
of proposed novel ANN based Preisach model is described. The evaluation of the presented
model is compared with experimental results in Section 7. Finally, the concluding comments
are provided in Section 8.

2. Classical Preisach

Preisach model is a famous hysteresis identification technique, which is first introduced
on the base of phenomenological analysis of ferromagnetic materials by German physicist
F. Preisach almost 75 years ago [23]. The Russian mathematician, Krasnoselskii, in 1970
represented Preisach model into a pure formulized mathematical form in which hysteresis
is modeled by linear combination of hysteresis operators [24]. Mathematical form of the
classical Preisach model can be sketched by equation:

f(t) =
∫∫

α≥β
μ
(
α, β

)
γα,β[u(t)]dαdβ, (2.1)

where f(t) is the output of the model at state t and u(t) is the input at the same state, and
γα,β denotes elementary hysteresis operator with α and β (α ≥ β) parameters as upper and
lower switching values, respectively (see Figure 1). Output of elemental operators would be
only +1 or −1 (zero in some models). In (2.1), μ(α, β) is density function value or Preisach
function corresponding to α and βwhich should be determined by use of some experimental
data. This distributed weighting describes the relative contribution of each relay in overall
hysteresis system (see Figure 2). Equation (2.1) can be represented in summation form of
finite number of rectangular elemental Preisach operators γαk,βk as

f(t) =
N∑
j=1

N∑
i=1

μ
(
αi, βj

)
γαiβj [u(t)], (2.2)

in which

αi = βi = α1 − 2
(i − 1)
N − 1

α1,

γαβ[u(t)] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1, u(t) ≤ β,

1, u(t) ≥ α,

maintain, α ≤ u(t) ≤ β,

(2.3)
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Figure 3: Geometrical representation of Preisach (α-β) plane.

where the approximation of dual integral form of classical Preisach model is represented by
a dual sigma. Assume that normalized symmetrical hysteresis form α1 is up saturation point
and −α1 is down saturation point.

For better representation of Preisach model, let us define a plane with α and
β coordinates where each elemental operator is denoted by a point (β, α) with a specific
weighting value (Figure 3). PDF weighting values outside of Preisach triangle (Ω) must be
zero, and also umax and umin denote upper and lower saturation points of input, respectively.
When input is monotonically decreased or increased through α = β line in α-β plane,
boundary line divides α-β plane to S−1 and S+1 area.

Dashed area in Figure 3 denoted by S+1 consists of points {αk, βk | γαk,βk = +1}, and
blank area denoted by S−1 consists of points {αk, βk | γαk,βk = −1}; therefore (2.1) can be
simplified to

f(t) =
∫∫

S+

μ
(
α, β

)
dα dβ −

∫∫
S−
μ
(
α, β

)
dα dβ. (2.4)

From the above description, the output of Preisach model depends on the subdivision
of triangle Ω. Equation (2.4) and its geometric representation is pure mathematical form
of phenomenological Preisach model that was presented by Krasnoselskii. In order to
implement the Preisach model for experimental applications, this primitive mathematical
form of Preisach model was extended into a simple numerical form by Mayergoyz [25] that
is discussed in the next section. It is worth mentioning that as an alternative method, if the
form of density function in (2.4) (i.e., μ(α, β)) is predicted with respect to some experimental
data, then the output of system can be easily calculated and this approach is described in
Section 4.

3. Numerical Preisach Model

In addition to some numerical methods for Preisach density function approximation in
hysteresis identification, there is a well-known and simpler numerical representation form of
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Preisach model in which output of hysteresis system is calculated by summation of specific
terms. These terms depend on history of local maximum and minimum of system input by
specific functionality. This method is discussed precisely in this section.

At first, assume that input diagram in Figure 4 is applied to the target hysteresis
system. It is worth mentioning that since, in most applications of SMA actuators, the input
is electrical current and the current does not get negative value, in these cases the Preisach
plane is in the first quarter of coordinate system. Let input increase from 0 to α1 in time t1, so
all hysteresis operators with αi < α1 are on upper switching value and the others are on lower
switching state. As it is discussed before, geometrically it results in subdivision of α-β plane
triangle by line u(t) = α (see Figure 5). Upward motion through the line u(t) = α in Preisach
plane is terminated when input reaches the local maximum value α1. By using (2.4), output
yα1 in this time can be expressed as

yα1 =
∫∫

S+
α1

μ
(
α, β

)
dαdβ. (3.1)

Then suppose that input is monotonically decreased to value β1 in time t2. As the input
is being decreased through the line u(t) = β in Preisach plane, all elemental operators in
subdivision S+ with βi > u(t) are turned off; so their outputs become zero. It makes triangle
S+ in Figure 5 divide into two regions (see Figure 6); therefore S+ triangle region in Figure 5
has been switched to a trapezoid in Figure 6. This right-to-left motion of u(t) = β line is
terminated when input reaches local minimum value β1. At this time, output yα1β1 can be
expressed as

yα1β1 =
∫∫

S+
α1β1

μ
(
α, β

)
dαdβ. (3.2)

As a conclusion of this analysis, vertical and horizontal boundary lines between S+and
S0 regions in triangle α-β plane illustrate history of previous local maxima and minima of
input, which affects current output value. This staircase boundary line is termed by memory
interface L(t). By generalizing the above discussion, at every instance of time, the output can
be expressed as

y(t) =
∫∫

S+(t)
μ
(
α, β

)
dα dβ. (3.3)

If function F(α, β) is defined as

F
(
α, β

)
= yα − yαβ (3.4)

it is equal to the output increments along the first-order transition curves. These curves are
defined as follows: the input of the system hysteresis is monotonically increased from zero to
some value α and then decreased to a value β, that is, greater than zero and smaller than α.
The term “first order” is used to emphasize the fact that each of these curves is formed after
the first reversal of the input. It should be mentioned that the order of a minor loop branch is
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Figure 5: α-β plane due to input increasing to α1.

defined to be the number of times that a hysteresis curve has reversed from a branch of the
major hysteresis loop. Thus, all first-order branches are attached to one of the two branches of
the major hysteresis loop. Similarly, the second-order branches are attached to the first-order
branches, and the nth-order branches are attached to the n − 1th-order branches [26].

From Figure 6 and (3.1), (3.2), (3.4),

∫∫
T(α1,β1)

μ
(
α, β

)
dαdβ = F

(
α1, β1

)
, (3.5)

where T(α1, β1) is a triangle which is shown in Figure 6.
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Figure 6: α-β plane due to input decreasing to β1 from α1.

In the case that the input is monotonically increasing, S+(t) can be represented as
trapezoidal regions plus one triangle region (Qk(t) in Figures 7 and 8). Moreover, each
trapezoidal region can be represented by two triangular region subtractions:

∫∫
Qk(t)

μ
(
α, β

)
dαdβ =

∫∫
T(Mk,mk−1)

μ
(
α, β

)
dαdβ −

∫∫
T(Mk,mk)

μ
(
α, β

)
dαdβ, (3.6)

where Mk and mk denote maximum and minimum of input history. From (3.5) it is known
that

∫∫
T(Mk,mk )

μ
(
α, β

)
dαdβ = F(Mk,mk),

∫∫
T(Mk,mk−1 )

μ
(
α, β

)
dαdβ = F(Mk,mk−1).

(3.7)

Using (3.6)–(13), it is concluded that

∫∫
Qk(t)

μ
(
α, β

)
dαdβ = F(Mk,mk−1) − F(Mk,mk). (3.8)

Thus, in the case of decreasing input, as shown in Figure 8, the final link of boundary
interface line L(t) is vertical line mn = u(t) and output can be calculated as

y(t) =
n(t)−1∑
k=1

[F(Mk,mk−1) − F(Mk,mk)] + F(Mn,mn−1) − F(Mn, u(t)). (3.9)
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Figure 7:Numerical implementation of the Preisach model in the case of increasing input.
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Figure 8:Numerical implementation of the Preisach model in the case of decreasing input.

Consequently, in the case of increasing input, as shown in Figure 7, the final link of
boundary interface line L(t) is horizontal lineMn = u(t) and output can be determined as

y(t) =
n(t)−1∑
k=1

[F(Mk,mk−1) − F(Mk,mk)] + F(u(t), mn−1). (3.10)
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Figure 9: Discrete Preisach plane ofΩ.

Therefore, it can be obviously seen that the output of numerical Preisach model can be
calculated from current input value, as well asminima andmaxima history terms. The F(α, β)
function in desired points of α and β can be calculated by use of interpolation process
on the batch of experimental data sample of hysteresis on the first-order reversal curves
(ascending and descending). There are typical interpolation algorithms which can be used for
this process such as cubic spline, nearest neighbor, linear interpolation, and Newton method.

4. Numerical Preisach Implementation

In order to implement the discussed numerical Preisach model, at first some experimental
data is needed. By using the experimental data of the major ascending (or descending) loop
and its attached first-order decreasing (or increasing) curves, a square mesh covering the
Preisach plane Ω is obtained (see Figure 9). Any point (βj , αi) on the Preisach plane Ω can
be considered as a vertex on a memory interface L(t) which is formed by increasing input
from the negative saturation state to a value αi and then decreasing input to a state as βj .
Different pairs of inputs (βj , αi) with αi ≥ βj from different first-order reversal curves inside
the major ascending curve divide the Preisach plane into small cells. In the preprocessing
stage (training process) of the numerical Preisach model by dividing the Preisach plane Ω
uniformly, using m horizontal lines and m vertical l lines respectively, a total number of N
nodes on the Preisach plan Ω can be computed as

N =
(m + 3)(m + 2)

3
. (4.1)

In order to improve the prediction accuracy of the Preisach model, the equidistributed
point should be large, and this greatly increases the complexity and cost of training process.

At the processing stage by entering an arbitrary input history and current values of
input, the alternating series of dominant input extrema {Mk,mk} is first determined and for
each new instant of time is updated. Finally, at the postprocessing stage (validation process),
since most vertices of the memory interface L(t) of the input do not coincide with those
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Figure 10: Calculation of F(α, β) in the postprocessing stage of numerical Preisach model by interpolation
method.

discrete nodes of the discrete Preisach plane obtained in the preprocessing stage, the data
of F(α, β) of these points should be obtained through interpolation [14].

This is done by first determining particular square or triangle cells to which points
(Mk,mk−1), (Mk,mk), (Mn,mn−1), (Mn, u(t)), and (u(t), mn−1) belong. If a point (β, α) satisfies
the condition (α − αi)(αi − αi+1) ≤ 0 and (β − βj)(β − βj+1) ≤ 0, then this point is located inside
a rectangular cell (see Figure 10) with vertices (βj , αi), (βj+1, αi), (βj+1, αi+1), and (βj , αi+1)
(for which the data of F(α, β) in these points are already experimentally measured in the
processing stage). On the other hand if the point (β, α) satisfies the condition (α−αi)(α−αi+1) ≤
0 then the point (β, α) is located inside a triangle cell with vertices (αi, αi), (αi+1, αi+1) and
(αi, αi+1). Next, the value of F(α, β) at those mentioned points can be computed by means
of interpolation (cubic spline, nearest neighbor, linear interpolation, Newton method, etc.)
of the mesh values of F(α, β) at the vertices of the above cells. Finally, the current values of
output are evaluated by employing the formulae (3.9) and (3.10).

It is clear that in order to get the accurate results from the numerical Preisach model
by the numerical interpolation methods, it is essential to have much data when the training
process is performed. It means that the better Preisach plane Ω is divided in the training
process (the larger m in (4.1)) and the results are more accurate for calculation of F(α, β)
from (3.9) and (3.10) through the interpolation in the validation process.

5. Density Function Approximation

In this section a numerical density function approximation method proposed by Shirley and
Venkataraman [16] is presented. It is based on mapping Preisachmodel into a linear equation
system and tries to solve this equation in order to find best fit solution.

Often because of inadequate number of experimental data, there are some limitations
to predict μ(α, β). Let us consider α-β plane as a partitioned plane; so (2.4) can be restated as

f(t) =
∑
iεS+1

μi
(
α, β

)
+

∑
jεS−1

(−μj(α, β)). (5.1)

In (5.1) it is supposed that a discrete density function with finite number of μ(α, β)
can be expressed by a vector and is denoted by ψ(α, β). Now, a state vector (Ŝi) is defined,
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indicating state of each γα,β (−1 or +1), in accordance with each input-output experimental
data; thus, (5.1) can be formulized as

f1 = Ŝ1
(
α, β

) · ψ(α, β),
f2 = Ŝ2

(
α, β

) · ψ(α, β),
...

fm = Ŝm
(
α, β

) · ψ(α, β).
(5.2)

Let F =

⎡
⎣ f1

...
fm

⎤
⎦ and S =

⎡
⎣ Ŝ1

...
Ŝm

⎤
⎦; so (5.1) can be modeled as a linear equation problem

with unknown variable ψ as

F = S × ψ(α, β). (5.3)

Form input experimental data, it is necessary to find the best fit density functionwhich
satisfies desired output. When m would be large enough, this linear equation system has no
single solution. Therefore, the following equation should be minimized in order to reach this
purpose:

ε =
∥∥Sψ − F∥∥2

ψ > 0, (5.4)

where ψ is target vector variable with n element same as the number of finite γαiβj . It should
be mentioned that one limitation happens when m is not comparable with n (i.e., rank(S) <
min{m,n}). To overcome this problem, let rank(S) = q < min(m,n). Then, by performing the
singular decomposition on STS, there is STS = QAQT , where A is an n × n diagonal matrix
and rank(A) = q < n. After zero rows and zero columns elimination of matrix A as well as
removing the corresponding columns of Q, we have Ã and Q̃ for which Q̃ÃQ̃T = STS; thus
(5.3) and (5.4) can bemodified as the following equationwhich should beminimized in order
to find Z and then ψ:

ε = ZTÃZ − FTSQ̃Z ψ = Q̃Z. (5.5)

In the sequel, the density function can be approximately calculated for a set of experi-
mental data. The main advantage of Shirley method is its good ability of hysteresis systems
identification without definition any of pre-defined density function. But, it is still not con-
venient enough in control applications especially in real-time control. It comes back to the
fact that solving the above optimization problem is so time-consuming process.

6. Preisach Neural Network Approach

Regarding (3.9) and (3.10), it is illustrated that in numerical Preisach modeling, output
value depends on local minima and local maxima, of input history by F(α, β) functionality.
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Figure 11: The proposed ANN-based Preisach model.

Consequently, this model needs a memory block which saves Mk, local maxima, and mk,
local minima of input at previous instants of time. F(α, β) is a suppositional surface on α-β
plane which depends on hysteresis nature and can be defined numerically by experimental
data of real system [25].

ANN is a computing system made up of a number of simple, highly interconnected
processing elements, neurons, which processes information in parallel by its dynamic state
response to external inputs [27]. Also ANN has powerful fault tolerant computing ability
which has been used to model a wide range of systems for which mathematical models either
cannot be defined or are ill-defined. Similarly, ANNs are well suited for systems that involve
complex, multivariable processes with time variant parameters. As a result, ANN seems to
be a good and powerful tool for approximation of F(α, β) surface.

In Figure 11, the proposed ANN-based numerical Preisach model is shown. In this
method surface of F(α, β) is realized by two-dimensional input and single output feed-
forward multilayer Perceptron neural network structure. It has two hidden layers with 15
and 5 neurons with tangent sigmoid activation function, while the activation function of
output layer neurons is linear. Also, learning algorithm is Back-Propagate (BP). BP is based
on error correction learning rule and can be considered as an extension of the mean least
squares algorithm. This learning algorithm is used to adjust the network weights and biases
in order to minimize the output error of the network [28]. The process of presenting batches
of training cases to the network continues till the average error over the entire training set
reaches a defined error goal or any other convergence criterion is achieved.

The history block works like a decision box and preparesMk andmk values for ANN
base processing layer. In other words, it compares current input with the last input and
updatesmaxima andminima values. It is considerable that history block should havewiping-
out property. It means that each local maximum wipes out the vertices whose α coordinates
are below this maximum, and each local minimumwipes out the vertices whose β coordinates
are above this minimum. It is equivalent to the erasing of the history associated with these
vertices. Thus, subsequent variations of input might erase some previous history [25].

In the next section, evaluation of presented approach is compared with the numerical
classical Preisach method as well as the discussed Shirley method, precisely.
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Figure 12: General structure of experimental apparatus.

Table 1: Parameters of experimental apparatus.

Parameter l t d E b (beam width) h
Value 400mm 1.27mm 100mm 70GPa 25mm 100mm

7. Experimental Results

Today there is wide range of SMA commercial applicability in many devices such as mi-
crorobots, medical and dental tools, nonexplosive aerospace actuators, and pneumatic mi-
crovalve [29]. In addition, recently SMA wires are being used as an intelligent material in
new generation smart structures, which the shape of the structure would be controllable by
use of SMA actuators. However, due to the deflection and displacement hysteresis behavior
in SMA and Piezo actuators, there is rigorous hysteresis nonlinearity in these actuators which
make their modeling and control more difficult. Consequently, accurate identification of these
actuators behavior is one of the interesting and challenging fields in automation and control.

For evaluation of the proposed ANN-based Preisach hysteresis model, numerical
classical Preisach model, and Shirley approach, a one-dimensional flexible aluminum beam
whose deflection is controlled by an SMA wire as an actuator is used. This SMA actuator is
made of Nitinol (Ni-Ti) alloy which has excellent electrical and mechanical properties, long
fatigue life, and high corrosion resistance, and due to these properties this material is used in
many SMA actuators today [30].

General structure of the experimental apparatus is shown in Figure 12. In this exper-
imental setup a Flexinol TM actuator wire, manufactured by Dynalloy Inc, is used. This Ni-
Ti SMA actuator wire is a one-way high-temperature (90◦C) shape memory with 0.01-inch
diameter. Parameters of the experimental apparatus and SMAwire according to Figure 12 are
presented in Tables 1 and 2, respectively. The beam end deflection was measured by a high-
precision linear potentiometer and fed to the computer through a multifunction (A/D, D/A)
Advantech PCI-1711 card. The actuation input of the experimental apparatus is the current
applied to the SMA wire and obtained from a D/A card and a V/I converter.

Since the input of the hysteresis model is assumed to be the temperature of the SMA
wire, it is essential to determine the temperature of the wire. The temperature of the SMA
wire is measured by two very thin (0.02mm probe diameter) J thermocouples attached by
a very conductive paste to both ends of the SMA wire. The average value obtained by the
thermocouples is selected as the SMAwire temperature and fed to the computer through the
mentioned multifunction card. This system is controlled in real time with real-timeWindows
Target Toolbox of MATLAB.
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Table 2: Physical parameters of SMA wire actuator.

Parameter Value
Mf 43.9◦C
Ms 48.4◦C
As 68◦C
Af 73.75◦C
CA 6.73MPa/◦C
CM 6.32MPa/◦C
εL 4.10%
EA 31.5Gpa
EM 20Gpa
σs 25MPa
σf 78MPa
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Figure 13: The decaying step current applied in the training process.

The input current applied to the SMAactuator in the training process is a decaying step
signal and is shown in Figure 13. The corresponding beam deflection SMAwire temperature
profile, obtained due to the applied current, is also shown in Figure 14. In the training
process of the mentioned models 153 data set, consisting of the major loop and 15 first-
order descending reversal curves, is used in order to approximate F(α, β) surface. For
each switching point (α, β), according to (3.4), the corresponding F(α, β) is computed by
measuring the output beam end deflection as the input temperature is increased to α and then
decreased to β. Likewise, in Figure 15 surface of F(α, β) function which has been realized by
ANN is also presented. Also to identify hysteresis system by using Shirley approach, density
function should be approximated too. In the five sections, we described how this method can
realize Preisach model by density function approximation based on finding best fit solution
of a linear equation system. For hysteresis system modeling by Shirley approach, the same
data set was used with 80 partitions for α-β plane [16]. The identified density function by this
method is presented in Figure 16.

For evaluation of the prediction of the output beam end deflection by the numerical
classical Preisachmodel, the proposedANN-based Preisachmodel, and the Shirley approach,
with respect to the experimental data, in the first validation process the current profile shown
in Figure 17 is applied to the SMA actuator. In Figure 18 the prediction of the hysteresis
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Figure 14: Hysteresis behavior between the beam end point deflection and the SMA wire temperature in
the training process.
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Figure 15: Surface F(α, β) identified by ANN using training data set.

behavior between the beam end point deflection and the SMA temperature by the Preisach
model, the Shirley method as well as the proposed ANN method is compared by the
experimental data. As it is seen from this figure none of the first-order transition curves
applied in this validation process is applied in the training process. As it is clear in Figure 18
the proposed ANN based Preisach model can identify hysteresis in first order reversal curves
more accurately than both the classical numerical Preisach model and the Shirley method. In
order to show this property more clearly, the absolute error of the three mentioned models
with respect to the experimental data is shown in Figure 19. The maximum, mean, and mean
square values of absolute error for the three methods are also presented in Table 3.

For better evaluation of the three mentioned methods in predicting the hysteresis
behavior of higher-order minor loops, in the second validation process the damped current
profile shown in Figure 20 is applied to the SMA actuator. The prediction of the hysteresis
behavior of higher-order minor loops by the Preisach model, Shirley approach, and the
proposed ANN method is compared by the experimental data in Figure 21. This figure
demonstrates the power ability of the proposed ANN model, with respect to two other
models, in higher order reversal curves prediction. Indeed, it comes back to the general ap-
proximation capability of ANNs. Also, Figure 22 shows the absolute error of the three con-
sidered models with respect to the experimental data. In addition, the maximum, mean, and
mean square values of absolute error for the three methods are presented in Table 4.
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Figure 16:Approximatedμ(α, β) surface by use of linear equation systemoptimization (Shirley Approach).
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Figure 17: The decaying step current applied in the first validation process.
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Figure 18: Prediction of the hysteresis behavior for the classical numerical Preisach, ProposedANNModel
and Shirley Approach in comparison to the first experimental data set.
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Figure 19: Absolute error of the Classical Numerical Preisach model, the Proposed ANN Model and the
Shirley Method in comparison with the first experimental data set.
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Figure 20: The decaying step current applied in the second validation process.

Table 3: Error of the three considered models in the first validation process.

Mean absolute error
(mm)

Max of absolute error
(mm)

Mean square of
absolute error

(mm)

Numerical Preisach
model 0.3228 5.4439 0.6145

Shirley method 0.644 6.907 1.505
Proposed ANN model 0.1315 1.36 0.25

Table 4: Error of the three considered models in the second validation process.

Mean absolute error
(mm)

Max of absolute error
(mm)

Mean square of
absolute error

(mm)

Numerical Preisach
model 1.5147 5.3964 4.2677

Shirley Method 1.78 6.827 5.629
Proposed ANN model 0.46 3.533 0.549
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Figure 21: Prediction of the hysteresis behavior for classical numerical Preisach model, proposed ANN
model, and Shirley approach in comparison to the second damped experimental data set.
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Figure 22: Absolute error of the classical numerical Preisach Model, the proposed ANN model, and the
Shirley method in comparison with the second damped experimental data set.

As it is concluded from Figures 19 and 22 and Tables 3 and 4, the proposed ANN
model has more accurate predictions than the numerical Preisach and Shirley models. In all
of these validation processes the mean error of numerical Preisach model is better than the
Shirley method while it is triple of corresponding error in the proposed ANN model. It is
demonstrated (but not shown in this paper) that in order to bring the mean square error
of the Preisach model (in the second validation process) at the order of the corresponding
value of ANNmodel, the training should be done with 420 data instead of 153 data that was
used first. It means that in order to have precise results in the numerical Preisach model,
much data should necessarily be used, and this directly increases the experimental cost of
training process. The significant decrease in the error of the proposed ANN model seems
more valuable when it is known that in this ANN model, unlike the fuzzy inference engines,
there is a straightforward training algorithm which enables utilizing this approach for many
other hysteresis systems without any change in the structure of the ANNmodel.
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8. Conclusion

In this paper, a novel hysteresis identification method based on numerical classical Preisach
model by use of artificial neural networks (ANNs) has been presented. Since the accuracy
of the Preisach function approximation methods is strongly dependent on the type of the
candidate Preisach function and the number of its parameters, this approach remedies these
drawbacks. In addition, this approach does not suffer from a lack of learning algorithms to
adjust the system parameters existed in fuzzy inference engine.

The experimental data showed that this ANN model can predict SMA actuators
hysteresis behavior with considerable accuracy in comparison with numerical Preisach
model. It also has powerful ability to precisely predict the higher-order hysteresisminor loops
behavior even though it is only trained by first-order reversal data. Therefore, it is a con-
venient method for many applications such as hysteresis nonlinearity control, hysteresis
identification, and realization for performance evaluation in some physical systems such as
magnetic and SMAmaterials.
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