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We prove the existence of the random attractor for the stochastic discrete long wave-short wave
resonance equations in an infinite lattice. We prove the asymptotic compactness of the random
dynamical system and obtain the random attractor.

1. Introduction

There has been considerable progress in the study of infinite-dimensinal dynamical systems
in the past few decades (see [1–5]). Recently, the dynamics of infinite lattice systems has
attracted a great deal of attention from mathematicians and physicists; see [6–11] and the
references therein. Various properties of solutions for lattice dynamical systems (LDSs) have
been extensively investigated. For example, the long-time behavior of LDSs was studied in
[5, 10]. Lattice dynamical systems play an important role in their potential application such as
biology, chemical reaction, pattern recognition and image processing, electrical engineering,
and laser systems. However, a system in reality is usually affected by external perturbations
withinmany cases that are of great uncertainty or random influence. These random effects are
introduced not only to compensate for the defects in some deterministic models but also to
explain the intrinsic phenomena. Therefore, there is much work concerning stochastic lattice
dynamical systems. The study of random attractors gained considerable attention during
the past decades; see [12] for a comprehensive survey. Bates et al. [13] first investigated the
existence of global random attractor for a kind of first-order dynamic systems driven bywhite
noise on lattice Z; then, Lv and Sun [14] extended the results of Bates to the dimensional
lattices. Stochastic complex Ginzburg-Landau equations, FitzHugh-Nagumo equation, and
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KGS equations in an infinite lattice are studied by Lv and Sun [15], Huang [16], and Yan et
al. [17], respectively.

The long wave-short wave (LS) resonance system is an important model in nonlinear
science. Long wave-short wave resonance equations arise in the study of the interaction of
surface waves with both gravity and capillary modes present and also in the analysis of
internal waves as well as Rossby waves as in [18]. In the plasma physics they describe the
resonance of the high-frequency electron plasma oscillation and the associated low-frequency
ion density perturbation in [19].

Due to their rich physical and mathematical properties the long wave-short wave
resonance equations have drawn much attention of many physicists and mathematicians.
The LS system is as follows:

iut + uxx − uv + iαu = f(x, t), vt + γ |u|2x + βv = g(x, t), x ∈ R, t ≥ 0, (1.1)

where u denotes a complex-valued vector and v represents a real-valued function; f(x, t)
and g(x, t) are given complex- and real-valued functions, respectively. The constants α, β are
positive, and γ ∈ R\{0} is real. For the LS equations, Boling Guo obtained the global solution
in [20]. The existence of global attractor was studied in [21–23].

Throughout this paper, we set

L
2 =

{
u = (un)n∈Z

, un ∈ C :
∑
n∈Z

|un|2 < ∞
}
, �2 =

{
v = (vn)n∈Z

, vn ∈ R :
∑
n∈Z

v2
n < ∞

}
.

(1.2)

For brevity, we use H to denote Hilbert space L
2 or �2 and equip H with the inner product

and norm as

(u, v) =
∑
n∈Z

unvn, ‖u‖2 = (u, u) =
∑
n∈Z

|u|2, ∀u, v ∈ H, (1.3)

where vn denotes the conjugate of vn.
In this paper, we consider the following stochastic discrete LS equations

i
dun

dt
− (Au)n − vnun + iαun = fn(t) + anun

dw1
n

dt
, n ∈ Z, t > 0, (1.4)

dvn

dt
+ γ

(
B
(
|u|2

))
n
+ βvn = gn(t) + bn

dw2
n

dt
, n ∈ Z, t > 0, (1.5)

with the initial conditions

un(0) = un0, vn(0) = vn0 , n ∈ Z, (1.6)

where |u|2 = (|un|2)n∈Z
, un(t) ∈ C, vn(t) ∈ R (C,R are the sets of complex and real numbers,

resp.), a = (an)n∈Z
∈ �2 and b = (bn)n∈Z

∈ �2, f(t) = (fn(t))n∈Z
, g(t) = (gn(t))n∈Z

∈ CB(R, �2),
the space of bounded continuous functions fromR into �2. {w1

n(t) : n ∈ Z} and {w2
n(t) : n ∈ Z}
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are two independent two-side real-valued standard Wiener process. Z is the integer set, i is
the unit of the imaginary numbers such that i2 = −1, and A,B are linear operators defined,
respectively, by

(Au)n = un+1 + un−1 − 2un, n ∈ Z, ∀u = (un)n∈Z
,

(Bu)n = un+1 − un, n ∈ Z, ∀u = (un)n∈Z
.

(1.7)

In addition, simple computation shows that, for u = (un)n∈Z
∈ H, there holds

‖Bu‖2 =
∑
n∈Z

|un+1 − un|2 ≤ 2
∑
n∈Z

(
|un+1|2 + |un|2

)
= 4‖u‖2. (1.8)

This paper is organized as follows. In the next section, we recall some basic concepts
and already know results to random dynamical system and random attractors. In Section 3,
we prove the existence of the global random attractor for stochastic LS lattice dynamical
systems (1.4)–(1.6).

2. Preliminaries

In this section, we first introduce the definitions of the random dynamical systems and
random attractor, which are taken from [13]. Let (H, ‖ · ‖H) be a Hilbert space and (Ω,F,P) a
probability space.

Definition 2.1. (Ω,F,P, (θt)t∈R
) are called metric dynamical systems; if θ : R × Ω → Ω is

(B(R) × F,F)-measurable, θ0 = I, θt+s = θt ◦ θs for all t, s ∈ R, and θtP = P for all t ∈ R.

Definition 2.2. A stochastic process φ(t, ω) is called a continuous random dynamical system
(RDS) over (Ω,F,P, (θt)t∈R

) if φ is (B(R+) × F × B(H),B(H))-measurable, and for all ω ∈ Ω

(i) the mapping φ : R
+ ×Ω ×H → H is continuous;

(ii) φ(0, ω) = I on H;

(iii) φ(t + s,ω, χ) = φ(t, θsω, φ(s,ω, χ)) for all t, s ≥ 0 and χ ∈ H (cocycle property).

Definition 2.3. A random bounded set B(ω) ⊂ H is called tempered with respect to (θt)t∈R
if

for a.e. ω ∈ Ω and all ε > 0

lim
t→∞

e−εtd(B(θ−tω)) = 0, (2.1)

where d(B) = supχ∈B‖χ‖H .

Consider a continuous random dynamical system φ(t,w) over (Ω,F,P, (θt)t∈R
), and

let D be the collection of all tempered random sets of H.

Definition 2.4. A random set K(ω) is called an absorbing set in D if for all B ∈ D and a.e.ω ∈ Ω
there exist tB(ω) > 0 such that

φ(t, θ−tω, B(θ−tω)) ⊂ K(ω), t ≥ tB(ω). (2.2)
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Definition 2.5. A random set A(ω) is a random D-attractor for RDS φ if

(i) A(ω) is a random compact set, that is, ω → d(χ,A(ω)) is measurable for every
χ ∈ H and A(ω) is compact for a.e. ω ∈ Ω;

(ii) A(ω) is strictly invariant, that is, φ(t, ω,A(ω)) = A(θtω), for all t ≥ 0 and for a.e.
ω ∈ Ω;

(iii) A(ω) attracts all sets in D, that is, for all B ∈ D and a.e. ω ∈ Ωwe have

lim
t→∞

d
(
φ(t, θ−tω, B(θ−tω))A(ω)

)
= 0, (2.3)

where d(X,Y ) = supχ∈Xinfy∈Y‖χ − y‖H, X, Y ⊂ H.

The collection D is called the domain of attraction of A.

Definition 2.6. Let φ be an RDS on Hilbert space H. φ is called asymptotically compact if, for
any bounded sequence {χn} ⊂ H and tn → ∞, the set {φ(tn, θ−tnω, χn)} is precompact in H,
for any ω ∈ Ω.

From [13], we have the following result.

Proposition 2.7. Let K ∈ D be an absorbing set for an asymptotically compact continuous RDS φ.
Then φ has a unique global random D-attractor

A(ω) =
⋂

κ≥tK(ω)

⋃
t≥κ

φ(t, θ−tω,K(θ−tω)) (2.4)

which is compact inH.

Let W1(t) =
∑

n∈Z
anw

1
n(t)en and W2(t) =

∑
n∈Z

bnw
2
n(t)en, where (an)n∈Z

, (bn)n∈Z
∈ �2.

Here {en} denotes the standard complete orthonormal system in �2, which means that the
nth component of en is 1 and all other elements are 0. Then W1(·) and W2(·) are �2-valued
Q-Wiener processes. It is obvious that EW1(t) = EW2(t) = 0. For details we refer to [24].

Now, we abstract (1.4)–(1.6) as stochastic ordinary differential equations with respect
to time t in E = L

2 × �2. Let a = (an)n∈Z
, b = (bn)n∈Z

, f = (fn)n∈Z
, and g = (gn)n∈Z

. Then
(1.4)–(1.6) can be written as the following integral equations:

u(t) = u0 +
∫ t

0

[−iu(s)v(s) − αu(s) − iAu(s) − if(s)
]
ds − i

∫ t

0
u(s)dW1, (2.5)

v(t) = v0 +
∫ t

0

[
−βv(s) − γB

(
|u|2

)
+ g(s)

]
ds +W2. (2.6)

Remark 2.8. The special form of multiplicative noise in (2.5) is more suitable than the white
noise “adW” and the additive noise “

∑n
j=1 ajdW

j”, because it is more approximative to the
perturbations of the short wave for this model.
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For our purpose we introduce the probability space as

Ω =
{
ω ∈ C

(
R, �2

)
: ω(0) = 0

}
(2.7)

endowed with the compact open topology [12]. P is the corresponding Wiener measure, and
F is the P-completion of the Borel σ-algebra on Ω.

Let θtω(·) = ω(· + t) −ω(t), t ∈ R. Then (Ω,F,P, (θt)t∈R
) is a metric dynamical system

with the filtration Ft := ∨s≤tFt
s, t ∈ R, where Ft

s = σ{W(t2) − W(t1) : s ≤ t1 ≤ t2 ≤ t} is
the smallest σ-algebra generated by the random variable W(t2) −W(t1) for all t1, t2 such that
s ≤ t1 ≤ t2 ≤ t; see [12] for more details.

3. The Existence of a Random Attractor

In this section, we study the dynamics of solutions for the stochastic LS (1.4)–(1.6). Then we
apply Proposition 2.7 to prove the existence of a global random attractor for stochastic lattice
LS equations.

Before proving the existence of global solution for (2.5)-(2.6), we need the following a
priori estimate.

Lemma 3.1. Suppose that f(t) = (fn(t))n∈Z
∈ CB(R, �2). Then, the solution of (1.4)–(1.6) satisfies

‖u(t, ω;u0)‖2 ≤ e−αt‖u0‖2 + 1
α

∥∥f∥∥2
, t ≥ 0, (3.1)

for all ω ∈ Ω and ‖f‖ = supt∈R
|f(t)|2.

Proof. We write (1.4) in the form of vector as

iut −Au − vu + iαu = f + uW1
t , t > 0. (3.2)

Taking the imaginary part of the inner product of (3.2) with u, we obtain

1
2
d

dt
‖u‖2 + α‖u‖2 = − Im

(
f, u

) ≤ α

2
‖u‖2 + 1

2α
∥∥f∥∥2

. (3.3)

So we have

d

dt
‖u(t, ω;u0)‖2 + α‖u(t, ω;u0)‖2 ≤ 1

α

∥∥f∥∥2
. (3.4)

By the Gronwall inequality, we get

‖u(t, ω;u0)‖2 ≤ e−αt‖u0‖2 + 1
α

∥∥f∥∥2
. (3.5)

Thus, we derive (3.1).
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By Lemma 3.1, we know that ‖u‖2 is bounded in any bounded subset of [0,∞), that is,
‖u‖2 ≤ e−αt‖u0‖2 + (1/α)‖f‖2, 0 ≤ t ≤ T , for any fixed constant T > 0.

In order to show the existence of global solutions of (2.5)-(2.6), we first change (2.5)-
(2.6) into deterministic equations. First, due to special linear multiplicative noise, (2.5) can be
reduced to an equation with random coefficients by a suitable change of variable. Consider
the process z(t) = eiW

1(t), which satisfies the stochastic differential equation

dz(t) = −1
2
z(t)dt + iz(t)dW1. (3.6)

The process ũ = z(t)u(t) follows the random differential equation,

i
dũ

dt
−Aũ + i

(
α +

1
2

)
ũ − vũ − f(t)z(t) = 0. (3.7)

We denote ṽ = v(t) − W2(t), then (2.5)-(2.6) can be changed into the following
equations:

ũ(t) = ũ0 +
∫ t

0

[
−iũ(s)v(s) −

(
α +

1
2

)
ũ(s) − iAũ(s) − if(s)z(s)

]
ds,

ṽ(t) = ṽ0 +
∫ t

0

[
−βṽ(s) − γB

(
|u|2

)
+ g(s) − βW2(s)

]
ds.

(3.8)

Remark 3.2. For the general multiplicative noise, we can also choose a suitable process and a
change of variable to convert the stochastic equations into deterministic equations.

For each fixed ω ∈ Ω, (3.8) are deterministic equations, and we have the following
result.

Theorem 3.3. For any T > 0, (2.5)-(2.6) are well posed and admit a unique solution (u(t), v(t)) ∈
L
2(Ω;C([0, T];E)). Moreover, the solution of (2.5)-(2.6) depends continuously on the initial data

(u0, v0).

Proof. By standard existence theorem for ODEs, it follows that (3.8) possess a local solution
(ũ(t), ṽ(t)) ∈ C(0, T ;E), where [0, Tmax] is the maximal interval of existence of the solution
of (3.8). Now, we prove that this local solution is a global solution. Let ω ∈ Ω; from (3.8) it
follows that

‖ũ(t)‖2 + ‖ṽ(t)‖2

= ‖ũ0‖2 + ‖ṽ0‖2 − 2
(
α +

1
2

)∫ t

0
‖ũ(s)‖2ds − 2

∫ t

0
Re
(
ifz, ũ(s)

)
ds − 2β

∫ t

0
‖ṽ(s)‖2ds

− 2γ
∫ t

0

(
B
(
|u|2

)
, ṽ(s)

)
ds + 2

∫ t

0

(
g(s), ṽ(s)

)
ds − 2β

∫ t

0

(
W2(s), ṽ(s)

)
ds.

(3.9)
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By the Young inequality and (1.8), direct computation shows that

−2Re(ifz, ũ) ≤ 2
α

∥∥f∥∥2‖z‖2 + α

2
‖ũ‖2 ≤ 1

α

(∥∥f∥∥4 +
∥∥∥W1

∥∥∥4
)
+
α

2
‖ũ‖2,

−2γ
(
B
(
|u|2

)
, ṽ
)
≤ 2

∣∣γ∣∣∥∥∥B(|u|2)∥∥∥‖ṽ‖ ≤ ∣∣γ∣∣ε‖ṽ‖2 + 4
∣∣γ∣∣
ε

‖u‖4,

2
(
g, ṽ

) ≤ ∣∣γ∣∣ε‖ṽ‖2 + 1∣∣γ∣∣ε
∥∥g∥∥2

,

−2β
(
W2, ṽ

)
≤ 2β

∥∥∥W2
∥∥∥‖ṽ‖ ≤ ∣∣γ∣∣ε‖ṽ‖2 + β∣∣γ∣∣ε

∥∥∥W2
∥∥∥2

.

(3.10)

Combining the above inequalities with Lemma 3.1, we obtain

‖ũ(t)‖2 + ‖ṽ(t)‖2 ≤ ‖ũ0‖2 + ‖ṽ0‖2 − C0

∫ t

0

(
‖ũ(s)‖2 + ‖ṽ(s)‖2

)
ds

+ C1

∫ t

0

(∥∥f∥∥2 +
∥∥g∥∥2 +

∥∥∥W2
∥∥∥2

+
∥∥∥W1

∥∥∥4
)
ds

≤ ‖ũ0‖2 + ‖ṽ0‖2 + C1

∫ t

0

(∥∥f∥∥2 +
∥∥g∥∥2 +

∥∥∥W2
∥∥∥2

+
∥∥∥W1

∥∥∥4
)
ds,

(3.11)

where C0, C1 are constants depending on α, β, γ , and ε is a sufficiently small positive number.
By the Gaussian property of W1 and W2, (3.11) implied that (3.8) admit a global solution
(ũ(t), ṽ(t)) ∈ L

2(Ω;C([0, T];E)). The proof of the lemma is completed.

From the definition (θt)t∈R
, we know

W(t + h,ω) = W(t, θhω) +W(h,ω), ∀t, h ∈ R, (3.12)

and combining the above theorem we have the following result.

Theorem 3.4. System (2.5)-(2.6) generates a continuous random dynamical system (φ(t, θ−tω))t≥0
over (Ω,F,P, (θt)t∈R

).

The proof is similar to that of Theorem 3.2 in [13], so we omit it.
Now, we prove the existence of a random attractor for system (2.5)-(2.6). By

Proposition 2.7, we first prove that RDS φ possesses a bounded absorbing set K(ω). We
introduce an Ornstein-Uhlenbeck process in �2 on the metric dynamical system (Ω,F,P, θt)
given by Wiener process:

z1(θtω) = −ν
∫0

−∞
eνhθtω(h)dh, t ∈ R, z2(θtω) = −μ

∫0

−∞
eμhθtω(h)dh, t ∈ R, (3.13)
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where ν and μ are positive. The above integral exists in the sense of for any path ω with a
subexponential growth and z1, z2 solve the following Itô equations:

dz1 + νz1dt = dW1(t), dz2 + μz2dt = dW2(t). (3.14)

In fact, the mapping t → zi(θtω), i = 1, 2, is the O − U process. Furthermore, there
exists a θt invariant set Ω′ ⊂ Ω of full P measure such that

(1) the mapping t → zi(θtω), i = 1, 2, is continuous for each ω ∈ Ω′,

(2) the random variables ‖zi(ω)‖, i = 1, 2, are tempered.

Lemma 3.5. There exists a θt invariant set Ω′ ⊂ Ω of full P measure and an absorbing random set
K(ω), ω ∈ Ω′, for the random dynamical system (φ(t, θ−tω))t≥0.

Proof. We use the estimates in Theorem 3.3. By (3.11), we have

d
(
‖ũ(t)‖2 + ‖ṽ(t)‖2

)
dt

≤ −C0

(
‖ũ(t)‖2 + ‖ṽ(t)‖2

)
+ C1ρ(θtω), (3.15)

where ρ(θtω) = ‖f‖2 + ‖g‖2 + ‖W1‖4 + ‖W2‖2.
By the Gronwall inequality, we have

‖ũ(t)‖2 + ‖ṽ(t)‖2 ≤
(
‖ũ0‖2 + ‖ṽ0‖2

)
e−C0t +

∫ t

0
e−C0(t−s)ρ(θsω)ds. (3.16)

Replace ω by θ−tω in the above inequality to construct the radius of the absorbing set and
define

�2(ω) = 4 lim
t→∞

∫ t

0
e−C0(t−s)ρ(θs−tω)ds = 4 lim

t→∞

∫0

−t
e−C0sρ(θsω)ds. (3.17)

Define

R2(ω) = �2(ω) +
4
α

∥∥f∥∥2
∥∥∥W1

∥∥∥4
+
∥∥∥W2

∥∥∥2
. (3.18)

Then, K(ω) � K(0, R(ω)) is a tempered ball by the property of W1,W2, and, for any B ∈
D, ω ∈ Ω. Here, D denotes the collection of all tempered random sets of Hilbert spaceH. The
proof of the lemma is completed.

Lemma 3.6. Let (u0, v0) ∈ K(ω), the absorbing set given in Lemma 3.5. Then, for every ε > 0
and P-a.e. ω ∈ Ω, there exist T(ε,ω) > 0 and N(ε,ω) > 0 such that the solution (u, v) of system
(2.5)-(2.6) satisfies

∑
|n|>N(ε,ω)

[
|un(t, θ−tω)|2 + |vn(t, θ−tω)|2

]
≤ ε, ∀t ≥ T(ε,ω). (3.19)
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Proof. Let η(x) ∈ C(R+, [0, 1]) be a cut-off function satisfying

η(x) =

⎧⎨
⎩
1, ∀x ∈ [2,+∞),

0, ∀x ∈ [0, 1],
(3.20)

and |η′(x)| ≤ η0 (a positive constant).
Taking the inner product of (3.8) with (η(|n|/M)ũn)n∈Z

and (η(|n|/M)ṽn)n∈Z
,

respectively, we get

d

dt

∑
n∈Z

η

( |n|
M

)
|ũn|2 = −2

(
α +

1
2

)∑
n∈Z

η

( |n|
M

)
|ũn|2 − 2 Im

∑
n∈Z

η

( |n|
M

)(
fnzn, ũn

)
,

d

dt

∑
n∈Z

η

( |n|
M

)
|ṽn|2 = −2β

∑
n∈Z

η

( |n|
M

)
|ṽn|2 − 2γ

∑
n∈Z

η

( |n|
M

)(
B
(
|u|2

)
n
, ṽn

)
+ 2

∑
n∈Z

η

( |n|
M

)(
gn, ṽn

)

− 2β
∑
n∈Z

η

( |n|
M

)(
W2

n, ṽn

)
.

(3.21)

We also use the estimates in Theorem 3.3. Similar to (3.11), it follows that

∑
n∈Z

η

( |n|
M

)(
|ũn|2 + |ṽn|2

)

≤ e−C0(t−Tk)
(∑

n∈Z

η

( |n|
M

)
|ũn(Tk,ω)|2 +

∑
n∈Z

η

( |n|
M

)
|ṽn(Tk,ω)|2

)

+ C1

∫ t

Tk

eC0(s−t)
∑

|n|≥M

(∣∣∣z1n(θsω)
∣∣∣2 + ∣∣∣z2n(θsω)

∣∣∣2 + ∣∣fn∣∣2 + ∣∣gn∣∣2
)
ds.

(3.22)

Replace ω by θ−tω in (3.22). Then, we estimate each term on the right-hand of (3.22);
it follows that

e−C0(t−Tk)
∑
n∈Z

η

( |n|
M

)(
|ũn(Tk, θ−tω)|2 + |ṽn(Tk, θ−tω)|2

)

≤ e−C0(t−Tk)
[(

|u0(θ−tω)|2 + |v0(θ−tω)|2
)
e−C0Tk

+
∫Tk

0
e−C0(Tk−s)

(∣∣∣z1(θs−tω)
∣∣∣4 + ∣∣∣z2(θs−tω)

∣∣∣2)ds
+e−C0(t−Tk)

∫Tk

0
e−C0(Tk−s)

(∣∣f∣∣2 + ∣∣g∣∣2)ds
]
.

(3.23)
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Since ‖zi(ω)‖, i = 1, 2, are tempered and zi(θtω), i = 1, 2, are continuous in t, there is a
tempered function r(ω) > 0 such that

∥∥∥z1(θtω)
∥∥∥4

+
∥∥∥z2(θtω)

∥∥∥2 ≤ r(θtω). (3.24)

Combining (3.23) with (3.24), there is a T1(ε,ω) > Tk such that

e−C0(t−Tk)
∑
n∈Z

η

( |n|
M

)(
|ũn(Tk, θ−tω)|2 + |ṽn(Tk, θ−tω)|2

)
≤ ε

3
. (3.25)

Next, we estimate

C1

∫ t

Tk

eC0(s−t)
∑

|n|≥M

(∣∣∣z1n(θs−tω)
∣∣∣4 + ∣∣∣z2n(θs−tω)

∣∣∣2)ds. (3.26)

Let T ∗ ≥ (1/C0) ln(6C1r(ω)/C0ε) and N1(ε,ω) be fixed positive constants. Then, for t >
T ∗ + Tk and M > N1(ε,ω), by the Lebesgue theorem, we have

C1

∫ t

Tk

eC0(s−t)
∑

|n|≥M

(∣∣∣z1n(θs−tω)
∣∣∣4 + ∣∣∣z2n(θs−tω)

∣∣∣2)ds

= C1

∫0

−T∗
eC0ξ

∑
|n|≥M

(∣∣∣z1n(θξω)∣∣∣4 + ∣∣∣z2n(θξω)∣∣∣2
)
ds

+ C1

∫−T∗

Tk−t
eC0ξ

∑
|n|≥M

(∣∣∣z1n(θξω)∣∣∣4 + ∣∣∣z2n(θξω)∣∣∣2
)
ds

≤ C1

∫0

−T∗
eC0ξ

∑
|n|≥M

(∣∣∣z1n(θξω)∣∣∣4 + ∣∣∣z2n(θξω)∣∣∣2
)
ds +

C1

C0
r(ω)eC0T

∗

≤ ε

6
+
ε

6
=

ε

3
.

(3.27)

Since f(t) ∈ CB(R, �2) and g(t) ∈ CB(R, �2), there exists N2(ε,ω) such that for M >
N2(ε,ω)

C1

∫ t

Tk

eC0(s−t)
∑

|n|≥M

(∣∣fn∣∣2 + ∣∣gn∣∣2)ds ≤ ε

3
. (3.28)

Therefore, let

T̃(ε,ω) = max{T1(ε,ω), T ∗(ε,ω)}, Ñ(ε,ω) = max{N1(ε,ω),N2(ε,ω)}. (3.29)
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Then, for t > T̃(ε,ω) andM > Ñ(ε,ω), we obtain

∑
|n|>M

(
|ũn(t, θtω)|2 + |ṽn(t, θtω)|2

)
≤ ε. (3.30)

Direct computation shows that

‖u‖2 + ‖v‖2 ≤ 2
(
‖ũ‖2 + ‖ṽ‖2

)
+ 4

∥∥∥z2(θtω)
∥∥∥2
. (3.31)

Therefore, we obtain

∑
|n|>M

(
|un(t, θtω)|2 + |vn(t, θtω)|2

)
≤ ε. (3.32)

The proof of the lemma is completed.

Lemma 3.7. The random dynamical systems (φ(t, θ−tω))t≥0 are asymptotically compact.

Proof. We use the method of [25]. Let ω ∈ Ω. Consider a sequence (tn)n∈N
with tn → ∞ as

n → ∞. Since K(ω) is a bounded absorbing set, for large n, (un, vn) = φ(tn, θ−tnω)(u0, v0) ∈
K(ω), where (u0, v0) ∈ K(ω). Then, there exist (u, v) ∈ E and a sequence (un, vn) (denoted by
itself) such that

(un, vn) ⇀ (u, v) weakly in E. (3.33)

Next, we show that the above weak convergence is actually strong convergence in E.
From Lemma 3.6, for any ε > 0, there exist positive constants N3(ε,ω) and M̃1 such

that, for n > M̃1,

∑
i>N3

(
|uin(tn, θtnω)|2 + |vin(tn, θtnω)|2

)
≤ ε

6
. (3.34)

Since (u, v) ∈ E, there exists N4(ε,ω) > 0 such that

∑
|i|≥N4

(
|ui|2 + |vi|2

)
≤ ε

6
. (3.35)

Let Ñ(ε,ω) = max{N3(ε,ω),N4(ε,ω)}, then, from (3.33), there exists M̃2 > 0 such
that, for n > M̃2,

∑
|i|≤Ñ

(
|uin − u|2 + |vin − v|2

)
≤ ε

3
. (3.36)
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By (3.34)–(3.36), we obtain that, for n > M̃ = max{M̃1, M̃2},

‖un(tn, θ−tnω) − u‖2 + ‖vn(tn, θ−tnω) − v‖2

=
∑
|i|≤Ñ

(
|uin(tn, θ−tnω) − ui|2 + |vin(tn, θ−tnω) − vi|2

)

+
∑
|i|>Ñ

(
|uin(tn, θ−tnω) − ui|2 + |vin(tn, θ−tnω) − vi|2

)

≤
∑
|i|≤Ñ

(
|uin(tn, θ−tnω) − ui|2 + |vin(tn, θ−tnω) − vi|2

)

+ 2
∑
|i|>Ñ

(∣∣∣uin(tn, θ−tnω)2
∣∣∣ + |vin(tn, θ−tnω)|2

)
+ 2

∑
|i|>Ñ

(
|ui|2 + |vi|2

)

≤ ε

3
+
2ε
6

+
2ε
6

≤ ε.

(3.37)

The proof of the lemma is completed.

Now, combining Lemmas 3.5, 3.7 with Proposition 2.7, we can easily obtain the
following result.

Theorem 3.8. The random dynamical systems (φ(t, θ−tω))t≥0 possess a global random attractor in
E.
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