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This paper proposes an adaptive neurofuzzy interface system (ANFIS) approach to identify the
real power transfer between generators. Based on solved load flow results, it first uses modified
nodal equation method (MNE) to determine real power contribution from each generator to loads.
Then the results of MNE method and load flow information are utilized to train the designed
ANFIS. It also incorporated an enhanced feature extraction method called principle component
analysis (PCA) to reduce the input features to the ANFIS. The 25-bus equivalent system of south
Malaysia is utilized as a test system to illustrate the effectiveness of the ANFIS output compared
to that of the MNE method. The ANFIS output provides promising results in terms of accuracy
and computation time. Furthermore, it can be concluded that the ANFIS with enhanced feature
extraction method reduces the time taken to train the ANFIS without affecting the accuracy of the
results.

1. Introduction

The introduction of electricity privatization becomes an important issue under electric
industry restructuring. The aim of this research is to bring transparency and open access
to the transmission network. Implementing transparent rules that allocate transmission
use fulfill this concept of fairness in the industry. Fairness can only be achieved by
adopting a fair and transparent usage allocation methodology acceptable to all parties.
In view of market operation, it is vital to know the role of individual generators and
loads to transmission wires and power transfer between individual generators to loads.
This is necessary for the restructured power system to operate economically, efficiently
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and ensure open access to all system users [1]. Several schemes have been developed to
solve the allocation problem in the last few years. Methods based on the Y -bus or Z-bus
system matrices have recently received great attention since these methods can integrate
the network characteristics and circuit theories into line usage and loss allocation. The
method reported in [2] is based on Kirchhoff’s current law (KCL), equivalent linear circuit
that reaches all lines and loads. Based on the stated assumptions, a recursive procedure
was used to construct the equivalent circuit for each bus. Moreover, superposition theorem
was applied to the bus’s equivalent circuit starting from a bus whose injected currents
were known. Another circuit concept method was proposed by Chang and Lu [3]. It
was based on the system Y -bus and Z-bus matrix modification where, branch current are
determined as a function of generators’ injected current by using information from the Z-
bus. Similarly, contribution to bus voltages was computed as a function of each generator
current injection by decomposing the network into different networks. Using the computed
voltages and currents, the power flowing on the transmission lines were unbundled. It uses
approximate formulation to calculate the unbundled loss components. This algorithm utilizes
the network decomposition concept as proposed by Zobian and Ilić [4] which determines
the use of transmission network by individual bilateral contracts. Teng [5], proposed a
systematic method, very similar to that presented in [3], to allocate the power flow and
loss for deregulated transmission systems. Using a similar concept, the authors of this paper
introduce a modified nodal equation (MNE) method for real and reactive power allocation
[6] in which the load buses powers are represented as a function of the generators’ current
and voltage.

The tracing methods [1, 7–10] based on the actual power flows in the network and
the proportional sharing principles were effectively used in transmission usage allocation.
The methods reported in [1, 9] are based on tracing the current and complex power from
individual power sources to system loads. Based on solved load flow, the method converts
power injections and line flows into real and imaginary current injections and current flows.
This method has a clear physical meaning and its results are unique. Bialek in [7] proposed a
novel power tracing method. However this method requires inverting a large matrix. Wu et
al. [8] proposed graph theory to calculate the contribution factor of individual generators
to line flows and loads and the extraction factor of individual loads from line flows and
generators, which is theoretically efficient. This method cannot handle loop flows and losses
must be removed initially. Reference [11] was based on the concept of generator “domains”,
“common”, and “links”. The disadvantage of this method is that the share of each generator
in each “common” (i.e., the set of buses supplied from the same set of generators) is assumed
to be same. Furthermore, the “commons” concept can lead to problems since the topology
of a “common” could radically change even in the case of slight change in power flows. In a
related work, a support vector machine (SVM) [12] was applied to estimate the contribution
of individual generators to loads in power systems. The SVM gives faster results but the
accuracy of the result is not promising.

Therefore in order to obtain fast and accurate results, an adaptive neurofuzzy interface
system (ANFIS) approach is proposed in this work. The proposed method considers almost
all system variables obtained from load flow solutions as the input features. However, these
features are further reduced using the principle component analysis (PCA), to decrease the
training time required by the designed ANFIS. The targets of the ANFIS corresponding to
the real power transfer allocation results are obtained from MNE method. It is expected that
the application of ANFIS can contribute in improving the computation time of real power
allocation methodology for deregulated system.
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2. Modified Nodal Equations Method

The derivation, to decompose the load real powers into components contributed by specific
generators starts with basic equations of load flow. Applying Kirchhoff’s law to each node of
the power network leads to the equations, which can be written in a matrix form as [1]

I = YV, (2.1)

where V is a vector of all node voltages in the system, I is a vector of all node currents in the
system, and Y is the Y -bus admittance matrix.

The nodal admittance matrix of the typical power system is large and sparse, therefore
it can be partitioned in a systematic way. Considering a system in which there areG generator
nodes that participate in selling power and remaining L = n − G nodes as loads, then it is
possible to rewrite (2.1) into its matrix form as

[
IG
IL

]
=
[
YGG YGL

YLG YLL

][
VG

VL

]
. (2.2)

Solving (2.2) for IL, the load currents can be presented as a function of generators’ current
and load voltages as

IL = YLGY
−1
GGIG +

(
YLL − YLGY

−1
GGYGL

)
VL. (2.3)

Then, the total real power PL of all loads can be expressed as

PL = Re
{
VLI

∗
L

}
, (2.4)

where (∗)means conjugate.
Substituting (2.3) into (2.4) and solving for PL the relationship as shown in (2.5) can

be found

PL = Re
{
VL

(
YLGY

−1
GG

)∗
I∗G + VL

((
YLL − YLGY

−1
GGYGL

)
VL

)∗}

= Re

{
VL

nG∑
i=1

ΔI∗IGL + VL

((
YLL − YLGY

−1
GGYGL

)
VL

)∗
}
,

(2.5)

where

(
YLGY

−1
GG

)∗
I∗G =

nG∑
i=1

ΔI∗IGL , (2.6)

where nG is the number of generators.
Now, in order to decompose the load voltage dependent term further in (2.5), into

components of generator dependent terms, (2.8) is used. A possible way to deduce load node
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voltages as a function of generator bus voltages is to apply superposition theorem. However,
it requires replacing all load bus current injections into equivalent admittances in the circuit.
Using a readily available load flow result, the equivalent shunt admittance YLj of load node j
can be calculated using

YLj =
1
VLj

(
SLj

VLj

)∗
, (2.7)

where SLj is the load apparent power on node j and VLj is the load bus voltage on node j.
After adding these equivalences to the diagonal entries of Y -bus matrix, (2.1) can be rewritten
as

V = Y
′−1IG, (2.8)

where Y ′ is the modified Y of (2.1).
Next, adopting (2.8) and taking into account each generator one by one, the load bus

voltages contributed by all generators can be expressed as

VL =
nG∑
i=1

ΔV ∗IG
L . (2.9)

Now it requires a simple mathematical manipulation to obtain the required relationship as
a function of generators dependent terms. By substituting (2.9) into (2.5), the decomposed
load real powers can be expressed as

PL = Re

{
VL

nG∑
i=1

ΔI∗IGL +
nG∑
i=1

ΔV ∗IG
L

((
YLL − YLGY

−1
GGYGL

)
VL

)∗
}
. (2.10)

This equation shows that the real power of each load bus consists of two terms by individual
generators. The first term relates directly to the generators’ current and the second term
corresponds to their contribution to the load voltages. With further simplification of (2.10),
the real power contribution that load j acquires from generator i is

PLj =
nG∑
i=1

PΔIL
Lji +

nG∑
i=1

PΔVL

Lji , (2.11)

where PΔIL
Lji is the current dependent term of generator i to PLj and PΔVL

Lji is the voltage
dependent term of generator i to PLj .

This allocation method has clear physical meaning as it takes into account the
interaction between real and reactive power flows. Vector PL is used as a target in the training
process of the proposed ANFIS.
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Figure 1: Basic structure of ANFIS.

3. Principle of Adaptive Neurofuzzy Inference System (ANFIS)

Adaptive Neurofuzzy Inference System (ANFIS) is developed from Sugeno-type fuzzy
inference system (FIS) for effective data processing. The development is a simple data
learning technique by using configuration of neurofuzzy model with hybrid learning rule.
FIS processes a given input mapping to get a target output. The ANFIS defines five layers
which perform the function of fuzzification of the input values, aggregation of membership
degree, evaluation of the bases, normalization of the aggregated membership degree, and
evaluation of function output values [13, 14].

Basic ANFIS structure consists the five main processing stages illustrated in Figure 1.
The first layer is the input layer which receives input data that are mapped into

membership functions so as to determine the membership of a given input. In this
fuzzification process the following equations are utilized:

Xi(x) =
1[

1 + ((x − ci)/ai)
2
]bi , i = 1, 2,

Yi

(
y
)
=

1[
1 +

((
y − ci

)
/ai

)2]bi , i = 1, 2,

(3.1)

where Xi and Yi are fuzzified input values, whereas ai, bi, and ci are the parameter sets from
the Gaussian input membership function.

The second layer of neurons represents association between input and output, by
means of fuzzy rules. Application of fuzzy operators involves the use of the product (AND)
to the fuzzified input. Equations (3.2) represent the fuzzy relations obtained from the product
fuzzy operators:

R1 = X1(x) + Y1
(
y
)
,

R2 = X2(x) + Y2
(
y
)
,

R3 = X3(x) + Y3
(
y
)
,

R4 = X4(x) + Y4
(
y
)
.

(3.2)
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In the third layer, the output is normalized and then passed to the fourth layer. Here, the
activation degree and normalization is implemented by using the following equations

Gi =
Ri

(R1 + R2 + R3 + R4)
. (3.3)

Then the output data are mapped in the fourth layer to give output membership function
based on the predetermined fuzzy rules. Aggregation of all outputs is obtained by using (3.4)
which is the product of the normalized activation degree and individual output membership
function

Oi = Gi

(
pix + qiy + ri

)
i = 1, 2, 3, 4, (3.4)

where pi, qi, and ri are the parameters from the output membership function.
Finally the outputs are summed in the fifth layer to give a single valued output. The

ANFIS has the constraint that it only be designed as a single output system and the system
must be of unity weights for each rule [15]

O =
4∑
i=1

Oi. (3.5)

4. Feature Extraction

An important aspect to be considered for achieving good ANFIS performance is by proper
selection and extraction of training data. For large-scale interconnected power systems, the
complete state information is too large for any effective ANFIS implementation and therefore,
the training data must be reduced to smaller number of useful information [16] using some
sort of transformation. In general, the reduced set of features must represent the original
set of features, since a loss of information in the reduced set results in loss of performance
and accuracy of the ANFIS. The common methods for feature extraction are the linear
discriminant analysis (LDA) and principle component analysis (PCA). In this work, PCA
is used for feature extraction.

Obtaining the eigenvalues and eigenvectors of the covariance matrices for normal
distributions is known as the principal component analysis (PCA). It is a statistical method
often used in pattern recognition and data analysis. The goal of PCA is to map vectors having
larger dimensional space onto another set of vectors having a smaller dimensional subspace.
A brief explanation on calculation of principle components is as follows. Given a data set
Xl×m, where l ∈ Rn represents the number of rows of the data X and m ∈ Rn represents the
number of input features of the data set. It is possible to calculate the mean value for the input
features as

xmean =
(x1 + · · · + xm)

m
(4.1)
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Figure 2: An example of a screen plot showing the principle components and its magnitude.

and subtracting the mean from the original features the covariance matrix can be obtained as

C =
1
l

l∑
j=1

(x1 − xmean, . . . , xm − xmean)T (x1 − xmean, . . . , xm − xmean). (4.2)

The final stage of CPA involves the eigenvectors and eigenvalues of the covariance matrix.
The new obtained coordinates of the orthogonal projections onto the eigenvectors, are called
principle components [16]where the number of principle components is equal to the number
of input features. If too many principle components are considered, the transformed input
features may include redundant features or if small number of principle components are
chosen, they may jeopardize the accuracy of the intelligent system. One method of choosing
principle components is by plotting them on a screen plot as shown in Figure 2 [17].

It can be noticed in Figure 2 that there is a “knee” in the plot at the third principle
component; therefore according to a popular rule, the number of principle components to be
considered should be 3 [17].

5. ANFIS Design for Real Power Allocation

In this work, 12 ANFIS blocks are generated and arranged as a hierarchical distribution
ANFIS network to obtain real power transfer allocation results for the practical 25-bus
equivalent power system of south Malaysia as shown in Figure 3.

This system consists of 12 generators located at buses 14 to 25, respectively. They
deliver power to 5 loads, through 37 lines located at buses 1, 2, 4, 5, and 6, respectively. The
data for training is assembled using the daily load curve and performing load flow analysis
for every hour of load demand. Similarly the target vector for the training is obtained from
the MNE method. Input data (D) for each developed ANFIS contains independent variables
such as load bus voltage magnitude (Vload), real power of load (Pload), reactive power of load
(Qload), generator bus voltage magnitude (Vgen), real power generation (Pgen), reactive power
generation (Qgen) corresponding to that particular ANFIS block, average line real power
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Figure 3: Single line diagrams for the 25-bus equivalent practical power system.
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Figure 4: ANFIS design for real power transfer allocation for the 25-bus.

flows (PL1, PL2, to PL37), and the target/output parameter (T)which is the contributions from
a generator placed at particular bus to loads. This is considered as a single output from each
ANFIS block for real power transfer allocation. Figure 4 shows complete ANFIS design for
real power transfer allocation for the 25-bus equivalent practical power system assuming that
system topology remains intact. Since PCA uses the eigenvectors of the covariancematrix and
it only finds the independent axes of the data, the input data should not vary in abnormally
wide range. Therefore for the effective use of PCA, it is assumed that the bus voltages, line
flows, are power injections are within the limited range. This assumption is acceptable since
the bus voltages, line power flows, generation limits generally varies in a narrow band to
maintain voltage, and transient stability of the system. The observed maximum variation
in the input samples for bus voltage, load power, generator power, and line power flow,
respectively, are 0.037, 2.199, 0.380, and 0.535. Generally it is also noted that the variation in
power flow and power injection increases as the load increase according to the daily load
curve.
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Table 1: Performance of individual ANFIS blocks.

ANFIS block Mean error (%) Accuracy (%) Prediction time (s)
ME(%) (100-ME(%))

Gen-14 0.0136 99.9864 0.003262
Gen-15 0.0136 99.9864 0.003287
Gen-16 0.0136 99.9864 0.003275
Gen-17 0.0048 99.9952 0.003249
Gen-18 0.0133 99.9867 0.003297
Gen-19 0.0216 99.9784 0.003396
Gen-20 0.0042 99.9958 0.003309
Gen-21 0.0261 99.9739 0.003207
Gen-22 0.0652 99.9348 0.003226
Gen-23 0.0018 99.9982 0.003247
Gen-24 0.0502 99.9498 0.00325
Gen-25 0.0432 99.9568 0.003367

5.1. Training

ANFIS is sensitive to the number of input features. Too many input features increasing
training time. Therefore number of input features is selected by conducting PCA to eliminate
those principle components that contribute less than 2% to the total variation in the original
data set. After the PCA is applied, it is found that the total of input features can be reduced
from 43 to only 3 input features without severely affecting the accuracy of the results.

After the reduced input features and target for training data is created, the data (D
and T) is divided into training and test subsets. In this case 168 samples of data are used for
the training and another 168 samples are created for testing. Figure 5 shows the performance
of the training for individual ANFIS blocks representing each generator. From Figure 5, it can
also be seen that the training goal is achieved in 3 epochs with a root mean square error less
than 0.2 × 10−4.

5.2. Pretesting and Simulation

After the ANFIS have been trained, next step is to simulate the ANFIS blocks. The entire test
sample data is used in pretesting. After simulation, the obtained result from the trained blocks
is evaluated with a linear regression analysis. The regression analysis for the trained ANFIS
block that is referred to contribution of generator at bus 14 to loads is shown in Figure 6. The
correlation coefficient, (R) in this case is equal to one which indicates a perfect correlation
between MNE method and output of the ANFIS block. The best linear fit is indicated by the
solid line, whereas the perfect fit is indicated by the dashed line.

6. Results and Analysis

A number of simulations have been carried out to demonstrate the accuracy of the developed
ANFIS with the same 25-bus equivalent system of south Malaysia. The scenario here is a
decrement by 5% of the real and reactive load demand from the nominal trained pattern.
Besides it also assumed that all generators also decrease their production proportionally
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Figure 6: Regression analysis between the ANFIS output and the corresponding target.

according to this variation in the load demands. This assumption is being made to ensure
that all real power generation of generator at buses 14 to 25 varies in responding the varying
daily load pattern of the loads. Figure 7 shows the real power transfer allocation result for
generator located at bus 14 calculated by the ANFIS along with the result obtained through
MNE method for loads at buses 1, 2, 4, 5, and 6 for hours 25 to 48 and 121 and 144.
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Table 2: Analysis of real power allocation for the 25-bus equivalent system during hour 33.

Supplied by Load bus number
(MW) ANFIS Output MNE Target

1 2 4 5 6 1 2 4 5 6
Gen-14 0.390 4.788 3.056 4.267 5.513 0.387 4.787 3.058 4.267 5.513
Gen-15 0.390 4.788 3.056 4.267 5.513 0.387 4.787 3.058 4.267 5.513
Gen-16 0.614 7.438 41.746 6.253 8.068 0.623 7.444 41.730 6.254 8.070
Gen-17 0.609 7.313 40.906 6.154 7.926 0.613 7.312 40.899 6.148 7.931
Gen-18 0.357 4.522 2.785 3.732 4.850 0.357 4.523 2.786 3.732 4.850
Gen-19 0.437 5.141 28.236 4.349 5.591 0.438 5.141 28.232 4.346 5.594
Gen-20 0.380 4.852 2.973 3.997 5.194 0.381 4.848 2.972 3.993 5.193
Gen-21 0.850 9.422 6.419 7.628 10.034 0.851 9.420 6.418 7.616 10.027
Gen-22 0.881 9.711 6.660 7.849 10.348 0.884 9.724 6.658 7.856 10.351
Gen-23 0.563 7.270 4.402 5.966 7.768 0.563 7.270 4.404 5.963 7.768
Gen-24 0.492 6.299 3.847 5.182 6.741 0.493 6.297 3.848 5.181 6.741
Gen-25 0.696 8.529 5.413 7.117 9.202 0.697 8.523 5.412 7.109 9.199
Total 6.660 80.072 149.499 66.759 86.748 6.673 80.076 149.476 66.730 86.749
Actual 6.673 80.076 149.476 66.730 86.749 6.673 80.076 149.476 66.730 86.749
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Figure 7: Distribution of real power from generator at bus 14 to loads within hours 25 to 48 and 121 and
144.

Results obtained from the ANFIS are indicated with lines having circles and the
solid lines with cross represent the output of the MNE method. From Figure 7, it can be
observed that the developed ANFIS can allocate real power transfer between generators and
load with very good accuracy, almost 99.95%. In this simulation, ANFIS computes within
39.37msec, whereas the MNE method took 360msec for the calculation of same real power
transfer allocation. Therefore it can be concluded that the ANFIS is more efficient in terms of
computation time. Moreover it is worth highlighting that the feature reduction method used
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Table 3: Load flow data for the 25-bus equivalent system at hour 33.

Voltage Generation Load
Bus no. Magnitude Angle Real Reactive Real Reactive

(p.u) (p.u) (MW) (Mvar) (MW) (Mvar)
1 1.0442 8.3682 0 0 6.673 4.0038
2 1.0423 7.8052 0 0 80.076 24.023
3 1.0426 7.9571 0 0 0 0
4 1.0416 8.1925 0 0 149.48 56.053
5 1.031 6.1741 0 0 66.73 23.355
6 1.0335 5.6078 0 0 86.749 28.027
7 1.0455 8.4806 0 0 0 0
8 1.0559 8.2109 0 0 0 0
9 1.0462 8.626 0 0 0 0
10 1.0456 8.4878 0 0 0 0
11 1.0572 8.274 0 0 0 0
12 1.0447 8.2158 0 0 0 0
13 1.047 7.7774 0 0 0 0
14 1.04 9.4198 31.504 −2.6853 0 0
15 1.04 9.4198 31.504 −2.6853 0 0
16 1.05 9.88 36.987 10.629 0 0
17 1.05 9.8454 36.229 10.606 0 0
18 1.05 9.979 23.943 3.971 0 0
19 1.05 9.605 24.888 8.4126 0 0
20 1.05 10.086 25.833 4.0174 0 0
21 1.153 12.721 31.504 38.05 0 0
22 1.16 12.694 31.504 40.973 0 0
23 1.05 10.43 39.38 5.1706 0 0
24 1.05 10.17 33.709 5.0049 0 0
25 1.055 10.594 43.16 11.322 0 0

in this work is effective and it does not cause a noticeable error. Table 1 shows the percentage
mean error, accuracy, and prediction time taken by individual ANFIS blocks. The percentage
mean error, ME(%) is calculated from the following equations:

ME(%) =
N∑
n=1

En

N
× 100, (6.1)

where En difference between desired output and actual output of test data number n and N
is the total number of data.

The allocation of real power to loads using proposed ANFIS on hour 33 out of 168
hours is presented in Table 2 along with the result obtained through MNE method. From
Table 2, it can be noted that the result obtained by the ANFIS output in this paper is compared
well with the result of MNEmethod. The difference of real power between generators in both
methods is very small which is less than or equal to 0.029 MW. The consumer located at bus 4
consumed the highest demand compared to other consumers in this hour. Consequently, the
contribution of real power due to generators 16, 17, and 19 located at the same bus provides
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more real power to load at bus 4 by bothmethods as well. This result also justifies the physical
meaning of MNE method as these generators are nearest to load at bus 4. Moreover, to
validate the results, load flow information at hour 33 for the test system are given in Table 3.
It can be observed that the sum of the real power contributed by each generator obtained
from MNE method and ANFIS is in conformity with the actual power flow.

7. Conclusion

In this paper, an ANFIS method has been developed to identify the real power transfer
between generators and load. The developed ANFIS adopts real power allocation outputs
determined by MNE technique as an estimator to train the ANFIS. The robustness of the
proposed method has been demonstrated on the 25-bus equivalent system of south Malaysia.
From the results, it can be concluded that the ANFIS output provides the results in a faster
and convenient manner with good accuracy. Better computation time is crucial to improve
online application. Hence, the proposed method could be adapted to true application of real
power allocation and help to resolve some of the difficult real power pricing and costing
issues to ensure fairness and transparency in the deregulated environment of power system
operation.
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