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60965 Poznań, Poland
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A linear Volterra difference equation of the form x(n + 1) = a(n) + b(n)x(n) +
∑n

i=0 K(n, i)x(i),
where x : �0 → �, a : �0 → �, K : �0 × �0 → � and b : �0 → � \ {0} is ω-periodic, is
considered. Sufficient conditions for the existence of weighted asymptotically periodic solutions of
this equation are obtained. Unlike previous investigations, no restriction on

∏ω−1
j=0 b(j) is assumed.

The results generalize some of the recent results.

1. Introduction

In the paper, we study a linear Volterra difference equation

x(n + 1) = a(n) + b(n)x(n) +
n∑

i=0

K(n, i)x(i), (1.1)

where n ∈ �0 := {0, 1, 2, . . .}, a : �0 → �, K : �0 ×�0 → �, and b : �0 → �\{0} isω-periodic,
ω ∈ � := {1, 2, . . .}. We will also adopt the customary notations

k∑

i=k+s

O(i) = 0,
k∏

i=k+s

O(i) = 1, (1.2)
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where k is an integer, s is a positive integer, and “O′′ denotes the function considered
independently of whether it is defined for the arguments indicated or not.

In [1], the authors considered (1.1) under the assumption

ω−1∏

j=0

b
(
j
)
= 1, (1.3)

and gave sufficient conditions for the existence of asymptoticallyω-periodic solutions of (1.1)
where the notion for an asymptotically ω-periodic function has been given by the following
definition.

Definition 1.1. Let ω be a positive integer. The sequence y : �0 → � is called ω-periodic if
y(n + ω) = y(n) for all n ∈ �0 . The sequence y is called asymptotically ω-periodic if there
exist two sequences u, v : �0 → � such that u is ω-periodic, limn→∞v(n) = 0, and

y(n) = u(n) + v(n) (1.4)

for all n ∈ �0 .

In this paper, in general, we do not assume that (1.3) holds. Then, we are able to derive
sufficient conditions for the existence of a weighted asymptotically ω-periodic solution of
(1.1). We give a definition of a weighted asymptotically ω-periodic function.

Definition 1.2. Let ω be a positive integer. The sequence y : �0 → � is called weighted
asymptoticallyω-periodic if there exist two sequences u, v : �0 → � such that u isω-periodic
and limn→∞v(n) = 0, and, moreover, if there exists a sequence w : �0 → � \ {0} such that

y(n)
w(n)

= u(n) + v(n), (1.5)

for all n ∈ �0 .

Apart from this, when we assume

ω−1∏

k=0

b(k) = −1, (1.6)

then, as a consequence of our main result (Theorem 2.2), the existence of an asymptotically
2ω-periodic solution of (1.1) is obtained.

For the reader’s convenience, we note that the background for discrete Volterra
equations can be found, for example, in the well-known monograph by Agarwal [2], as well
as by Elaydi [3] or Kocić and Ladas [4]. Volterra difference equations were studied by many
others, for example, byAppleby et al. [5], by Elaydi andMurakami [6], by Győri andHorváth
[7], by Győri and Reynolds [8], and by Song and Baker [9]. For some results on periodic
solutions of difference equations, see, for example, [2–4, 10–13] and the related references
therein.
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2. Weighted Asymptotically Periodic Solutions

In this section, sufficient conditions for the existence of weighted asymptotically ω-periodic
solutions of (1.1) will be derived. The following version of Schauder’s fixed point theorem
given in [14] will serve as a tool used in the proof.

Lemma 2.1. Let Ω be a Banach space and S its nonempty, closed, and convex subset and let T be a
continuous mapping such that T(S) is contained in S and the closure T(S) is compact. Then, T has a
fixed point in S.

We set

β(n) :=
n−1∏

j=0

b
(
j
)
, n ∈ �0 , (2.1)

B := β(ω). (2.2)

Moreover, we define

n∗ := n − 1 −ω

⌊
n − 1
ω

⌋

, (2.3)

where �·� is the floor function (the greatest-integer function) and n∗ is the “remainder” of
dividing n − 1 by ω. Obviously, {β(n∗)}, n ∈ � is an ω-periodic sequence.

Now, we derive sufficient conditions for the existence of a weighted asymptotically
ω-periodic solution of (1.1).

Theorem 2.2 (Main result). Let ω be a positive integer, b : �0 → � \ {0} be ω-periodic, a : �0 →
�, andK : �0 × �0 → �. Assume that

∞∑

i=0

∣
∣
∣
∣

a(i)
β(i + 1)

∣
∣
∣
∣ < ∞,

∞∑

j=0

j∑

i=0

∣
∣
∣
∣
∣

K
(
j, i
)
β(i)

β
(
j + 1

)

∣
∣
∣
∣
∣
< 1,

(2.4)

and that at least one of the real numbers in the left-hand sides of inequalities (2.4) is positive.
Then, for any nonzero constant c, there exists a weighted asymptotically ω-periodic solution

x : �0 → � of (1.1) with u, v : �0 → � andw : �0 → � \ {0} in representation (1.5) such that

w(n) = B�(n−1)/ω�, u(n) := cβ(n∗ + 1), lim
n→∞

v(n) = 0, (2.5)

that is,

x(n)
B�(n−1)/ω� = cβ(n∗ + 1) + v(n), n ∈ �0 . (2.6)
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Proof. We will use a notation

M :=
∞∑

j=0

j∑

i=0

∣
∣
∣
∣
∣

K
(
j, i
)
β(i)

β
(
j + 1

)

∣
∣
∣
∣
∣
, (2.7)

whenever this is useful.

Case 1. First assume c > 0. We will define an auxiliary sequence of positive numbers {α(n)},
n ∈ �0 . We set

α(0) :=

∑∞
i=0

∣
∣a(i)/

(
β(i + 1)

)∣
∣ + c

∑∞
j=0

∑j

i=0

∣
∣
(
K
(
j, i
)
β(i)

)
/
(
β
(
j + 1

))∣
∣

1 −∑∞
j=0

∑j

i=0

∣
∣
(
K
(
j, i
)
β(i)

)
/
(
β
(
j + 1

))∣
∣

, (2.8)

where the expression on the right-hand side is well defined due to (2.4). Moreover, we define

α(n) :=
∞∑

i=n

∣
∣
∣
∣

a(i)
β(i + 1)

∣
∣
∣
∣ + (c + α(0))

∞∑

j=n

j∑

i=0

∣
∣
∣
∣
∣

K
(
j, i
)
β(i)

β
(
j + 1

)

∣
∣
∣
∣
∣
, (2.9)

for n ≥ 1. It is easy to see that

lim
n→∞

α(n) = 0. (2.10)

We show, moreover, that

α(n) ≤ α(0), (2.11)

for any n ∈ �. Let us first remark that

α(0) =
∞∑

i=0

∣
∣
∣
∣

a(i)
β(i + 1)

∣
∣
∣
∣ + (c + α(0))

∞∑

j=0

j∑

i=0

∣
∣
∣
∣
∣

K
(
j, i
)
β(i)

β
(
j + 1

)

∣
∣
∣
∣
∣
. (2.12)

Then, due to the convergence of both series (see (2.4)), the inequality

α(0) =
∞∑

i=0

∣
∣
∣
∣

a(i)
β(i + 1)

∣
∣
∣
∣ + (c + α(0))

∞∑

j=0

j∑

i=0

∣
∣
∣
∣
∣

K
(
j, i
)
β(i)

β
(
j + 1

)

∣
∣
∣
∣
∣

≥
∞∑

i=n

∣
∣
∣
∣

a(i)
β(i + 1)

∣
∣
∣
∣ + (c + α(0))

∞∑

j=n

j∑

i=0

∣
∣
∣
∣
∣

K
(
j, i
)
β(i)

β
(
j + 1

)

∣
∣
∣
∣
∣
= α(n)

(2.13)

obviously holds for every n ∈ � and (2.11) is proved.
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Let B be the Banach space of all real bounded sequences z : �0 → � equipped with
the usual supremum norm ‖z‖ = supn∈�0

|z(n)| for z ∈ B. We define a subset S ⊂ B as

S := {z ∈ B : c − α(0) ≤ z(n) ≤ c + α(0), n ∈ �0}. (2.14)

It is not difficult to prove that S is a nonempty, bounded, convex, and closed subset of B.
Let us define a mapping T : S → B as follows:

(Tz)(n) = c −
∞∑

i=n

a(i)
β(i + 1)

−
∞∑

j=n

j∑

i=0

K
(
j, i
)
β(i)

β
(
j + 1

) z(i), (2.15)

for any n ∈ �0 .
We will prove that the mapping T has a fixed point in S.
We first show that T(S) ⊂ S. Indeed, if z ∈ S, then |z(n) − c| ≤ α(0) for n ∈ �0 and, by

(2.11) and (2.15), we have

|(Tz)(n) − c| ≤
∞∑

i=n

∣
∣
∣
∣

a(i)
β(i + 1)

∣
∣
∣
∣ + (c + α(0))

∞∑

j=n

j∑

i=0

∣
∣
∣
∣
∣

K
(
j, i
)
β(i)

β
(
j + 1

)

∣
∣
∣
∣
∣
= α(n) ≤ α(0). (2.16)

Next, we prove that T is continuous. Let z(p) be a sequence in S such that z(p) → z as p → ∞.
Because S is closed, z ∈ S. Now, utilizing (2.15), we get

∣
∣
∣
(
Tz(p)

)
(n) − (Tz)(n)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∞∑

j=n

j∑

i=0

K
(
j, i
)
β(i)

β
(
j + 1

)
(
z(p)(i) − z(i)

)
∣
∣
∣
∣
∣
∣

≤ M sup
i≥0

∣
∣
∣z(p)(i) − z(i)

∣
∣
∣ = M

∥
∥
∥z(p) − z

∥
∥
∥, n ∈ �0 .

(2.17)

Therefore,

∥
∥
∥Tz(p) − Tz

∥
∥
∥ ≤ M

∥
∥
∥z(p) − z

∥
∥
∥,

lim
p→∞

∥
∥
∥Tz(p) − Tz

∥
∥
∥ = 0.

(2.18)

This means that T is continuous.
Now, we show that T(S) is compact. As is generally known, it is enough to verify that

every ε-open covering of T(S) contains a finite ε-subcover of T(S), that is, finitely many of
these open sets already cover T(S) ([15], page 756 (12)). Thus, to prove that T(S) is compact,
we take an arbitrary ε > 0 and assume that an open ε-cover Cε of T(S) is given. Then, from
(2.10), we conclude that there exists an nε ∈ � such that α(n) < ε/4 for n ≥ nε.
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Suppose that x1
T ∈ T(S) is one of the elements generating the ε-cover Cε of T(S). Then

(as follows from (2.16)), for an arbitrary xT ∈ T(S),

∣
∣
∣x1

T (n) − xT (n)
∣
∣
∣ < ε (2.19)

if n ≥ nε. In other words, the ε-neighborhood of x1
T − c∗:

∥
∥
∥x1

T − c∗
∥
∥
∥< ε, (2.20)

where c∗ = {c, c, . . .} ∈ S covers the set T(S) on an infinite interval n ≥ nε. It remains to
cover the rest of T(S) on a finite interval for n ∈ {0, 1 . . . , nε − 1} by a finite number of
ε-neighborhoods of elements generating ε-cover Cε. Supposing that x1

T itself is not able to
generate such cover, we fix n ∈ {0, 1, . . . , nε − 1} and split the interval

[c − α(n), c + α(n)] (2.21)

into a finite number h(ε, n) of closed subintervals

I1(n), I2(n), . . . , Ih(ε,n)(n) (2.22)

each with a length not greater then ε/2 such that

h(ε,n)⋃

i=1

Ii(n) = [c − α(n), c + α(n)],

int Ii(n) ∩ int Ij(n) = ∅, i, j = 1, 2, . . . , h(ε, n), i /= j.

(2.23)

Finally, the set

nε−1⋃

n=0
[c − α(n), c + α(n)] (2.24)

equals

nε−1⋃

n=0

h(ε,n)⋃

i=1

Ii(n) (2.25)

and can be divided into a finite number

Mε :=
nε−1∑

n=0

h(ε, n) (2.26)
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of different subintervals (2.22). This means that, at most,Mε of elements generating the cover
Cε are sufficient to generate a finite ε-subcover of T(S) for n ∈ {0, 1, . . . , nε − 1}. We remark
that each of such elements simultaneously plays the same role as x1

T (n) for n ≥ nε. Since ε > 0
can be chosen as arbitrarily small, T(S) is compact.

By Schauder’s fixed point theorem, there exists a z ∈ S such that z(n) = (Tz)(n) for
n ∈ �0 . Thus,

z(n) = c −
∞∑

i=n

a(i)
β(i + 1)

−
∞∑

j=n

j∑

i=0

β(i)
β
(
j + 1

)K
(
j, i
)
z(i), (2.27)

for any n ∈ �0 .
Due to (2.10) and (2.16), for fixed point z ∈ S of T , we have

lim
n→∞

|z(n) − c| = lim
n→∞

|(Tz)(n) − c| ≤ lim
n→∞

α(n) = 0, (2.28)

or, equivalently,

lim
n→∞

z(n) = c. (2.29)

Finally, we will show that there exists a connection between the fixed point z ∈ S and the
existence of a solution of (1.1) which divided by B�(n−1)/ω� provides an asymptotically ω-
periodic sequence. Considering (2.27) for z(n + 1) and z(n), we get

Δz(n) =
a(n)

β(n + 1)
+

n∑

i=0

β(i)
β(n + 1)

K(n, i)z(i), (2.30)

where n ∈ �0 . Hence, we have

z(n + 1) − z(n) =
a(n)

β(n + 1)
+

1
β(n + 1)

n∑

i=0

β(i)K(n, i)z(i), n ∈ �0 . (2.31)

Putting

z(n) =
x(n)
β(n)

, n ∈ �0 (2.32)

in (2.31), we get (1.1) since

x(n + 1)
β(n + 1)

− x(n)
β(n)

=
a(n)

β(n + 1)
+

1
β(n + 1)

n∑

i=0

K(n, i)x(i), n ∈ �0 (2.33)
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yields

x(n + 1) = a(n) + b(n)x(n) +
n∑

i=0

K(n, i)x(i), n ∈ �0 . (2.34)

Consequently, x defined by (2.32) is a solution of (1.1). From (2.29) and (2.32), we obtain

x(n)
β(n)

= z(n) = c + o(1), (2.35)

for n → ∞ (where o(1) is the Landau order symbol). Hence,

x(n) = β(n)(c + o(1)), n −→ ∞. (2.36)

It is easy to show that the function β defined by (2.1) can be expressed in the form

β(n) =
n−1∏

j=0

b
(
j
)
= B�(n−1)/ω� · β(n∗ + 1), (2.37)

for n ∈ �0 . Then, as follows from (2.36),

x(n) = B�(n−1)/ω� · β(n∗ + 1)(c + o(1)), n −→ ∞, (2.38)

or

x(n)
B�(n−1)/ω� = cβ(n∗ + 1) + β(n∗ + 1)o(1), n −→ ∞. (2.39)

The proof is completed since the sequence {β(n∗ + 1)} is ω-periodic, hence bounded
and, due to the properties of Landau order symbols, we have

β(n∗ + 1)o(1) = o(1), n −→ ∞, (2.40)

and it is easy to see that the choice

u(n) := cβ(n∗ + 1), w(n) := B�(n−1)/ω�, n ∈ �0 , (2.41)

and an appropriate function v : �0 → � such that

lim
n→∞

v(n) = 0 (2.42)

finishes this part of the proof. Although for n = 0, there is no correspondence between
formula (2.36) and the definitions of functions u and w, we assume that function v makes
up for this.



Abstract and Applied Analysis 9

Case 2. If c < 0, we can proceed as follows. It is easy to see that arbitrary solution y = y(n) of
the equation

y(n + 1) = −a(n) + b(n)y(n) +
n∑

i=0

K(n, i)y(i) (2.43)

defines a solution x = x(n) of (1.1) since a substitution y(n) = −x(n) in (2.43) turns (2.43) into
(1.1). If the assumptions of Theorem 2.2 hold for (1.1), then, obviously, Theorem 2.2 holds for
(2.43) as well. So, for an arbitrary c > 0, (2.43) has a solution that can be represented by
formula (2.6), that is,

y(n)
B�(n−1)/ω� = cβ(n∗ + 1) + v(n), n ∈ �0 . (2.44)

Or, in other words, (1.1) has a solution that can be represented by formula (2.44) as

x(n)
B�(n−1)/ω� = c0β(n∗ + 1) + v∗(n), n ∈ �0 , (2.45)

with c0 = −c and v∗(n) = −v(n). In (2.45), c0 < 0 and the function v∗(n) has the same
properties as the function v(n). Therefore, formula (2.6) is valid for an arbitrary negative c
as well.

Now, we give an example which illustrates the case where there exists a solution
to equation of the type (1.1) which is weighted asymptotically periodic, but is not
asymptotically periodic.

Example 2.3. We consider (1.1)with

a(n) = (−1)n+1
(

1 − 1
3n+1

)

,

b(n) = 3(−1)n,

K(n, i) = (−1)n+(i(i−1))/2 1
32i

,

(2.46)

that is, the equation

x(n + 1) = (−1)n+1
(

1 − 1
3n+1

)

+ 3(−1)nx(n) +
n∑

i=0

(−1)n+(i(i−1))/2 1
32i

x(i). (2.47)
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The sequence b(n) is 2-periodic and

β(n) =
n−1∏

j=0

b
(
j
)
= (−1)n(n−1)/23n ,

B = β(ω) = β(2) = −9,

β(n∗ + 1) = −3 + 6(−1)n+1,

a(n)
β(n + 1)

= (−1)(−n2+n+2)/2
(

1
3n+1

− 1
32(n+1)

)

,

∞∑

i=0

∣
∣
∣
∣

a(i)
β(i + 1)

∣
∣
∣
∣ < ∞,

∞∑

j=0

j∑

i=0

∣
∣
∣
∣
∣

K
(
j, i
)
β(i)

β
(
j + 1

)

∣
∣
∣
∣
∣
<

∞∑

j=0

∞∑

i=0

∣
∣
∣
∣
∣

K
(
j, i
)
β(i)

β
(
j + 1

)

∣
∣
∣
∣
∣
=

∞∑

j=0

∞∑

i=0

1
3i+j+1

=
1
3

⎛

⎝
∞∑

j=0

1
3j

⎞

⎠

( ∞∑

i=0

1
3i

)

=
1
3
· 1
1 − 1/3

· 1
1 − 1/3

=
1
3
· 3
2
· 3
2
=
3
4
< 1.

(2.48)

By virtue of Theorem 2.2, for any nonzero constant c, there exists a solution x : �0 → � of
(1.1) which is weighed asymptotically 2-periodic. Let, for example, c = 2/3. Then,

w(n) = (−9)�(n−1)/2�,

u(n) = cβ(n∗ + 1) =
2
3

(
−3 + 6(−1)n+1

)
= −2 + 4(−1)n+1,

(2.49)

and the sequence x(n) given by

x(n)

(−9)�(n−1)/2�
= −2 + 4(−1)n+1 + v(n), n ∈ �0 , (2.50)

or, equivalently,

x(n) = (−9)�(n−1)/2�
(
−2 + 4(−1)n+1

)
+ v(n), n ∈ �0 (2.51)

is such a solution. We remark that such solution is not asymptotically 2-periodic in the
meaning of Definition 1.1.
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It is easy to verify that the sequence x∗(n) obtained from (2.51) if v(n) = 0, n ∈ �0 , that
is,

x∗(n) = (−9)�(n−1)/2�
(
−2 + 4(−1)n+1

)
=
2
3
· (−1)n(n−1)/2 · 3n, n ∈ �0 (2.52)

is a true solution of (2.47).

3. Concluding Remarks and Open Problems

It is easy to prove the following corollary.

Corollary 3.1. Let Theorem 2.2 be valid. If, moreover, |B| < 1, then every solution x = x(n) of (1.1)
described by formula (2.6) satisfies

lim
n→∞

x(n) = 0. (3.1)

If |B| > 1, then, for every solution x = x(n) of (1.1) described by formula (2.6), one has

lim inf
n→∞

x(n) = −∞ (3.2)

or/and

lim sup
n→∞

x(n) = ∞. (3.3)

Finally, if B > 1, then, for every solution x = x(n) of (1.1) described by formula (2.6), one has

lim
n→∞

x(n) = ∞, (3.4)

and if B < −1, then, for every solution x = x(n) of (1.1) described by formula (2.6), one has

lim
n→∞

x(n) = −∞. (3.5)

Now, let us discuss the case when (1.6) holds, that is, when

B =
ω−1∏

j=0

b
(
j
)
= −1. (3.6)

Corollary 3.2. Let Theorem 2.2 be valid. Assume that B = −1. Then, for any nonzero constant c,
there exists an asymptotically 2ω-periodic solution x = x(n), n ∈ �0 of (1.1) such that

x(n) = (−1)�(n−1)/ω�u(n) + z(n), n ∈ �0 , (3.7)
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with

u(n) := cβ(n∗ + 1), lim
n→∞

z(n) = 0. (3.8)

Proof. Putting B = −1 in Theorem 2.2, we get

x(n) = (−1)�(n−1)/ω�u(n) + (−1)�(n−1)/ω�v(n), (3.9)

with

u(n) := cβ(n∗ + 1), lim
n→∞

v(n) = 0. (3.10)

Due to the definition of n∗, we see that the sequence

{
β(n∗ + 1)

}
=
{
β(ω), β(1), β(2), . . . , β(ω), β(1), β(2), . . . , β(ω), . . .

}
, (3.11)

is an ω-periodic sequence. Since

{⌊
n − 1
ω

⌋}

=

⎧
⎨

⎩
−1, 0, . . . , 0

︸ ︷︷ ︸
ω

, 1, . . . , 1
︸ ︷︷ ︸

ω

, 2, . . .

⎫
⎬

⎭
, (3.12)

for n ∈ �0 , we have

{
(−1)�(n−1)/ω�

}
=

⎧
⎨

⎩
−1, 1, . . . , 1

︸ ︷︷ ︸
ω

,−1, . . . ,−1
︸ ︷︷ ︸

ω

, 1, . . .

⎫
⎬

⎭
. (3.13)

Therefore, the sequence

{
(−1)�(n−1)/ω�u(n)

}
= c

{−β(ω), β(1), β(2), . . . , β(ω),−β(1),−β(2), . . . ,−β(ω), . . .
}

(3.14)

is a 2ω-periodic sequence. Set

z(n) = (−1)�(n−1)/ω�v(n). (3.15)

Then,

lim
n→∞

z(n) = 0. (3.16)

The proof is completed.
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Remark 3.3. From the proof, we see that Theorem 2.2 remains valid even in the case of c = 0.
Then, there exists an “asymptotically weighted ω-periodic solution” x = x(n) of (1.1) as
well. The formula (2.6) reduces to

x(n) = B�(n−1)/ω�v(n) = o(1), n ∈ �0 , (3.17)

since u(n) = 0. In the light of Definition 1.2, we can treat this case as follows. We set (as a
singular case) u ≡ 0 with an arbitrary (possibly other than “ω′′) period and with v = o(1),
n → ∞.

Remark 3.4. The assumptions of Theorem 2.2 [1] are substantially different from those of the
present Theorem 2.2. However, it is easy to see that Theorem 2.2 [1] is a particular case of the
present Theorem 2.2 if (1.3) holds, that is, if B = 1. Therefore, our results can be viewed as a
generalization of some results in [1].

In connection with the above investigations, some open problems arise.

Open Problem 1. The results of [1] are extended to systems of linear Volterra discrete equations
in [16, 17]. It is an open question if the results presented can be extended to systems of linear
Volterra discrete equations.

Open Problem 2. Unlike the result of Theorem 2.2 [1] where a parameter c can be arbitrary,
the assumptions of the results in [16, 17] are more restrictive since the related parameters
should satisfy certain inequalities as well. Different results on the existence of asymptotically
periodic solutions were recently proved in [8]. Using an example, it is shown that the results
in [8] can be less restrictive. Therefore, an additional open problem arises if the results in
[16, 17] can be improved in such a way that the related parameters can be arbitrary and if the
expected extension of the results suggested in Open Problem 1 can be given in such a way
that the related parameters can be arbitrary as well.
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[8] I. Győri and D. W. Reynolds, “On asymptotically periodic solutions of linear discrete Volterra
equations,” Fasciculi Mathematici, no. 44, pp. 53–67, 2010.

[9] Y. Song and C. T. H. Baker, “Admissibility for discrete Volterra equations,” Journal of Difference
Equations and Applications, vol. 12, no. 5, pp. 433–457, 2006.
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[13] S. Stević and K. S. Berenhaut, “The behavior of positive solutions of a nonlinear second-order

difference equation xn = f(xn−2)/g(xn−1),” Abstract and Applied Analysis, vol. 2008, Article ID 653243,
8 pages, 2008.

[14] J. Musielak,Wstep Do Analizy Funkcjonalnej, PWN, Warszawa, Poland, 1976.
[15] E. Zeidler, Nonlinear Functional Analysis and Its Applications. I, Springer, New York, NY, USA, 1986.
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