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For a system of linear functional differential equations, we consider a three-point problem with
nonseparated boundary conditions determined by singular matrices. We show that, to investigate
such a problem, it is often useful to reduce it to a parametric family of two-point boundary
value problems for a suitably perturbed differential system. The auxiliary parametrised two-point
problems are then studied by a method based upon a special kind of successive approximations
constructed explicitly, whereas the values of the parameters that correspond to solutions of the
original problem are found from certain numerical determining equations. We prove the uniform
convergence of the approximations and establish some properties of the limit and determining
functions.

1. Introduction

The aim of this paper is to show how a suitable parametrisation can help when dealing
with nonseparated three-point boundary conditions determined by singular matrices. We
construct a suitable numerical-analytic scheme allowing one to approach a three-point
boundary value problem through a certain iteration procedure. To explain the term, we
recall that, formally, the methods used in the theory of boundary value problems can be
characterised as analytic, functional-analytic, numerical, or numerical-analytic ones.

While the analytic methods are generally used for the investigation of qualitative
properties of solutions such as the existence, multiplicity, branching, stability, or dichotomy
and generally use techniques of calculus (see, e.g., [1–11] and the references in [12]), the
functional-analytic ones are based mainly on results of functional analysis and topological
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degree theory and essentially use various techniques related to operator equations in abstract
spaces [13–26]. The numerical methods, under the assumption on the existence of solutions,
provide practical numerical algorithms for their approximation [27, 28]. The numerical
construction of approximate solutions is usually based on an idea of the shootingmethod and
may face certain difficulties because, as a rule, this technique requires some global regularity
conditions, which, however, are quite often satisfied only locally.

Methods of the so-called numerical-analytic type, in a sense, combine, advantages of
thementioned approaches and are usually based upon certain iteration processes constructed
explicitly. Such an approach belongs to the few of them that offer constructive possibilities
both for the investigation of the existence of a solution and its approximate construction. In
the theory of nonlinear oscillations, numerical-analytic methods of this kind had apparently
been first developed in [20, 29–31] for the investigation of periodic boundary value problems.
Appropriate versions were later developed for handling more general types of nonlinear
boundary value problems for ordinary and functional-differential equations. We refer, for
example, to the books [12, 32–34], the handbook [35], the papers [36–50], and the survey
[51–57] for related references.

For a boundary value problem, the numerical-analytic approach usually replaces the
problem by the Cauchy problem for a suitably perturbed system containing some artificially
introduced vector parameter z, which most often has the meaning of an initial value of
the solution and the numerical value of which is to be determined later. The solution of
Cauchy problem for the perturbed system is sought for in an analytic form by successive
approximations. The functional “perturbation term,” by which the modified equation differs
from the original one, depends explicitly on the parameter z and generates a system of
algebraic or transcendental “determining equations” from which the numerical values of
z should be found. The solvability of the determining system, in turn, may by checked by
studying some of its approximations that are constructed explicitly.

For example, in the case of the two-point boundary value problem

x′(t) = f(t, x(t)), t ∈ [a, b], (1.1)

Ax(a) +Dx(b) = d, (1.2)

where x : [a, b] → R
n,−∞ < a < b < +∞, d ∈ R

n, detD/= 0, the corresponding Cauchy
problem for the modified parametrised system of integrodifferential equations has the form
[12]

x′(t) = f(t, x(t)) +
1

b − a

(
D−1d −

(
D−1A + 1n

)
z
)
− 1
b − a

∫b

a

f(s, x(s))ds, t ∈ [a, b],

x(a) = z,

(1.3)

where 1n is the unit matrix of dimension n and the parameter z ∈ R
n has the meaning of

initial value of the solution at the point a. The expression

1
b − a

(
D−1d −

(
D−1A + 1n

)
z
)
− 1
b − a

∫b

a

f(s, x(s))ds (1.4)
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in (1.3) plays the role of a ”perturbation term” and its choice is, of course, not unique. The
solution of problem (1.3) is sought for in an analytic form by the method of successive
approximations similar to the Picard iterations. According to the formulas

xm+1(t, z) := z +
∫ t

a

(
f(s, xm(s, z))ds − 1

b − a

∫b

a

f(τ, xm(τ, z))dτ

)
ds

+
t − a

b − a

(
D−1d −

(
D−1A + 1n

)
z
)
, m = 0, 1, 2, . . . ,

(1.5)

where x0(t, z) := z for all t ∈ [a, b] and z ∈ R
n, one constructs the iterations xm(·, z), m =

1, 2, . . ., which depend upon the parameter z and, for arbitrary its values, satisfy the given
boundary conditions (1.2): Axm(a, z) + Dxm(b, z) = d, z ∈ R

n, m = 1, 2, . . .. Under suitable
assumptions, one proves that sequence (1.5) converges to a limit function x∞(·, z) for any
value of z.

The procedure of passing from the original differential system (1.1) to its ”perturbed”
counterpart and the investigation of the latter by using successive approximations (1.5) leads
one to the system of determining equations

D−1d −
(
D−1A + 1n

)
z −
∫b

a

f(s, x∞(s, z))ds = 0, (1.6)

which gives those numerical values z = z∗ of the parameter that correspond to solutions of the
given boundary value problem (1.1), (1.10). The form of system (1.6) is, of course, determined
by the choice of the perturbation term (1.4); in some other related works, auxiliary equations
are constructed in a different way (see, e.g., [42]). It is clear that the complexity of the given
equations and boundary conditions has an essential influence both on the possibility of an
efficient construction of approximate solutions and the subsequent solvability analysis.

The aim of this paper is to extend the techniques used in [46] for the system of n linear
functional differential equations of the form

x′(t) = P0(t)x(t) + P1(t)x
(
β(t)
)
+ f(t), t ∈ [0, T], (1.7)

subjected to the inhomogeneous three-point Cauchy-Nicoletti boundary conditions

x1(0) = x10, . . . , xp(0) = xp0,

xp+1(ξ) = dp+1, . . . , xp+q(ξ) = dp+q,

xp+q+1(T) = dp+q+1, . . . , xn(T) = dn,

(1.8)

with ξ ∈ (0, T) is given and x = col(x1, . . . , xn), to the case where the system of linear
functional differential equations under consideration has the general form

x′(t) = (lx)(t) + f(t), t ∈ [a, b], (1.9)
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and the three-point boundary conditions are non-separated and have the form

Ax(a) + Bx(ξ) + Cx(b) = d, (1.10)

whereA, B, and C are singular matrices, d = col(d1, . . . , dn). Here, l = (lk)
n
k=1 : C([a, b],R

n) →
L1([a, b],Rn) is a bounded linear operator and f ∈ L1([a, b],Rn) is a given function.

It should be noted that, due to the singularity of the matrices that determine
the boundary conditions (1.10), certain technical difficulties arise which complicate the
construction of successive approximations.

The following notation is used in the sequel:

C([a, b],Rn) is the Banach space of the continuous functions [a, b] → R
n with the

standard uniform norm;

L1([a, b],Rn) is the usual Banach space of the vector functions [a, b] → R
n with

Lebesgue integrable components;

L(Rn) is the algebra of all the square matrices of dimension n with real elements;

r(Q) is the maximal, in modulus, eigenvalue of a matrix Q ∈ L(Rn);

1k is the unit matrix of dimension k;

0i,j is the zero matrix of dimension i × j;

0i = 0i,i.

2. Problem Setting and Freezing Technique

We consider the system of n linear functional differential equations (1.9) subjected to
the nonseparated inhomogeneous three-point boundary conditions of form (1.10). In the
boundary value problem (1.1), (1.10), we suppose that −∞ < a < b < ∞, l = (lk)

n
k=1 :

C([a, b],Rn) → L1([a, b],Rn) is a bounded linear operator, f : [a, b] → R
n is an integrable

function, d ∈ R
n is a given vector, A, B, and C are singular square matrices of dimension n,

and C has the form

C =

(
V W

0n−q,q 0n−q

)
, (2.1)

where V is nonsingular square matrix of dimension q < n and W is an arbitrary matrix of
dimension q × (n − q). The singularity of the matrices determining the boundary conditions
(1.10) causes certain technical difficulties. To avoid dealing with singular matrices in the
boundary conditions and simplify the construction of a solution in an analytic form, we use
a two-stage parametrisation technique. Namely, we first replace the three-point boundary
conditions by a suitable parametrised family of two-point inhomogeneous conditions, after
which one more parametrisation is applied in order to construct an auxiliary perturbed
differential system. The presence of unknown parameters leads one to a certain system of
determining equations, from which one finds those numerical values of the parameters that
correspond to the solutions of the given three-point boundary value problem.
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We construct the auxiliary family of two-point problems by ”freezing” the values of
certain components of x at the points ξ and b as follows:

col(x1(ξ), . . . , xn(ξ)) = λ,

col
(
xq+1(b), . . . , xn(b)

)
= η,

(2.2)

where λ = col(λ1, . . . , λn) ∈ R
n and η = col(η1, . . . , ηn−q) ∈ R

n−q are vector parameters. This
leads us to the parametrised two-point boundary condition

Ax(a) +Dx(b) = d − Bλ −Nqη, (2.3)

where

Nq :=

(
0q,n−q

1n−q

)
(2.4)

and the matrix D is given by the formula

D :=

(
V W

0n−q,q 1n−q

)
(2.5)

with a certain rectangular matrixW of dimension q × (n − q). It is important to point out that
the matrix D appearing in the two-point condition (2.3) is non-singular.

It is easy to see that the solutions of the original three-point boundary value problem
(1.1), (1.10) coincide with those solutions of the two-point boundary value problem (1.1),
(2.3) for which the additional condition (2.2) is satisfied.

Remark 2.1. The matrices A and B in the boundary conditions (1.10) are arbitrary and, in
particular, may be singular. If the number r of the linearly independent boundary conditions
in (1.10) is less than n, that is, the rank of the (n × 3n)-dimensional matrix [A,B,C] is equal
to r, then the boundary value problem (1.1), (1.10) may have an (n − r)-parametric family of
solutions.

We assume that throughout the paper the operator l determining the system of
equations (1.9) is represented in the form

l = l0 − l1, (2.6)

where lj = (lj
k
)
n

k=1 : C([a, b],Rn) → L1([a, b],Rn), j = 0, 1, are bounded linear operators

posi-tive in the sense that (lj
k
u)(t) ≥ 0 for a.e. t ∈ [a, b] and any k = 1, 2, . . . , n, j = 0, 1, and

u ∈ C([a, b],Rn) such that mint∈[a,b]uk(t) ≥ 0 for all k = 1, 2, . . . , n. We also put l̂k := l0
k
+ l1

k
,

k = 1, 2, . . . , n, and

l̂ := l0 + l1. (2.7)
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3. Auxiliary Estimates

In the sequel, we will need several auxiliary statements.

Lemma 3.1. For an arbitrary essentially bounded function u : [a, b] → R, the estimates

∣∣∣∣∣
∫ t

a

(
u(τ) − 1

b − a

∫b

a

u(s)ds

)
dτ

∣∣∣∣∣ ≤ α(t)

(
ess sup
s∈[a,b]

u(s) − ess inf
s∈[a,b]

u(s)

)
(3.1)

≤ b − a

4

(
ess sup
s∈[a,b]

u(s) − ess inf
s∈[a,b]

u(s)

)
(3.2)

are true for all t ∈ [a, b], where

α(t) := (t − a)
(
1 − t − a

b − a

)
, t ∈ [a, b]. (3.3)

Proof. Inequality (3.1) is established similarly to [58, Lemma 3] (see also [12, Lemma 2.3]),
whereas (3.2) follows directly from (3.1) if the relation

max
t∈[a,b]

α(t)=
1
4
(b − a) (3.4)

is taken into account.

Let us introduce some notation. For any k = 1, 2, . . . , n, we define the n-dimensional
row-vector ek by putting

ek := (0, 0, . . . , 0,︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0).
(3.5)

Using operators (2.7) and the unit vectors (3.5), we define the matrix-valued function Kl :
[a, b] → L(Rn) by setting

Kl :=
[
l̂e∗1, l̂e

∗
2, . . . , l̂e

∗
n

]
. (3.6)

Note that, in (3.6), l̂e∗i means the value of the operator l̂ on the constant vector function
is equal identically to e∗i , where e∗i is the vector transpose to ei. It is easy to see that the
components of Kl are Lebesgue integrable functions.

Lemma 3.2. The componentwise estimate

|(lx)(t)| ≤ Kl(t)max
s∈[a,b]

|x(s)|, t ∈ [a, b], (3.7)

is true for any x ∈ C([a, b],Rn), where Kl : [a, b] → L(Rn) is the matrix-valued function given by
formula (3.6).
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Proof. Let x = (xk)
n
k=1 be an arbitrary function from C([a, b],Rn). Then, recalling the notation

for the components of l, we see that

lx =
n∑
i=1

e∗i lix. (3.8)

On the other hand, due to (3.5), we have x =
∑n

k=1 e
∗
kxk and, therefore, by virtue of (3.8) and

(2.6),

lx =
n∑
i=1

e∗i lix =
n∑
i=1

e∗i li

(
n∑

k=1

e∗kxk

)
=

n∑
i=1

e∗i

(
n∑

k=1

(
l0i e

∗
kxk − l1i e

∗
kxk

))
. (3.9)

On the other hand, the obvious estimate

σxk(t) ≤ max
s∈[a,b]

|xk(s)|, t ∈ [a, b], k = 1, 2, . . . , n, σ ∈ {−1, 1}, (3.10)

and the positivity of the operators lj , j = 0, 1, imply

l
j

i (σxk)(t) = σ
(
l
j

i xk

)
(t) ≤ l

j
i max
s∈[a,b]

|xk(s)| (3.11)

for a.e. t ∈ [a, b] and any k, j = 1, 2, . . . , n, σ ∈ {−1, 1}. This, in view of (2.7) and (3.9), leads us
immediately to estimate (3.7).

4. Successive Approximations

To study the solution of the auxiliary two-point parametrised boundary value problem (1.9),
(2.3) let us introduce the sequence of functions xm : [a, b] × R

3n−q → R
n, m ≥ 0, by putting

xm+1
(
t, z, λ, η

)
:= ϕz,λ,η(t) +

∫ t

a

((
lxm

(·, z, λ, η))(s) + f(s)
)
ds

− t − a

b − a

∫b

a

((
lxm

(·, z, λ, η))(s) + f(s)
)
ds, m = 0, 1, 2, . . . ,

x0
(
t, z, λ, η

)
:= ϕz,λ,η(t)

(4.1)

for all t ∈ [a, b], z ∈ R
n, λ ∈ R

n, and η ∈ R
n−q, where

ϕz,λ,η(t) := z +
t − a

b − a

(
D−1(d − Bλ +Nqη

) −
(
D−1A + 1n

)
z
)
. (4.2)

In the sequel, we consider xm as a function of t and treat the vectors z, λ, and η as parameters.
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Lemma 4.1. For any m ≥ 0, t ∈ [a, b], z ∈ R
n, λ ∈ R

n, and η ∈ R
n−q, the equalities

xm

(
a, z, λ, η

)
= z,

Axm

(
a, z, λ, η

)
+Dxm

(
b, z, λ, η

)
= d − Bλ +Nqη,

(4.3)

are true.

The proof of Lemma 4.1 is carried out by straightforward computation. We emphasize
that the matrix D appearing in the two-point condition (2.3) is non-singular. Let us also put

(My
)
(t) :=

(
1 − t − a

b − a

)∫ t

a

y(s)ds +
t − a

b − a

∫b

t

y(s)ds, t ∈ [a, b], (4.4)

for an arbitrary y ∈ L1([a, b],Rn). It is clear that M : L1([a, b],Rn) → C([a, b],Rn) is a
positive linear operator. Using the operator M, we put

Ql :=
[M(Kle

∗
1

)
,M(Kle

∗
2
)
, . . . ,M(Kle

∗
n)
]
, (4.5)

where Kl is given by formula (3.6). Finally, define a constant square matrix Ql of dimension
n by the formula

Ql := max
t∈[a,b]

Ql(t). (4.6)

We point out that, as before, the maximum in (4.6) is taken componentwise (one should
remember that, for n > 1, a point t∗ ∈ [a, b] such that Ql = Ql(t∗)may not exist).

Theorem 4.2. If the spectral radius of the matrix Ql satisfies the inequality

r(Ql) < 1, (4.7)

then, for arbitrary fixed z ∈ R
n, λ ∈ R

n, and η ∈ R
n−q:

(1) the sequence of functions (4.1) converges uniformly in t ∈ [a, b] for any fixed (z, λ, η) ∈
R

3n−q to a limit function

x∞
(
t, z, λ, η

)
= lim

m→+∞
xm

(
t, z, λ, η

)
; (4.8)

(2) the limit function x∞(·, z, λ, η) possesses the properties

x∞
(
a, z, λ, η

)
= z,

Ax∞
(
a, z, λ, η

)
+Dx∞

(
b, z, λ, η

)
= d − Bλ +Nqη;

(4.9)
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(3) function (4.8) is a unique absolutely continuous solution of the integro-functional equation

x(t) = z +
t − a

b − a

(
D−1(d − Bλ +Nqη

) −
(
D−1A + 1n

)
z
)

+
∫ t

a

(
(lx)(s) + f(s)

)
ds − t − a

b − a

∫b

a

(
(lx)(s) + f(s)

)
ds, t ∈ [a, b];

(4.10)

(4) the error estimate

max
t∈[a,b]

∣∣x∞
(
t, z, λ, η

) − xm

(
t, z, λ, η

)∣∣ ≤ b − a

4
Qm

l (1n −Ql)−1ω
(
z, λ, η

)
(4.11)

holds, where ω : R
3n−q → R

n is given by the equality

ω
(
z, λ, η

)
:= ess sup

s∈[a,b]

((
lϕz,λ,η

)
(s) + f(s)

) − ess inf
s∈[a,b]

((
lϕz,λ,η

)
(s) + f(s)

)
. (4.12)

In (3.6), (4.11) and similar relations, the signs | · |, ≤, ≥, as well as the operators
”max”, ”ess sup”, ”ess inf”, and so forth, applied to vectors or matrices are understood com-
ponentwise.

Proof. The validity of assertion 1 is an immediate consequence of the formula (4.1). To obtain
the other required properties, we will show, that under the conditions assumed, sequence
(4.1) is a Cauchy sequence in the Banach space C([a, b],Rn) equipped with the standard
uniform norm. Let us put

rm
(
t, z, λ, η

)
:= xm+1

(
t, z, λ, η

) − xm

(
t, z, λ, η

)
(4.13)

for all z ∈ R
n, λ ∈ R

n, η ∈ R
n−q, t ∈ [a, b], and m ≥ 0. Using Lemma 3.2 and taking equality

(3.4) into account, we find that (4.1) yields

∣∣x1
(
t, z, λ, η

) − x0
(
t, z, λ, η

)∣∣ =
∣∣∣∣∣
∫ t

a

[(
lϕz,λ,η

)
(s) + f(s)

]
ds − t − a

b − a

∫b

a

[(
lϕz,λ,η

)
(s) + f(s)

]
ds

∣∣∣∣∣

≤ α(t)ω
(
z, λ, η

)

≤ b − a

4
ω
(
z, λ, η

)
,

(4.14)

for arbitrary fixed z, λ, and η, where α is the function given by (3.3) and ω(·) is defined by
formula (4.12).
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According to formulae (4.1), for all t ∈ [a, b], arbitrary fixed z, λ, and η andm = 1, 2, . . .
we have

rm
(
t, z, λ, η

)
=
∫ t

a

l
(
xm

(·, z, λ, η) − xm−1
(·, z, λ, η))(s)ds

− t − a

b − a

∫b

a

l
(
xm

(·, z, λ, η) − xm−1
(·, z, λ, η))(s)ds

=
(
1 − t − a

b − a

)∫ t

a

l
(
xm

(·, z, λ, η) − xm−1
(·, z, λ, η))(s)ds

− t − a

b − a

∫b

t

l
(
xm

(·, z, λ, η) − xm−1
(·, z, λ, η))(s)ds.

(4.15)

Equalities (4.13) and (4.15) imply that for all m = 1, 2, . . ., arbitrary fixed z,λ,η and t ∈ [a, b],

∣∣rm
(
t, z, λ, η

)∣∣ ≤
(

1 − t − a

b − a

)∫ t

a

∣∣l (rm−1
(·, z, λ, η)(s))∣∣ds

+
t − a

b − a

∫b

t

∣∣l(rm−1
(·, z, λ, η))(s)∣∣ds.

(4.16)

Applying inequality (3.7) of Lemma 3.2 and recalling formulae (4.5) and (4.6), we get

∣∣rm
(
t, z, λ, η

)∣∣ ≤
(
1 − t − a

b − a

)∫ t

a

Kl(s)max
τ∈[a,b]

∣∣rm−1
(
τ, z, λ, η

)∣∣ds

+
t − a

b − a

∫b

t

Kl(s)max
τ∈[a,b]

∣∣rm−1
(
τ, z, λ, η

)∣∣ds

=

((
1 − t − a

b − a

)∫ t

a

Kl(s)ds +
t − a

b − a

∫b

t

Kl(s)ds

)
max
τ∈[a,b]

∣∣rm−1
(
τ, z, λ, η

)∣∣

= Ql(t)max
τ∈[a,b]

∣∣rm−1
(
τ, z, λ, η

)∣∣

≤ Ql max
τ∈[a,b]

∣∣rm−1
(
τ, z, λ, η

)∣∣.
(4.17)

Using (4.17) recursively and taking (4.14) into account, we obtain

∣∣rm
(
t, z, λ, η

)∣∣ ≤ Qm
l max
τ∈[a,b]

∣∣r0
(
τ, z, λ, η

)∣∣

≤ b − a

4
Qm

l ω
(
z, λ, η

)
,

(4.18)
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for allm ≥ 1, t ∈ [a, b], z ∈ R
n, λ ∈ R

n, and η ∈ R
n−q. Using (4.18) and (4.13), we easily obtain

that, for an arbitrary j ∈ N,

∣∣xm+j
(
t, z, λ, η

) − xm

(
t, z, λ, η

)∣∣ = ∣∣(xm+j
(
t, z, λ, η

) − xm+j−1
(
t, z, λ, η

))

+
(
xm+j−1

(
t, z, λ, η

) − xm+j−2
(
t, z, λ, η

))
+ · · ·

+
(
xm+1

(
t, z, λ, η

) − xm
(
t, z, λ, η

))∣∣

≤
j−1∑
i=0

∣∣rm+i
(
t, z, λ, η

)∣∣

≤ b − a

4

j−1∑
i=0

Qm+i
l ω

(
z, λ, η

)
.

(4.19)

Therefore, by virtue of assumption (4.7), it follows that

∣∣xm+j
(
t, z, λ, η

) − xm

(
t, z, λ, η

)∣∣ ≤ b − a

4
Qm

l

+∞∑
i=0

Qi
lω
(
z, λ, η

)

=
b − a

4
Qm

l (1n −Ql)−1ω
(
z, λ, η

)
(4.20)

for all m ≥ 1, j ≥ 1, t ∈ [a, b], z ∈ R
n, λ ∈ R

n, and η ∈ R
n−q. We see from (4.20) that (4.1) is

a Cauchy sequence in the Banach space C([a, b],Rn) and, therefore, converges uniformly in
t ∈ [a, b] for all (z, λ, η) ∈ R

3n−q:

lim
m→∞

xm

(
t, z, λ, η

)
= x∞

(
t, z, λ, η

)
, (4.21)

that is, assertion 2 holds. Since all functions xm(t, z, λ, η) of the sequence (4.1) satisfy the
boundary conditions (2.3), by passing to the limit in (2.3) as m → +∞ we show that the
function x∞(·, z, λ, η) satisfies these conditions.

Passing to the limit asm → ∞ in (4.1), we show that the limit function is a solution of
the integro-functional equation (4.10). Passing to the limit as j → ∞ in (4.20) we obtain the
estimate

∣∣x∞
(
t, z, λ, η

) − xm

(
t, z, λ, η

)∣∣ ≤ b − a

4
Qm

l (1n −Ql)−1ω
(
z, λ, η

)
(4.22)

for a.e. t ∈ [a, b] and arbitrary fixed z, λ, η, and m = 1, 2, . . .. This completes the proof of
Theorem 4.2.

We have the following simple statement.
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Proposition 4.3. If, under the assumptions of Theorem 4.2, one can specify some values of z, λ, and
η, such that the limit function x∞(·, z, λ, η) possesses the property

D−1(d − Bλ +Nqη
) −
(
D−1A + 1n

)
z =
∫b

a

((
lx∞
(·, z, λ, η))(s) + f(s)

)
ds = 0, (4.23)

then, for these z, λ, and η,it is also a solution of the boundary value problem (1.9), (2.3).

Proof. The proof is a straightforward application of the above theorem.

5. Some Properties of the Limit Function

Let us first establish the relation of the limit function x∞(·, z, λ, η) to the auxiliary two-point
boundary value problem (1.9), (2.3). Along with system (1.9), we also consider the system
with a constant forcing term in the right-hand side

x′(t) = (lx)(t) + f(t) + μ, t ∈ [a, b], (5.1)

and the initial condition

x(a) = z, (5.2)

where μ = col(μ1, . . . , μn) is a control parameter.
We will show that for arbitrary fixed z ∈ R

n, λ ∈ R
n, and η∈n−q, the parameter μ can

be chosen so that the solution x(·, z, λ, η, μ) of the initial value problem (5.1), (5.2) is, at the
same time, a solution of the two-point parametrised boundary value problem (5.1), (2.3).

Proposition 5.1. Let z ∈ R
n, λ ∈ R

n, and η ∈ R
n−q be arbitrary given vectors. Assume that condition

(4.7) is satisfied. Then a solution x(·) of the initial value problem (5.1), (5.2) satisfies the boundary
conditions (2.3) if and only if x(·) coincides with x∞(·, z, λ, η) and

μ = μz,λ,η, (5.3)

where

μz,λ,η :=
1

b − a

(
D−1(d − Bλ +Nqη

) −
(
D−1A + 1n

)
z
)

− 1
b − a

∫b

a

[(
lx∞
(·, z, λ, η)(s) + f(s)

)]
ds

(5.4)

and x∞(·, z, λ, η) is the limit function of sequence (4.1).

Proof. The assertion of Proposition 5.1 is obtained by analogy to the proof of [50,
Theorem 4.2]. Indeed, let z ∈ R

n, λ ∈ R
n, and η ∈ R

n−q be arbitrary.
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If μ is given by (5.3), then, due to Theorem 4.2, the function x∞(·, z, λ, η) has properties
(4.9) and satisfies equation (4.10), whence, by differentiation, equation (5.1) with the above-
mentioned value of μ is obtained. Thus, x∞(·, z, λ, η) is a solution of (5.1), (5.2)with μ of form
(5.3) and, moreover, this function satisfies the two-point boundary conditions (2.3).

Let us fix an arbitrary μ ∈ R
n and assume that the initial value problem (5.1), (5.2) has

a solution y satisfies the two-point boundary conditions (2.3). Then

y(t) = z +
∫ t

a

[(
ly
)
(s) + f(s)

]
ds + μ(t − a), (5.5)

for all t ∈ [a, b]. By assumption, y satisfies the two-point conditions (2.3) and, therefore, (5.5)
yields

Ay(a) +Dy(b) = Az +D

(
z +
∫b

a

((
ly
)
(s) + f(s)

)
(s)ds + μ(b − a)

)

= d − Bλ +Nqη,

(5.6)

whence we find that μ can be represented in the form

μ =
1

b − a
D−1
(
d − Bλ +Nqη − (A +D)z −

∫b

a

((
ly
)
(s) + f(s)

)
(s)ds

)
. (5.7)

On the other hand, we already know that the function x∞(·, z, λ, η), satisfies the two-
point conditions (2.3) and is a solution of the initial value problem (5.1), (5.2)with μ = μz,λ,η,
where the value μz,λ,η is defined by formula (5.4). Consequently,

x∞
(
t, z, λ, η

)
= z +

∫ t

a

[(
lx∞
(·, z, λ, η)(s) + f(s)

)]
ds + μz,λ,η(t − a), t ∈ [a, b]. (5.8)

Putting

h(t) := y(t) − x∞
(
t, z, λ, η

)
, t ∈ [a, b], (5.9)

and taking (5.5), (5.8) into account, we obtain

h(t) =
∫ t

a

(lh)(s)ds +
(
μ − μz,λ,η

)
(t − a), t ∈ [a, b]. (5.10)
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Recalling the definition (5.4) of μz,λ,η and using formula (5.7), we obtain

μ − μz,λ,η =
1

b − a

∫b

a

l
(
x∞
(·, z, λ, η) − y

)
(s)ds

= − 1
b − a

∫b

a

(lh)(s)ds,

(5.11)

and, therefore, equality (5.10) can be rewritten as

h(t) =
∫ t

a

(lh)(s)ds − t − a

b − a

∫b

a

(lh)(s)ds

=
(
1 − t − a

b − a

)∫ t

a

(lh)(s)ds − t − a

b − a

∫b

t

(lh)(s)ds, t ∈ [a, b].

(5.12)

Applying Lemma 3.2 and recalling notation (4.6), we get

|h(t)| ≤
((

1 − t − a

b − a

)∫ t

a

Kl(s)ds +
t − a

b − a

∫b

t

Kl(s)ds

)
max
τ∈[a,b]

|h(τ)|

≤ Ql max
τ∈[a,b]

|h(τ)|
(5.13)

for an arbitrary t ∈ [a, b]. By virtue of condition (4.7), inequality (5.13) implies that

max
τ∈[a,b]

|h(τ)| ≤ Qm
l max
τ∈[a,b]

|h(τ)| −→ 0 (5.14)

asm → +∞. According to (5.9), this means that y coincides with x∞(·, z, λ, η), and, therefore,
by (5.11), μ = μz,λ,η, which brings us to the desired conclusion.

We show that one can choose certain values of parameters z = z∗, λ = λ∗, η = η∗ for
which the function x∞(·, z∗, λ∗, η∗) is the solution of the original three-point boundary value
problem (1.9), (1.10). Let us consider the function Δ : R

3n−q → R
n given by formula

Δ
(
z, λ, η

)
:= g
(
z, λ, η

) −
∫b

a

((
lx∞
(·, z, λ, η))(s) + f(s)

)
ds (5.15)

with

g
(
z, λ, η

)
:= D−1(d − Bλ +Nqη

) −
(
D−1A + 1n

)
z (5.16)

for all z, λ, and η, where x∞ is the limit function (4.8).
The following statement shows the relation of the limit function (4.8) to the solution

of the original three-point boundary value problem (1.9), (1.10).
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Theorem 5.2. Assume condition (4.7). Then the function x∞(·, z, λ, η) is a solution of the three-
point boundary value problem (1.9), (1.10) if and only if the triplet z, λ, η satisfies the system of
3n − q algebraic equations

Δ
(
z, λ, η

)
= 0, (5.17)

e1x∞
(
ξ, z, λ, η

)
= λ1, e2x∞

(
ξ, z, λ, η

)
= λ2, . . . , enx∞

(
ξ, z, λ, η

)
= λn, (5.18)

eq+1x∞
(
b, z, λ, η

)
= η1, eq+2x∞

(
b, z, λ, η

)
= η2, . . . , eq+∞x∞

(
b, z, λ, η

)
= ηn−q. (5.19)

Proof. It is sufficient to apply Proposition 5.1 and notice that the differential equation in (5.1)
coincides with (1.9) if and only if the triplet (z, λ, η) satisfies (5.17). On the other hand, (5.18)
and (5.19) bring us from the auxiliary two-point parametrised conditions to the three-point
conditions (1.10).

Proposition 5.3. Assume condition (4.7). Then, for any (zj , λj , ηj), j = 0, 1, the estimate

max
t∈[a,b]

∣∣∣x∞
(
t, z0, λ0, η0

)
− x∞

(
t, z1, λ1, η1

)∣∣∣ ≤ (1n −Ql)−1v
(
z0, λ0, η0, z1, λ1, η1

)
(5.20)

holds, where

v
(
z0, λ0, η0, z1, λ1, η1

)
:= max

t∈[a,b]

∣∣ϕz0,λ0,η0(t) − ϕz1,λ1,η1(t)
∣∣. (5.21)

Proof. Let us fix two arbitrary triplets (zj , λj , ηj), j = 0, 1, and put

um(t) := xm

(
t, z0, λ0, η0

)
− xm

(
t, z1, λ1, η1

)
, t ∈ [a, b]. (5.22)

Consider the sequence of vectors cm, m = 0, 1, . . ., determined by the recurrence relation

cm := c0 +Qlcm−1, m ≥ 1, (5.23)

with

c0 := v
(
z0, λ0, η0, z1, λ1, η1

)
. (5.24)

Let us show that

max
t∈[a,b]

|um(t)| ≤ cm (5.25)
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for all m ≥ 0. Indeed, estimate (5.25) is obvious form = 0. Assume that

max
t∈[a,b]

|um−1(t)| ≤ cm−1. (5.26)

It follows immediately from (4.1) that

um(t) = ϕz0,λ0,η0(t) − ϕz1,λ1,η1(t) +
∫ t

a

(lum−1)(s)ds − t − a

b − a

∫b

a

(lum−1)(s)ds

= ϕz0,λ0,η0(t) − ϕz1,λ1,η1(t)

+
(
1 − t − a

b − a

)∫ t

a

(lum−1)(s)ds − t − a

b − a

∫b

t

(lum−1)(s)ds,

(5.27)

whence, by virtue of (5.21), estimate (3.7) to Lemma 3.2, and assumption (5.26),

|um(t)| ≤
∣∣ϕz0,λ0,η0(t) − ϕz1,λ1,η1(t)

∣∣

+
(
1 − t − a

b − a

)∫ t

a

|(lum−1)(s)|ds + t − a

b − a

∫b

t

|(lum−1)(s)|ds

≤ v
(
z0, λ0, η0, z1, λ1, η1

)

+
(
1 − t − a

b − a

)∫ t

a

Kl(s)ds max
t∈[a,b]

|um−1(t)| + t − a

b − a

∫b

t

Kl(s)ds max
t∈[a,b]

|um−1(t)|

≤ v
(
z0, λ0, η0, z1, λ1, η1

)
+

((
1 − t − a

b − a

)∫ t

a

Kl(s)ds +
t − a

b − a

∫b

t

Kl(s)ds

)
cm−1

≤ v
(
z0, λ0, η0, z1, λ1, η1

)
+Qlcm−1,

(5.28)

which estimate, in view of (5.23) and (5.24), coincides with the required inequality (5.25).
Thus, (5.25) is true for any m. Using (5.23) and (5.25), we obtain

max
t∈[a,b]

|um(t)| ≤ c0 +Qlcm−1 = c0 +Qlc0 +Q2
l cm−2 = · · ·

=
m−1∑
k=0

Qk
l c0 +Qm

l c0.

(5.29)

Due to assumption (4.7), limm→+∞Qm
l

= 0. Therefore, passing to the limit in (5.29) as m →
+∞ and recalling notation (5.22), we obtain the estimate

max
t∈[a,b]

∣∣∣x∗
(
t, z0, λ0, η0

)
− x∗
(
t, z1, λ1, η1

)∣∣∣ ≤
+∞∑
k=0

Qk
l c0 = (1n −Ql)−1c0, (5.30)
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which, in view of (5.24), coincides with (5.20).

Now we establish some properties of the “determining function” Δ : R
3n−q → R

n

given by equality (5.15).

Proposition 5.4. Under condition (3.10), formula (5.15) determines a well-defined function Δ :
R

3n−q → R
n, which, moreover, satisfies the estimate

∣∣∣Δ
(
z0, λ0, η0

)
−Δ
(
z1, λ1, η1

)∣∣∣ ≤
∣∣∣G[z0 − z1, λ0 − λ1, η0 − η1]

∗∣∣∣

+ Rlmax
t∈[a,b]

∣∣∣∣z0 − z1 +
t − a

b − a
G[z0 − z1, λ0 − λ1, η0 − η1]

∗
∣∣∣∣,
(5.31)

for all (zj , λj , ηj), j = 0, 1, where the (n × n)-matrices G and Rl are defined by the equalities

G := D−1[A +D,B,Nq

]
,

Rl :=
∫b

a

Kl(s)ds (1n −Ql)−1.
(5.32)

Proof. According to the definition (5.15) of Δ, we have

Δ
(
z0, λ0, η0

)
−Δ
(
z1, λ1, η1

)
= g
(
z0, λ0, η0

)
− g
(
z1, λ1, η1

)

−
∫b

a

(
l
(
x∞
(
·, z0, λ0, η0

)
− x∞

(
·, z1, λ1, η1

))
(s)
)
ds,

(5.33)

whence, due to Lemma 3.2,

∣∣∣Δ
(
z0, λ0, η0

)
−Δ
(
z1, λ1, η1

)∣∣∣ ≤
∣∣∣g
(
z0, λ0, η0

)
− g
(
z1, λ1, η1

)∣∣∣

+
∫b

a

∣∣∣l
(
x∞
(
·, z0, λ0, η0

)
− x∞

(
·, z1, λ1, η1

))
(s)
∣∣∣ds

≤
∣∣∣g
(
z0, λ0, η0

)
− g
(
z1, λ1, η1

)∣∣∣

+
∫b

a

Kl(s)dsmax
τ∈[a,b]

∣∣∣x∞
(
τ, z0, λ0, η0

)
− x∞

(
τ, z1, λ1, η1

)
(s)
∣∣∣.

(5.34)
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Using Proposition 5.3, we find

∣∣∣Δ
(
z0, λ0, η0

)
−Δ
(
z1, λ1, η1

)∣∣∣ ≤
∣∣∣g
(
z0, λ0, η0

)
− g
(
z1, λ1, η1

)∣∣∣

+
∫b

a

Kl(s)ds(1n −Ql)−1v
(
z0, λ0, η0, z1, λ1, η1

)
.

(5.35)

On the other hand, recalling (4.2) and (5.21), we get

v
(
z0, λ0, η0, z1, λ1, η1

)
= max

t∈[a,b]

∣∣∣∣z0 − z1 +
t − a

b − a

(
g
(
z0, λ0, η0

)
− g
(
z1, λ1, η1

))∣∣∣∣. (5.36)

It follows immediately from (5.16) that

g
(
z0, λ0, η0

)
− g
(
z1, λ1, η1

)
= −D−1B

(
λ0 − λ1

)
−D−1Nq

(
η0 − η1

)
−
(
D−1A + 1n

)(
z0 − z1

)

= −D−1
[
B
(
λ0 − λ1

)
+Nq

(
η0 − η1

)
+ (A +D)

(
z0 − z1

)]

= D−1[A +D,B,Nq

]
⎛
⎜⎜⎝

z0 − z1

λ0 − λ1

η0 − η1

⎞
⎟⎟⎠.

(5.37)

Therefore, (5.35) and (5.36) yield the estimate

∣∣∣Δ
(
z0, λ0, η0

)
−Δ
(
z1, λ1, η1

)∣∣∣

≤

∣∣∣∣∣∣∣∣
D−1[A +D,B,Nq

]
⎛
⎜⎜⎝

z0 − z1

λ0 − λ1

η0 − η1

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

+
∫b

a

Kl(s)ds(1n −Ql)−1max
t∈[a,b]

∣∣∣∣∣∣∣∣
z0 − z1 +

t − a

b − a
D−1[A +D,B,Nq

]
⎛
⎜⎜⎝

z0 − z1

λ0 − λ1

η0 − η1

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
,

(5.38)

which, in view of (5.32), coincides with (5.31).

Properties stated by Propositions 5.3 and 5.4 can be used when analysing conditions
guaranteeing the solvability of the determining equations.
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6. On the Numerical-Analytic Algorithm of Solving the Problem

Theorems 4.2 and 5.2 allow one to formulate the following numerical-analytic algorithm for
the construction of a solution of the three-point boundary value problem (1.9), (1.10).

(1) For any vector z ∈ R
n, according to (4.1), we analytically construct the sequence

of functions xm(·, z, λ, η) depending on the parameters z, λ, η and satisfying the
auxiliary two-point boundary condition (2.3).

(2) We find the limit x∞(·, z, λ, η) of the sequence xm(·, z, λ, η) satisfying (2.3).

(3) We construct the algebraic determining system (5.17), (5.18), and (5.19) with
respect 3n − q scalar variables.

(4) Using a suitable numerical method, we (approximately) find a root

z∗ ∈ R
n, λ∗ ∈ R

n, η∗ ∈ R
n−q (6.1)

of the determining system (5.17), (5.18), and (5.19).

(5) Substituting values (6.1) into x∞(·, z, λ, η), we obtain a solution of the original three-
point boundary value problem (1.9), (1.10) in the form

x(t) = x∞
(
t, z∗, λ∗, η∗

)
, t ∈ [a, b]. (6.2)

This solution (6.2) can also be obtained by solving the Cauchy problem

x(a) = z∗ (6.3)

for (1.9).

The fundamental difficulty in the realization of this approach arises at point (2) and is
related to the analytic construction of the function x∞(·, z, λ, η). This problem can often be
overcome by considering certain approximations of form (4.1), which, unlike the function
x∞(·, z, λ, η), are known in the analytic form. In practice, this means that we fix a suitablem ≥
1, construct the corresponding function xm(·, z, λ, η) according to relation (4.1), and define
the function Δm : R

3n−q → R
n by putting

Δm

(
z, λ, η

)
:= D−1(d − Bλ +Nqη

) −
(
D−1A + 1n

)
z −
∫b

a

[(
lxm

(·, z, λ, η)(s) + f(s)
)]
ds,

(6.4)

for arbitrary z, λ, and η. To investigate the solvability of the three-point boundary value
problem (1.9), (1.10), along with the determining system (5.17), (5.18), and (5.19), one
considers themth approximate determining system

Δm

(
z, λ, η

)
= 0,

e1xm

(
ξ, z, λ, η

)
= λ1, e2xm

(
ξ, z, λ, η

)
= λ2, . . . , enxm

(
ξ, z, λ, η

)
= λn,

eq+1xm

(
b, z, λ, η

)
= η1, . . . , enxm

(
b, z, λ, η

)
= ηn−q,

(6.5)
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where ei, i = 1, 2, . . . , n, are the vectors given by (5.15).
It is natural to expect (and, in fact, can be proved) that, under suitable conditions, the

systems (5.17), (5.18), (5.19), and (6.5) are “close enough” to one another for m sufficiently
large. Based on this circumstance, existence theorems for the three-point boundary value pro-
blem (1.9), (1.10) can be obtained by studying the solvability of the approximate determining
system (6.5) (in the case of periodic boundary conditions, see, e.g., [35]).
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[45] A. Ronto andM. Rontó, “A note on the numerical-analytic method for nonlinear two-point boundary-
value problems,” Nonlinear Oscillations, vol. 4, no. 1, pp. 112–128, 2001.
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