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The analytical solution of the foam drainage equation with time- and space-fractional derivatives
was derived by means of the homotopy analysis method (HAM). The fractional derivatives
are described in the Caputo sense. Some examples are given and comparisons are made; the
comparisons show that the homotopy analysis method is very effective and convenient. By
choosing different values of the parameters α, β in general formal numerical solutions, as a result,
a very rapidly convergent series solution is obtained.

1. Introduction

Many phenomena in engineering, physics, chemistry, and other science can be described
very successfully by models using the theory of derivatives and integrals of fractional order.
Interest in the concept of differentiation and integration to noninteger order has existed since
the development of the classical calculus [1–3]. By implication, mathematical modeling of
many physical systems are governed by linear and nonlinear fractional differential equations
in various applications in fluid mechanics, viscoelasticity, chemistry, physics, biology, and
engineering.

Since many fractional differential equations are nonlinear and do not have exact
analytical solutions, various numerical and analytic methods have been used to solve these
equations. The Adomian decomposition method (ADM) [4], the homotopy perturbation
method (HPM) [5], the variational iteration method (VIM) [6], and other methods have been
used to provide analytical approximation to linear and nonlinear problems [7, 8]. However,
the convergence region of the corresponding results is rather small.

In 1992, Liao [9–13] employed the basic ideas of the homotopy in topology to propose
a general analytic method for nonlinear problems, namely, Homotopy Analysis Method
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(HAM). This method has been successfully applied to solve many types of nonlinear
problems in science and engineering, such as the viscous flows of non-Newtonian fluids [14],
the KdV-type equations [15], higher-dimensional initial boundary value problems of variable
coefficients [16], and finance problems [17]. The HAM contains a certain auxiliary parameter
hwhich provides us with a simple way to adjust and control the convergence region and rate
of convergence of the series solution.

The HAM offers certain advantages over routine numerical methods. Numerical
methods use discretization which gives rise to rounding off errors causing loss of accuracy
and requires large computer memory and time. This computational method yields analytical
solutions and has certain advantages over standard numerical methods. The HAMmethod is
better since it does not involve discretization of the variables and hence is free from rounding
off errors and does not require large computer memory or time.

The study of foamdrainage equation is very significant for that the equation is a simple
model of the flow of liquid through channels (Plateau borders [18]) and nodes (intersection
of four channels) between the bubbles, driven by gravity and capillarity [19]. It has been
studied by many authors [20–22]. The study for the foam drainage equation with time and
space-fractional derivatives of this form

Dα
t u =

1
2
uuxx − 2u2D

β
xu +

(
D

β
xu

)2
, 0 < α, β ≤ 1, x > 0, (1.1)

has been investigated by the ADM and VIMmethod in [23, 24]. The fractional derivatives are
considered in the Caputo sense. When α = β = 1, the fractional equation reduces to the foam
drainage equation of the form

ut =
1
2
uuxx − 2u2ux + (ux)2. (1.2)

In this paper, we extend the application of HAM to obtain analytic solutions to the space-
and time-fractional foam drainage equation. Two cases of special interest such as the time-
fractional foam drainage equation and the space-fractional foam drainage equation are
discussed in details. Further, we give comparative remarks with the results obtained using
ADM and VIM method (see [23, 24]).

The paper has been organized as follows. Notations and basic definitions are given
in Section 2. In Section 3 the homotopy analysis method is described. In Section 4 we extend
the method to solve the space- and time-fractional foam drainage equation. Discussion and
conclusions are presented in Section 5.

2. Description on the Fractional Calculus

Definition 2.1. A real function f(t), t > 0 is said to be in the space Cμ, μ ∈ R if there exists a
real number p > μ, such that f(t) = tpf1(t) where f1 ∈ (0, ∞), and it is said to be in the space
C

μ
n l if and only if h(n) ∈ Cμ, n ∈ N. Clearly Cμ ⊂ Cν if ν ≤ μ.
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Definition 2.2. The Riemann-Liouville fractional integral operator (Jα) of order α ≥ 0, of a
function f ∈ Cμ, μ ≥ −1, is defined as

Jαf(x) =
1

Γ(α)

∫x

0
(x − t)α−1f(t)dt, α > 0, x > 0,

J0f(x) = f(x).

(2.1)

Γ(α) is the well-known Gamma function. Some of the properties of the operator Jα, which we
will need here, are as follows:

for f ∈ Cμ, μ ≥ −1, α, β ≥ 0 and γ ≥ −1,

JαJβf(x) = Jα+βf(x),

JαJβf(x) = JβJαf(x),

Jαtγ =
Γ
(
γ + 1

)

Γ
(
α + γ + 1

) tα+γ .

(2.2)

Definition 2.3. For the concept of fractional derivative, there exist many mathematical
definitions [2, 25–28]. In this paper, the two most commonly used definitions: the Caputo
derivative and its reverse operator Riemann-Liouville integral are adopted. That is because
Caputo fractional derivative [2] allows the traditional assumption of initial and boundary
conditions. The Caputo fractional derivative is defined as

Dα
t u(x, t) =

∂αu(x, t)
∂tα

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
Γ(n − α)

∫ t

0
(t − τ)n−α−1

∂nu(x, t)
∂tn

dτ, n − 1 < α < n,

∂nu(x, t)
∂tn

, α = n ∈ N.

(2.3)

Here, we also need two basic properties about them:

DαJαf(x) = f(x),

JαDαf(x) = f(x) −
∞∑
k=0

f (k)(0+)
xk

k!
, x > 0.

(2.4)

Definition 2.4. The MittagLeffler function Eα(z) with a > 0 is defined by the following series
representation, valid in the whole complex plane:

Eα(z) =
∞∑
n=0

zn

Γ(αn + 1)
, α > 0, z ∈ C. (2.5)
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3. Basic Idea of HAM

To describe the basic ideas of the HAM, we consider the following differential equation:

N
[
Dα

t u(x, t)
]
= 0, t > 0, (3.1)

where N is nonlinear operator, Dα
t stand for the fractional derivative and is defined as in

(2.3), x, t denotes independent variables, and u(x, t) is an unknown function, respectively.
By means of generalizing the traditional homotopy method, Liao [9] constructs the

so-called zero-order deformation equation

(
1 − q

)
L
[
φ
(
x, t, q

) − u0(x, t)
]
= qhH(t)N

[
Dα

t φ
(
x, t, q

)]
, (3.2)

where q ∈ [0, 1] is the embedding parameter, h/= 0 is a nonzero auxiliary parameter, H(t)/= 0
is an auxiliary function, L is an auxiliary linear operator, u0(x, t) is initial guesse of u(x, t), and
φ(x, t, q) is unknown function. It is important that one has great freedom to choose auxiliary
things in HAM. Obviously, when q = 0 and q = 1, it holds that

φ(x, t, 0) = u0(x, t), φ(x, t, 1) = u(x, t), (3.3)

respectively. Thus, as q increases from 0 to 1, the solution φ(x, t, q) varies from the initial guess
u0(x, t) to the solution u(x, t). Expanding φ(x, t, q) in Taylor series with respect to q, we have

φ
(
x, t, q

)
= u0(x, t) +

+∞∑
m=1

um(x, t)qm, (3.4)

where

um(x, t) =
1
m!

∂mφ
(
x, t, q

)

∂qm

∣∣∣∣∣
q=0

. (3.5)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary
function are so properly chosen, the series (3.4) converges at q = 1, then we have

u(x, t) = u0(x, t) +
+∞∑
m=1

um(x, t), (3.6)

which must be one of solutions of original nonlinear equation, as proved by Liao [11]. As
h = −1 and H(t) = 1, (3.2) becomes

(
1 − q

)
L
[
φ1

(
x, t, q

) − u0(x, t)
]
+ qN

[
Dα

t φ
(
x, t, q

)]
= 0, (3.7)
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which is used mostly in the homotopy perturbation method [29], whereas the solution
obtained directly, without using Taylor series. According to definition (3.5), the governing
equation can be deduced from the zero-order deformation equation (3.2). Define the vector

−→un = {u0(x, t), u1(x, t), . . . , un(x, t)}. (3.8)

Differentiating (3.2) m times with respect to the embedding parameter q and then setting
q = 0 and finally dividing them bym!, we have the so-calledmth-order deformation equation

L
[
um(x, t) − χmum−1(x, t)

]
= hH(t)Rm

(−→um−1
)
, (3.9)

where

Rm

(−→um−1
)
=

1
(m − 1)!

∂m−1N
[
Dα

t φ
(
x, t, q

)]

∂qm−1

∣∣∣∣∣
q=0

,

χm =

⎧
⎨
⎩
0, m � 1,

1, m > 1.

(3.10)

Applying the Riemann-Liouville integral operator Jα on both side of (3.9), we have

um(x, t) = χmum−1(x, t) − χm

n−1∑
i=0

ui
m−1(0

+)
ti

i!
+ hH(t)JαRm

(−→um−1
)
. (3.11)

It should be emphasized that um(x, t) form � 1 is governed by the linear equation (3.9) under
the linear boundary conditions that come from original problem, which can be easily solved
by symbolic computation software such as Matlab. For the convergence of the above method
we refer the reader to Liao’s work.

Liao [10] proved that, as long as a series solution given by the homotopy analysis
method converges, it must be one of exact solutions. So, it is important to ensure that the
solution series is convergent. Note that the solution series contain the auxiliary parameter
h, which we can choose properly by plotting the so-called h-curves to ensure solution series
converge.

Remark 3.1. The parameters α and β can be arbitrarily chosen as, integer or fraction, bigger or
smaller than 1. When the parameter is bigger than 1, we will need more initial and boundary
conditions such as u′

0(x, 0), u
′′
0(x, 0), . . . and the calculations will become more complicated

correspondingly. In order to illustrate the problem and make it convenient for the readers,
we only confine the parameter to [0, 1] to discuss.

4. Application

In this section we apply this method for solving foam drainage equation with time- and
space-fractional derivatives.
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Example 4.1. Consider the following form of the time-fractional equation:

Dα
t u =

1
2
uuxx − 2u2ux + u2

x, 0 < α ≤ 1, x > 0, (4.1)

with the initial condition

u(x, 0) = −√c tanh
(√

cx
)
, (4.2)

where c is the velocity of wavefront [15].
The exact solution of (4.1) for the special case α = β = 1 is

u(x, t) =

⎧
⎨
⎩
−√c tanh

(√
c(x − ct)

)
, x � ct,

0, x > ct.
(4.3)

For application of homotopy analysis method, in view of (4.1) and the initial condition given
in (4.2), it in convenient to choose

u0(x, t) = −√c tanh
(√

cx
)
, (4.4)

as the initial approximate. We choose the linear operator

L
[
φ
(
x, t; q

)]
= Dα

t , (4.5)

with the property L(c) = 0, where c is constant of integration. Furthermore, we define a
nonlinear operator as

N
[
φ
(
x, t, q

)]
= Dα

t φ
(
x, t, q

) − 1
2
φ
(
x, t, q

)
φxx

(
x, t, q

)
+ 2

(
φ
(
x, t, q

))2
φx

(
x, t, q

)

− (
φx

(
x, t, q

))2
.

(4.6)

We construct the zeroth-order and the mth-order deformation equations where

Rm

(−→um−1
)
= Dα

t um−1 − 1
2

m−1∑
k=0

uk(um−1−k)xx + 2
m−1∑
k=0

k∑
j=0

ujuk−j(um−1−k)x

−
m−1∑
k=0

(uk)x(um−1−k)x.

(4.7)
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We now successively obtain

u1(x, t) =
1

Γ(α + 1)

[
h
(
−1 + tanh

(√
cx

)2)
tαc2

]
,

u2(x, t) =
1

Γ(α + 1)2
[√

c tanh
(√

cx
)
Γ(α + 1)2 + h

√
c tanh

(√
cx

)
Γ(α + 1)2

− htαc2Γ(α + 1) + htαc2Γ(α + 1) tanh
(√

cx
)2 − h2tαc2Γ(α + 1)

+ h2tαc2Γ(α + 1) tanh
(√

cx
)2 + h2t2ac7/2 tanh

(√
cx

)

−2h2t2ac7/2 tanh
(√

cx
)3]

,

...

(4.8)

By taking α = 1, h = −1, we reproduce the solution of problem as follows:

u(x, t) =
1

Γ(α + 1)3
[
− √

c tanh
(√

cx
)
Γ(α + 1)3 + tαc2Γ(α + 1)2

− tαc2Γ(α + 1)2 tanh
(√

cx
)2 + 2t2αc7/2 tanh

(√
cx

)
Γ(α + 1)

− 2t2αc7/2 tanh
(√

cx
)3Γ(α + 1) + 13t3αc5 tanh

(√
cx

)2

−13t3αc5 tanh (√cx
)4 + 3t3αc5 tanh

(√
cx

)6 − 3t3αc5
]
.

(4.9)

Figures 1 and 2 show the HAM and exact solutions of time-fractional foam drainage equation
with h = −1, n = 3, α = 1. It is obvious that, when α = 1, the solution is nearly identical with
the exact solution. Figures 3 and 4 show the approximate solutions of time-fractional foam
drainage equation with h = −1, n = 3, α = 0.5 and α = 0.75, respectively.

Remark 4.2. This example has been solved using ADM and VIM in [23, 24]. The graphs drawn
and Tables by h = −1 are in excellent agreement with that graphs drawn with ADM and VIM.

Example 4.3. Considering the operator form of the space-fractional equation

ut =
1
2
uuxx − 2u2D

β
xu +

(
D

β
xu

)2
, 0 < β ≤ 1, x > 0, (4.10)

with the initial condition

u(x, 0) = x2. (4.11)
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Figure 1: HAM solution with α = 1.
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Figure 2: Exact solution.
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Figure 4: HAM solution with α =
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Figure 5: HAM solution with β = 1/2.

For application of homotopy analysis method, in view of (4.10) and the initial condition given
in (4.2), it is inconvenient to choose

u0(x, t) = x2. (4.12)

Initial condition has been taken as the above polynomial to avoid heavy calculation of
fractional differentiation.
We choose the linear operator

L
[
φ
(
x, t, q

)]
=

∂φ
(
x, t, q

)

∂t
, (4.13)
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with the property L(c) = 0, where c is constant of integration. Furthermore, we define a
nonlinear operator as

N
[
φ
(
x, t, q

)]
= φt

(
x, t, q

) − 1
2
φ
(
x, t, q

)
φxx

(
x, t, q

)
+ 2

(
φ
(
x, t, q

))2
D

β
xφ

(
x, t, q

)

−
(
D

β
xφ

(
x, t, q

))2
.

(4.14)

We construct the zeroth-order and the mth-order deformation equations where

Rm

(−→um−1
)
= (ut)m−1 −

1
2

m−1∑
k=0

uk(um−1−k)xx + 2
m−1∑
k=0

k∑
j=0

ujuk−jD
β
xum−1−k

−
m−1∑
k=0

D
β
xukD

β
xum−1−k.

(4.15)

We now successively obtain

u1(x, t) = −hx2t + 4
hx6−βt
Γ
(
3 − β

) − 4
hx4−2βt

Γ
(
3 − β

)2 ,

u2(x, t) =
1

Γ
(
3 − β

)2
[
− 14h2t2x4−2ββ + 4h2t2x4−2ββ2 + 18hx4−2βht2

− 4h2tx4−2β − 4htx4−2β

+
h2x8−3βπ1/2(−4 + β

)(−5 + β
)(−6 + β

)
t24β

8Γ
(
(7/2) − β

)

+
128h2x6−4β4−βt2Γ

(
(5/2) − β

)

π1/2Γ
(
5 − 3β

)
]

+
1

Γ
(
3 − β

)
[
−h2x10−2βπ1/2(−4 + β

)(−5 + β
)(−6 + β

)
t24β

16Γ
(
(7/2) − β

)

− 64h2x8−3β4−βt2Γ
(
(5/2) − β

)

π1/2Γ
(
5 − 3β

) + 4htx6−β + 4h2tx6−β

−38h2t62x6−β + 11h2t2β2x6−β
]

− 16h2t2x8−3β

Γ
(
3 − β

)3 − hx2t − h2x2t + t2x2h2.

...

(4.16)
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Figure 6: HAM solution with β = 1.

Figures 5 and 6 show the HAM solutions of space-fractional foam drainage equation with
h = −1, n = 3, β = 0.5 and β = 1, respectively.

Remark 4.4. This example has been solved using ADM and VIM in [23, 24]. The graphs drawn
and Tables by h = −1 are in excellent agreement with that graphs drawn with ADM and VIM.

5. Conclusion

In this paper, we have successfully developed HAM for solving space- and time-fractional
foam drainage equation. HAM provides us with a convenient way to control the convergence
of approximation series by adapting h, which is a fundamental qualitative difference in
analysis between HAM and other methods. The obtained results demonstrate the reliability
of the HAM and its wider applicability to fractional differential equation. It, therefore,
provides more realistic series solutions that generally converge very rapidly in real physical
problems.

Matlab has been used for computations in this paper.
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