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Carlson’s type theorem on removable sets for α-Holder continuous solutions is investigated for
the quasilinear elliptic equations divA(x, u,∇u) = 0, having degeneration ω in the Muckenhoupt
class. In partial, when α is sufficiently small and the operator is weighted p-Laplacian, we show
that the compact set E is removable if and only if the Hausdorffmeasure Λ−p+(p−1)α

ω (E) = 0.

1. Introduction

In this paper, we will consider questions of a removable singularity for the class of quasilinear
elliptic equations of the form

div(A(x, u,∇u)) = 0, (1.1)

where A(x, ξ, ζ) = {A1(x, ξ, ζ), A2(x, ξ, ζ), . . . , An(x, ξ, ζ)} : D × R × R
n → R

n are continuous
with respect to ξ, continuously differentiable with respect to ζ functions. For ξ ∈ R

1, ζ ∈ R
n, it

is assumed thatAj(x, ξ, ζ); j = 1, 2, . . . n are measurable functions with respect to a variable x
in the open domain D ⊂ R

n. Let the following growth conditions be satisfied:

n∑

i,k=1

∂Ai

∂ζk
(x, ξ, ζ)ηiηk ≥ λω(x)|ζ|p−2∣∣η∣∣2,

∣∣∣∣
∂Ai

∂ζk
(x, ξ, ζ)

∣∣∣∣ ≤ λ−1ω(x)|ζ|p−2, k, i = 1, 2, . . . , n,

(1.2)
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where 1 < p <∞, λ ∈ (0, 1). Throughout the paper, ω : R
n → [0,∞] is a measurable function

satisfying the doubling condition: for any ball B = B(x, r) with centre at a point x and of
radius r > 0, the inequality

∫

2B
ω dx ≤ C

∫

B

ω dx (1.3)

is satisfied, where the constant C is positive and does not depend on the ball B ⊂ R
n. For the

system of functions Aj(x, ξ, ζ); j = 1, 2, . . . n, we can write the following expression:

Ai(x, u(x),∇u(x)) =
∫1

0

n∑

k=1

∂Ai

∂ζk
(x, u(x), t∇u(x))uxkdt

=
n∑

k=1

bik(x)ω(x)|∇u(x)|p−2uxk , i = 1, 2, . . . , n,

(1.4)

where bik(x) = ω(x)−1|∇u(x)|2−p ∫10
∑n

k=1

(
∂Ai

∂ζk

)
(x, u(x), t∇u(x))dt; i, k = 1, 2, . . . , n. There-

fore, (1.1) can be written in the form

n∑

i,k=1

∂

∂xi

(
ω|∇u|p−2bik(x) ∂u

∂xk

)
= 0. (1.5)

By virtue of (1.2) and (1.4), the system of functions {bik(x)}i,k=1,2,...,n is bounded and
measurable. Moreover, the condition of uniform ellipticity is satisfied: for a.e. x ∈ D, η ∈ R

n

there exist positive constants C1, C2 such that

C1
∣∣η
∣∣2 ≤

n∑

i,k=1

bik(x)ηiηk =
n∑

i,k=1

ω(x)−1|∇u(x)|2−p
∫1

0

∂Ai

∂ζk
(x, u(x), t∇u(x))ηiηkdt ≤ C2

∣∣η
∣∣2.

(1.6)

Denote by Cα(D), 0 < α ≤ 1, the class of continuous in D functions f : D → R

satisfying the condition

∣∣f(x) − f(y)∣∣ ≤ K∣∣x − y∣∣α (1.7)

with some K > 0 not depending on the points x, y ∈ D. Denote by W1
pω(D) the space of

measurable functions in D, which have the finite norm

‖u‖ = ‖u‖Lpω(D) +
n∑

j=1

∥∥∥uxj
∥∥∥
Lpω(D)

, (1.8)

where uxj are the derivatives of a function u ∈ Lpω(D) in the sense of the distribution
theory, which belong to the space Lpω(D). The norm of the space Lpω(D) is given in
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the form ‖f‖Lpω(D) = (
∫
D ω|f |pdx)

1/p for p ≥ 1; ‖f‖Lpω(D) = ess supx∈D|f(x)| for p = ∞.

Denote by Ẇ1
pω(D) a subspace of the space W1

pω(D), where the class of functions C∞
0 (D)

is an everywhere dense set. Denote by W̃1
pω(D) the closure of the set of functions C∞(D)with

respect to the norm W1
pω(D). The spaces W1

pω(D) and W̃1
pω(D) coincide and are completely

reflexive [1, 2] if the conditions 1 < p <∞ and Ap-Muckenhoupt are fulfilled for ω:

(∫

B

ω(x)dx
)(∫

B

ω−1/(p−1)(x)dx
)p−1

≤ Cp|B|p, (1.9)

where |B| denotes the Lebesgue measure of an arbitrary ball B ⊂ R
n. In the sequel, we will

also use the A1-condition:

∫

B(x,ρ)
ω(x)dx ≤ Cρn inf

x∈B
ω. (1.9′)

Definition 1.1. A function u ∈W1
pω(D) is called a solution of (1.1) if the integral identity

∫

D

A(x, u,∇u) · ∇ϕdx = 0 (1.10)

is fulfilled for any test function ϕ ∈ Ẇ1
pω(D).

Definition 1.2. Let E ⊂⊂ D be a compact subset of the bounded domain D ⊂ R
n. One will say

that the set E is removable for the class of Cα(D) of solutions of (1.1) if any solution of (1.1)
in D \ E from the spaceW1

pω,loc(D \ E) belongs to the spaceW1
pω(D) throughout the domain

D and is extendable inside the compactum E as solution.

Definition 1.3. Let E ⊂ R
n be a bounded closed subset, h : R → (0,∞) a continuous function,

and h(0) = 0, μ some Radon measure. A finite system of balls {Bν = B(xν, rν)}ν=1,2,...,N , the
radii of which do not exceed δ > 0, covers the set E, that is, E ⊂ ⋃ν Bν. Assume that Λh,δ

μ (E) =
inf{∑ν h(rν)μ(Bν)}, where the lower bound is taken with respect to all the mentioned balls.

Assume that

Λh
μ(E) = lim

δ→∞
Λh,δ
μ (E). (1.11)

In the case μ = dx, h(t) = t−p+(p−1)α, the number Λh
μ(E) is a Hausdorff measure of order

n − p + (p − 1)α of the set E. We will sometimes denote it by mesn−p+(p−1)α(E). Denote by

Λ−p+(p−1)α
ω (E) the term Λh(r)

μ (E) for h(t) = t−p+(p−1)α, dμ = ωdx.

By Carlson’s theorem [3], a necessary and sufficient condition for the compact set E
to be removable in the class of harmonic outside E functions belonging to the class Cα(D) is
expressed in terms of a Hausdorff measure of order n − 2 + α having the form

mesn−2+αE = 0, 0 < α < 1. (1.12)
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(For the case α = 1, the same result was proved in [4, 5].) In [6], the corresponding result was
proved for a general linear elliptic equation with variable coefficients (see also [7, 8]). In [9],
for the case p ≥ 2, a sufficient condition was proved for a solution of the p-Laplace equation
(A = |∇u|p−2∇u) to be removable in the class Cα(D) (0 < α ≤ 1) in the form

mesn−p+(p−1)αE = 0, 0 < α ≤ 1. (1.13)

Furthermore, a complete analogue of Carlson’s result was proved in [10], where the authors
not only proved the necessity of condition (1.13), but also gave another proof of sufficiency
that includes also range of exponent 1 < p < 2. Their approach was applied to the case of a
metric measure space in [11].

It should be said that in [9] a somewhat general result was in fact obtained for the
compact set E to be removable for the class Cα(D) of solutions of the equation

n∑

i=1

∂

∂xi

(
ω|∇u|p−2 ∂u

∂xi

)
= 0 (1.14)

in the form of a sufficient condition

Λ−p+(p−1)α
ω (E) = 0. (1.15)

Note, in [9], the case p ≥ 2 was considered and it was required that the function ω to satisfy
the doubling condition.

The present paper continues the development of the approach of [9]. We show that
condition (1.15) is also the necessary one for the compact set E to be removable. Moreover,
imposing some restrictions on the degeneration function, we manage to make the proof
embrace a range of the exponent 1 < p < 2.

We will use the following auxiliary statements.

Lemma 1.4 (see [12]). Assume that a function u ∈ L1(D) satisfies the inequality

∫

B(x,r)

∣∣u − (u)x,r
∣∣dx ≤Mrn+α (1.16)

for any ball B(x, r) ⊂ D, where α ∈ (0, 1). Then, u ∈ Cα(D) and for any D′ ⊂⊂ D the estimate

sup
D′

|u| + sup
x,y∈D′

∣∣u(x) − u(y)∣∣
∣∣x − y∣∣α ≤ C

(
M + ‖u‖L1(D)

)
, (1.17)

where C = C(n, α,D′, D), is satisfied.

We also need the following analogue of the well-known Giaquinta’s lemma [13].



International Journal of Differential Equations 5

Lemma 1.5. Let φ(t), ω(t) be nonnegative nondecreasing functions on [0, R]. Assume that s > 0 is
such that

ω(λr)
ω(r)

≥ λs (1.18)

for all r > 0 and 0 < λ < 1. Suppose that

φ
(
ρ
) ≤ A

[
ω
(
ρ
)

ω(r)

(
ρ

r

)α
+ ε

]
φ(r) + Bω(r)rβ (1.19)

for any 0 < ρ < r < R, with A,B, α, β nonnegative constants and β < α. Then, for any γ ∈ (β, α),
there exists a constant ε0 = ε0(A, α, β, γ, s) such that if ε < ε0, then one has, far all 0 < ρ < r < R,

φ
(
ρ
) ≤ c

[
ω
(
ρ
)

ω(r)

(
ρ

r

)γ
φ(r) + Bω

(
ρ
)
ρβ
]
, (1.20)

where c = c(β, α,A, s, γ) > 0.

Proof. For τ ∈ (0, 1) and r < R, we have

φ(τr) ≤ Aταω(τr)
ω(r)

[
1 + ετ−α−s

]
φ(r) + Bτ−sω(τr)rβ. (1.21)

Choose τ < 1 in such a way that 2Aτα = τγ and assume ε0τ−α−s ≤ 1. Then, we get, for every
r < R,

φ(τr) ≤ τγ ω(τr)
ω(r)

φ(r) + Bτ−sω(τr)rβ (1.22)

and therefore, for all integers k > 0,

φ
(
τk+1r

)
≤ τγ ω

(
τk+1r

)

ω
(
τkr
) φ
(
τkr
)
+ Bτ−sω

(
τk+1r

)
τkβrβ

≤ τ (k+1)γ ω
(
τk+1r

)

ω(r)
φ(r) + Bτ−sω

(
τk+1r

)
τkβrβ

k∑

j=0

τj(γ−β)

≤ τ (k+1)γ ω
(
τk+1r

)

ω(r)
φ(r) +

Bτ−sτkβ

1 − τγ−β r
βω
(
τk+1r

)
.

(1.23)

Choosing k such that τk+2r < ρ ≤ τk+1r, the last inequality gives

φ
(
ρ
) ≤ 1

τγ

(
ρ

r

)γ ω
(
ρ
)

ω(r)
φ(r) +

Bτ−s
(
1 − τγ−β)τs+2β ρ

βω
(
ρ
)
. (1.24)

This proves Lemma 1.5.
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We did not find the proof of the next inequality in the literature and therefore give here
our proof.

Lemma 1.6. Let 1 ≤ p ≤ 2. Let x, y ∈ R
n be arbitrary points. Then, the estimate

∣∣∣|x|p−2x − ∣∣y∣∣p−2y
∣∣∣ ≤ 22−p

∣∣x − y∣∣p−1 (1.25)

is valid.

Proof. Let us introduce the vector function

ϕ(θ) =
∣∣θx + (1 − θ)y∣∣p−2(θx + (1 − θ)y), 0 ≤ θ ≤ 1 (1.26)

acting from [0, 1] into R
n. Applying the methods of differential calculus for the vector

function, we obtain

∣∣∣|x|p−2x − ∣∣y∣∣p−2y
∣∣∣ =
∣∣ϕ(1) − ϕ(0)∣∣ =

∣∣∣∣∣

∫1

0

dϕ

dθ
dθ

∣∣∣∣∣ =
(
p − 1

)
∣∣∣∣∣

∫1

0

∣∣θx + (1 − θ)y∣∣p−2(x − y)dθ
∣∣∣∣∣

≤ (p − 1
)∣∣x − y∣∣

∫1

0

∣∣θx + (1 − θ)y∣∣p−2dθ.
(1.27)

The set of points {l(θ) ∈ R
n : l(θ) = θx + (1 − θ)y; 0 ≤ θ ≤ 1} in R

n forms a segment of
the straight line that connects the point x with the point y. We denote this segment by [x, y].
Let |dl| be a length element of this segment. It is obvious that |dl| = |x − y|dθ. Therefore, for
the above integral expression, we have the estimate

≤ (p − 1
) ∫

[x,y]
|l(θ)|p−2|dl(θ)| = (p − 1

) ∫ |x−y|

0

|dl(θ)|
dist (l(θ), 0)2−p

. (1.28)

To proceed with the estimation of this expression, we introduce into consideration
the triangle, the base of which is the segment [x, y] and the vertex lies at the point 0. Now,
the integration in the preceding estimate will be carried out with respect to the base of the
triangle. It is not difficult to verify that the above integral expression takes a maximal value
when the point 0 lies in the middle of the segment [x, y], which means that for it we have the
estimate

≤ (p − 1
) ∫ |x−y|/2

0

ds

s2−p
= 22−p

∣∣x − y∣∣p−1. (1.29)
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To show that this is true, let us choose a new coordinate system, where the xn-axis is
directed along the segment [x, y]. Let (u1, u2, . . . , un) be the coordinates of the the point 0 in
the new coordinate system. Then, the preceding integral expression is equal to

(
p − 1

) ∫ |x−y|/2

−|x−y|/2

(√
u21 + u

2
2 + · · · + u2n−1 + (un − xn)2

)p−2
dxn

=
(
p − 1

) ∫ |x−y|/2

−|x−y|/2
|un − s|p−2ds ≤ 2

(
p − 1

) ∫ |x−y|/2

0
sp−2ds = 22−p

∣∣x − y∣∣p−1.
(1.30)

The main result of this paper is contained in the following statements.

Theorem 1.7. Let D ⊂ R
n be a bounded domain, E ⊂⊂ D be a compact subset. Let 2 < p < ∞ and

ω be a positive, locally integrable function satisfying condition (1.3) or 1 < p < 2 and let any of the
following conditions be fulfilled for the function ω:

(1) the functionω is integrable along any finite smooth n−1-dimensional surface and condition
(1.9′) is fulfilled for it;

(2) for any x ∈ D and sufficiently small ρ > 0, the condition
∫
B(x,ρ)ωdy ≤ Cρs is fulfilled for

some s > n − p + 1, where the constant C > 0 does not depend on x.

Then, for a compact set E to be removable in the class Cα(D), 0 < α ≤ 1 of solutions of (1.1)
in D \ E, u ∈W1

pω,loc(D \ E), it is sufficient that condition (1.15) be fulfilled.

Here, we will use also the fact that a solution of generating equations of the form (1.1)
is Hölderian. According to [14], when a weight ω belongs to the Muckenhoupt Ap-class, a
solution of (1.1) belongs to the class Cκ(Dρ) in any subdomainDρ = {x ∈ D : dist(x, ∂D) > ρ}
of the domain D. For solutions, we have the estimate

osc
B(x,ρ)

u ≤ C
(
ρ

r

)κ
osc
B(x,r)

u, 0 < ρ < r, (1.31)

where κ = κ(n, p, Cp, λ) ∈ (0, 1] and C = C(n, p, Cp, λ). Let κ denote a maximal number
κ = κ(n, p, Cp, λ), for which the estimate (1.31) holds for solutions of (1.1). The following
statement is valid.

Theorem 1.8. Let ω ∈ Ap, E ⊂⊂ D be a compact subset of the domain D. Let 0 < α < κ be

some number. In that case, if Λ−p+(p−1)α
ω (E) > 0, then the set E is not removable in the class of u ∈

W1
pω,loc(D \ E) solutions of (1.1) which belong to Cα(D).

The foregoing statements give rise to the following corollaries.

Corollary 1.9. Let 0 < α < κ, 2 ≤ p < ∞, ω ∈ Ap, or 1 < p < 2 and any of the following conditions
be fulfilled:

(1) the function ω satisfies condition (1.9′) and is integrable along any finite smooth n − 1-
dimensional surface;

(2) for any x ∈ D and sufficiently small ρ > 0, the condition
∫
B(x,ρ)ωdy ≤ Cρs is fulfilled by

some s > n − p + 1, where the constant C > 0 does not depend on x.
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Then, for the compact set E to be removable for the class of W1
pω(D \ E) solutions of (1.1)

belonging to Cα(D), it is necessary and sufficient that condition (1.15) be fulfilled.

Corollary 1.10. Let 0 < α ≤ 1, 1 < p < ∞. Then, for the compact set E to be removable in the class
W1

p,loc(D \ E) of solutions of the equation
n∑

i=1

∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)
= 0 (1.32)

belonging to the class Cα(D) throughout the domain D, it is necessary and sufficient that condition
(1.13) be fulfilled.

2. Proof of the Main Results

In [9], the method of proving Theorem 1.7 was based on the application of an analogue of
Landis-Gerver’s mean value theorem [15]. The restrictive condition p ≥ 2 used in [9] was
necessitated by the proof of Lemma 2.1 below (see also [15, Lemma 1]). Below, we prove a
such type lemma for the case 1 < p < 2, ignoring some smoothness of the function f and
making some additional assumptions for the function ω.

Lemma 2.1. Let D be a bounded domain. Let 2 ≤ p < ∞ and the function ω : R
n → [0,∞] satisfy

condition (1.3) or 1 < p < 2, and let any of the following conditions be fulfilled for the function ω:

(1) condition (1.9′) is fulfilled and ω is integrable along any finite smooth n − 1-dimensional
surface;

(2) for any x ∈ D and sufficiently small ρ > 0, the condition
∫
B(x,ρ)ωdy ≤ Cρs, where the

constant C > 0 does not depend on x, is fulfilled for some s > n − p + 1.

Assume that f : D → R is a sufficiently smooth function (one can also assume the condition
f(x) ∈ Cβ(D), where β ≥ min{p′, 1}). Then, for any ε > 0, there exist a finite number of balls {Bν},
ν = 1, 2, . . . ,N, such that

N∑

ν=1

∫

∂Bν

ω
∣∣∇f∣∣p−1ds < ε. (2.1)

Proof. We will follow the same reasoning as that used in proving Lemma 1 in [9] (see also
[3], Lemma 2.1). The set Of = {x ∈ D : ∇f(x) = 0} is divided into two parts Of = O′

f ∪ O′′
f ;

here, O′
f
is the set of points where ∇2f(x)/= 0, and O′′

f
is the set of points where ∇2f(x) = 0.

Let 1 < p < 2. Then, for the set O′
f
, our reasoning is as follows. By virtue of the implicit

function theorem, the setO′
f
lies on a countable quantity of smooth n−1-dimensional surfaces

{Sj}; j = 1, 2, . . .. Let x ∈ Sj be a fixed point on the j-th surface. For sufficiently small r > 0,
we have ∫

S(x,r)
ω
∣∣∇f∣∣p−1ds ≤ 2C1r

p−1ω(S(x, r)), (2.2)

where C1 = supD|∇2f | and ω(S(x, r)) is integral omega over the n − 1 dimensional surface
S(x, r). By virtue of Fubini’s formula,

∫2rx

rx

(∫

|y−x|=t
ω dsy

)
dt ≤

∫

|y−x|<2rx
ω
(
y
)
dy. (2.3)
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Let E be the set of points t ∈ (rx, 2rx), for which the following condition is fulfilled:

∫

|y−x|=t
ω ds >

2
rx

(∫

|y−x|<2rx
ω(x)dx

)
. (2.4)

Then

2
rx

(∫

|y−x|<2rx
ω
(
y
)
dy

)
μ1(E) ≤

∫

E

(∫

|y−x|=t
ω ds

)
dt ≤

∫2rx

rx

(∫

|y−x|=t
ω ds

)
dt

≤
∫

|y−x|<2rx
ω
(
y
)
dy,

(2.5)

whence for the one-dimensional Lebesguemeasure of the setEwe obtain the estimate μ1(E) ≤
rx/2. Hence, by virtue of the doubling condition, there exists a point tx ∈ (rx, 2rx), for which

∫

|y−x|=tx
ω ds <

2
rx

(∫

|y−x|<2rx
ω
(
y
)
dy

)
≤ 2C
rx

(∫

|y−x|<rx
ω
(
y
)
dy

)
≤ 4C
tx

(∫

|y−x|<tx
ω(x)dx

)
.

(2.6)

Then, for sufficiently small tj > 0, for any x ∈ Sj , it can be assumed that there exists a number
ρx ∈ (tj , 2tj), for which

ω
(
S
(
x, ρx

)) ≤ 4C
ρx
ω
(
B
(
x, ρx

))
. (2.7)

Therefore,

∫

S(x,ρx)
ω
∣∣∇f∣∣p−1ds ≤ 4C1ρ

p−1
x ω

(
S
(
x, ρx

)) ≤ 16CC1ρ
p−2
x ω

(
B
(
x, ρx

))
. (2.8)

For the surface Sj , from the system of balls {B(x, ρx);x ∈ Sj}, we can extract, by virtue of
Besicovtich theorem [16], a subcovering {B(xν, ρν); xν ∈ Sj, ν ∈ N} with finite intersections:

∑

ν

χB(xν,ρν)(x) ≤ Cn,
⋃

ν

B
(
xν, ρν

) ⊃ Sj. (2.9)

Therefore and by construction, for xν ∈ Sj, ν = 1, 2, . . ., we have ρν ∈ (tj , 2tj). Thus,

∑

ν

∫

S(xν,ρν)
ω
∣∣∇f∣∣p−1ds ≤

∑

ν

16CC1ρ
p−2
ν ω

(
B
(
xν, ρν

)) ≤
∑

ν

16CC1C2ρ
n+p−2
ν inf

x∈B(xν,ρν)
ω

≤
∑

ν

32CC1C2ρ
p−1
ν ω

(
B
(
xν, ρν

) ∩ Sj
) ≤ 32 · 2p−1Ctp−1j ω

(
Sj
)
,

j = 1, 2, . . . .

(2.10)
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Here, we have used the sufficient smallness of tj , condition (1.9′), and the inequality
ρn−1ν infx∈B(xν,ρν)ω ≤ 2ω(B(xν, ρν)∩Sj). Choosing now tj , 32·2p−1CC1C2t

p−1
j ω(Sj) ≤ ε/2j , where

ε > 0 is an arbitrary number, we obtain
∑

ν

∫
S(xν,ρν)

ω|∇f |p−1ds < ε/2j , whence, after summing
the inequalities over all surfaces Sj, j ∈ N, we find

∑

j

∑

xν∈Sj

∫

S(xν,ρν)
ω
∣∣∇f∣∣p−1ds < ε. (2.11)

In the case of the second condition 1 < p < 2, using
∫
B(x,ρ)ωdy ≤ Cρs, we immediately

pass from the inequality (2.8) to (2.10) as

ω
(
S
(
x, ρx

)) ≤ 4C
ρx
ω
(
B
(
x, ρx

)) ≤ 4CC4ρ
n−p
x = 8CC4ρ

2−p
x mesn−1

(
B
(
x, ρx

) ∩ Sj
)
. (2.12)

Due to the latter inequality, an estimate analogous to (2.10) will have the form

∑

ν

∫

S(xν,ρν)
ω
∣∣∇f∣∣p−1ds ≤

∑

ν

2C1ρ
p−2
ν ω

(
B
(
xν, ρν

)) ≤
∑

ν

4C1ρ
p−2+s
ν ,

∑

ν

8C1ρ
s−n+p−1
ν mesn−1

(
B
(
xν, ρν

) ∩ Sj
) ≤ 16 · 2p−1Cts−n+p−1j ω

(
Sj
)
, j = 1, 2, . . . .

(2.13)

After choosing tj sufficiently small and taking the condition s > n−p+ 1 into account, we can
make the right-hand part smaller than ε/2j .

In the case p ≥ 2, the whole reasoning of [9] is applicable. Note that only instead of the
inequality (2.10) we will have

∑

ν

∫

S(xν,ρν)
ω
∣∣∇f∣∣p−1ds ≤ C

∑

ν

ρ
p−1
ν ω

(
B
(
xν, ρν

)) ≤ C1t
p−2
j ω

(
S
j
tj

)
, (2.14)

where Sjtj is the tj neighborhood of the surface Sj . After choosing a sufficiently small tj , we
can make the right-hand part of this inequality smaller than ε/2j . This is possible because the
n-dimensional Lebesgue measure of the surface Sj is equal to zero.

Now, it remains to obtain the covering for the set of points O′′
f
. Let 1 < p < 2. Let us

decompose O′′
f
= O′′′

f
∪ O′′′′

f
, where O′′′

f
is the set of points O′′

f
, for which ∇3f /= 0. Here, we

repeat the reasoning for O′
f . As above, the set O′′′′ is divided into two parts. In one part, we

have ∇4f(x)/= 0, to which we apply the same reasoning as for O′
f
. The second part of O′′′′,

where ∇4f(x) = 0, is again divided into two parts. At the k-th step, when k(p − 1) ≥ 1 and
t > 0 is sufficiently small, this process yields the estimate

∑

ν

∫

S(xν,ρν)
ω
∣∣∇f∣∣p−1ds ≤ η

∑

ν

Cρν
k(p−1)ω

(
S
(
xν, ρν

))

≤ η
∑

ν

2Cρνk(p−1)−1ω
(
B
(
xν, ρν

)) ≤ 2ηCC3ω(D),
(2.15)

where η > 0 is arbitrary.
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Note that, in the case p ≥ 2, the foregoing estimate gives the desired results
immediately at the first step (k = 1).

Remark 2.2. It is not difficult to verify that under the assumptions of Lemma 2.1, instead of
the condition of sufficient smoothness it sufficed to assume that f(x) ∈ Cβ(D), where β ≥
min{p′, 1}.

Applying approaches similar to those in [15, Theorem 2.2, page 128] and [9], we prove
the following analogue of Landis-Gerver’s lemma.

Lemma 2.3. Let 2 ≤ p < ∞ and the function ω : R
n → [0,∞] satisfy condition (1.3) or 1 < p < 2

and let any of the following conditions be fulfilled for the function ω:

(1) condition (1.9′) is fulfilled and ω is integrable along any finite smooth n − 1-dimensional
surface;

(2) for any x ∈ D and sufficiently small ρ > 0, the condition
∫
B(x,ρ)ωdy ≤ Cρs is fulfilled by

some s > n − p + 1, where the constant C > 0 does not depend on x.

LetD be some domain lying in the spherical layer B(x0, 2r) \B(x0, r) and having limit points
on the surfaces of the spheres S(x0, 2r) and S(x0, r). Let

∑n
i,k=1 aik(x)ηiηk be the quadratic form, the

coefficients of which are well defined and continuously differentiable in the domain D and for which
the inequalities

λ
∣∣η
∣∣2 ≤

n∑

i,k=1

aik(x)ηiηk ≤ λ−1∣∣η∣∣2 (2.16)

are fulfilled for any x ∈ D, η ∈ R
n for some λ ∈ (0, 1). Assume that f : D → R is a sufficiently

smooth function.
Then, there exists a piecewise-smooth surface Σ, separating, in the domain D, the surfaces of

the spheres S(x0, r) and S(x0, 2r) and being such that

∫

Σ
ω
∣∣∇f∣∣p−2

∣∣∣∣
∂f

∂ν

∣∣∣∣ds ≤ K
(
oscDf

)p−1
ω(D)

rp
, (2.17)

where ∂f/∂ν =
∑n

j=1 aij(x)fxinj is conormal derivative on Σ, n = (n1, n2, . . . , nn) is unit orthogonal
vector to the surface Σ, and the constant K depends on p, λ, and the dimension n.

Proof. It suffices to consider the case r = 1. Indeed, after the change of variables x = ry,
the function f : D → R transforms to the function f̃ : D̃ → R, where f̃(y) = f(ry).
Also, |∇yf̃ | = |∇xf |r, ∂f̃/∂vy = (∂f/∂vx)r, ω(D̃) = ω(D)r−n. D̃ lies in the spherical layer
B(0, 2) \ B(0, 1). It suffices to show that ∂f̃/∂vy = (∂f/∂vx)r. Indeed, let a sufficiently small
element of the surface Σ satisfy the equation ϕ(x) = 0 in coordinates x. Then, after the change
of variables, this equation takes the form ϕ̃(y) = 0, where ϕ̃(y) = ϕ(ry). In other words, the
normals of the surfaces Σ and Σ̃ are related by nx = ∇xϕ/|∇xϕ| = ∇yϕ̃/|∇yϕ̃| = ny. Therefore,

∂f̃

∂vy
=

n∑

i,k=1

ãik
(
y
) ∂f̃
∂yi

ñk = r
n∑

i,k=1

aik(x)
∂f

∂xi
nk = r

∂f

∂vx
, ãik

(
y
)
= aik

(
ry
)
, i, k = 1, 2, . . . , n.

(2.18)
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Applying these equalities, from the estimate

∫

Σ

∣∣∣∇yf̃
∣∣∣
p−2
∣∣∣∣∣
∂f̃

∂vy

∣∣∣∣∣dsy ≤ K
(
osc
D̃
f̃

)p−1
ω
(
D̃
)
, (2.19)

we obtain (2.17).
Let us now prove (2.19). Following the notation and reasoning of [15] (see also [9]),

we assume that ε = ω(D)(oscf)p−1. For this ε, we find the corresponding ballsQ1, Q2, . . . , QN

of Lemma 2.1 and remove them from the domain D. Assume that D∗ = D \ ⋃N
m=1Qm and

intersect D∗ with the closed layer (1 + 1/4) ≤ |x| ≤ (1 + 3/4). Denote this intersection by D′.
On the closed set D′, we have ∇f /= 0. Let us choose some δ-neighborhood D′

δ
with δ < 1/4

so small that in D′
δ we would have |∇f | > α > 0. We consider on D′

δ the system of equations

dxi
dt

=
n∑

k=1

aik(x)
∂f

∂xk
, i = 1, 2, . . . , n. (2.20)

In D′
δ, there are no stationary points of the system (2.20), and at every point x ∈ D′

δ the
direction of the field forms with the direction of the gradient an angle different from the
straight angle. Let l(x) be the vector of the field at the point x. Then, using cos(l(x),∇f) =
(
∑n

k=1 aik(x)(∂f/∂xk),∇f)/|
∑n

k=1 aik(x)(∂f/∂xk)||∇f | > λ|∇f |2/λ−1|∇f |2 = λ2, we obtain

∣∣∣∣
∂f

∂l

∣∣∣∣ > λ
2∣∣∇f∣∣ > γα > 0, γ = λ2. (2.21)

From this inequality, it follows that inD′
δ
there are no closed trajectories and all the trajectories

have the uniformly bounded length.
Let some surface S be tangential, at each of its points, to the field direction. Then,

∫

S

ω
∣∣∇f∣∣p−2

∣∣∣∣
∂f

∂v

∣∣∣∣ds = 0, (2.22)

since the integrand is identically zero. We will use this fact in constructing the needed surface
Σ. The base of Σ consists of ruled surfaces, while the generatrices are the trajectories of the
system (2.20). Note that they will add nothing to the integral in which we are interested.
These surfaces will have the form of fine tubes which will cover the entire D′. Let us insert
partitions into some of the tubes. The integral over these partitions will not any longer be
equal to zero, but we can make it infinitesimal. The construction of tubes practically repeats
that given in [15, pages 129–132].

Denote by E the intersection of D′ with the sphere S0
(1+3/4). Let N be the set of points

x ∈ E, where the direction of the field of the system (2.20) is tangential to the sphere S0
(1+3/4).

At the points x ∈ N, we have ∂f/∂v = 0, where ∂/∂v is the derivative with respect to the
conormal to the sphere S0

(1+3/4). Cover N by a set G, open on the sphere S0
(1+3/4) and being

such that

∫

G

ω
∣∣∇f∣∣p−2

∣∣∣∣
∂f

∂v

∣∣∣∣ds ≤ ω(D)
(
oscf

)p−1
. (2.23)
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Put E′ = E \ G. At the points x ∈ E′, the direction of the field is transversal to the sphere.
Cover E′ on the sphere S0

(1+3/4) by a finite number of uncovered domains with piecewise-
smooth boundaries. We will call them cells. We will choose their diameters so small that at the
points of the cells the field would be transversal to the sphere and the bundle of trajectories
passing through each of the cells would diverge by δ/2n at most. The surface with trajectories
lying inside the ball |x| < (1 + 3/4) and passing through the cell boundary will be called a
tube. Thus, we obtain a finite number of tubes. We will call a tube a through tube if, without
intersecting this tube, we can connect by a broken line a point of its corresponding cell with
a point of the sphere S0

(1+1/4)−(δ/2) within the limits of the intersection of D′ with a spherical
layer 1 + 1/4 − δ < |x| < 1 + 3/4. Such through tubes are denoted by T1, T2, . . . , Ts. If every
through tube is partitioned, then the spheres S0

1 and S
0
2 are separated inD by the set-theoretic

sum of nonthrough tubes, partitions T1, T2, . . . , Ts, the spheres S1, S2, . . . , SN , and the set G on
the sphere S0

(1+3/4).
Let us now take care to choose partitions in such a way that the integral∫

ω|∇f |p−2|∂f/∂v|ds over them would have the value which we need. Denote by Ui the
domain bounded by Ti. Choose any trajectory on this tube. Denote it by Li. The length μ1Li
of the curve Li satisfies the inequality μ1Li > 1/2. Introduce, on Li, the parameter l which is
the length of the arc counted from S0

(1+1/4). Denote by σi(l) the sectionUi with a hypersurface
which is orthogonal, at the point l, to the trajectory Li. Let the diameter at the beginning of
the tube be so small that

∫
Li
(
∫
σi(l)

ωds)dl ≤ 2ω(Ui). Then, the set H of points l ∈ Li, where∫
σi(l)

ωds > 8ω(Ui), satisfies the inequality μ1Li < 1/4. Thus, for E = Li \H, the inequality
μ1Li > 1/4 is valid and

∫

σi(l)
ωds < 8ω(Ui) for l ∈ E. (2.24)

At the points of the curve Li, the derivative ∂f/∂l preserves the sign and therefore
∫

E

∣∣∣∣
∂f

∂l

∣∣∣∣dl ≤
∫

Li

∣∣∣∣
∂f

∂l

∣∣∣∣dl < osc
D′
δ

f. (2.25)

Hence, using μ1Li > 1/4 and the mean value theorem, we see that there exists a point l0 ∈
E such that |∂f/∂l|l=l0 ≤ 4oscf . On the other hand, since, by virtue of (2.21), |∂f/∂l|l=l0 ≥
γ |∇f |l=l0 , we have |∇f |p−1|l=l0 ≤ (4oscf)p−1γ1−p. This together with (2.24) gives the estimate

( ∣∣∇f∣∣p−1
∣∣∣
l=l0

)∫

σi(l0)
ωds ≤ C(p, γ)ω(Ui)

(
oscf

)p−1
. (2.26)

Let us now choose a cell diameter so small that
∫

σi(l0)

∣∣∇f∣∣p−1ωds ≤ 2C
(
p, γ
)
ω(Ui)

(
oscf

)p−1
. (2.27)

This can be done since the derivatives ∂f/∂xk, k = 1, 2, . . . , n, are uniformly continuous.
Therefore,

s∑

i=1

∫

σi(l0)

∣∣∇f∣∣p−1ωds ≤ 4C
(
p, γ
)
ω(Ui)

(
oscf

)p−1
. (2.28)
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Denote by Σ the set-theoretic sum of all nonthrough tubes, all σi(l0), all spheres Si, and the
set G on the sphere S0

(1+3/4)r . Then, from Lemma 2.1 and (2.22)–(2.28), we obtain

∫

Σ

∣∣∇f∣∣p−2
∣∣∣∣
∂f

∂v

∣∣∣∣ωds ≤ C(p, n, γ)ω(Ui)
(
oscf

)p−1
. (2.29)

Lemma 2.3 is proved.

In this paper, we give the complete proof of Theorem 1.7. Some part of the proof of
sufficiency is in fact identical to the proof given in [9]. The method of proving Theorem 1.8 is
analogous to the method [10], where the nonweight case was considered.

Proof of Theorem 1.7 (Approximation). Let Λ−p+(p−1)α
ω (E) = 0 and u ∈ Cα(D); let u ∈ W1

pω,loc(D \
E) be a solution of (1.1). Denote by uj a mean value of the function u with smooth kernel ρ
with finite support, u(j) = ρ1/j ∗ u = jn

∫
Rn ρ((x − y)j)u(y)dy, ∫

Rn ρ(x)dx = 1, j ∈ N. Then,
it is obvious that u(j) ∈ C∞(D), j = 1, 2, . . .. Moreover, uj → u uniformly in any subdomain
G ⊂ D. Also, for any open set E′ ⊃ E contained in G, u(j) → u in the norm of the space
W1

pω(G \ E′) (see [2, 16]). Since, by condition (1.15), we have mesnE = 0, it can be assumed
that mesnE′ < η, where η > 0 is an arbitrary number.

Let ε > 0 be an arbitrary number. Cover the setE by a finite system of balls {Bν}ν=1,2,...,N ,
⋃N
ν=1 Bν ⊃ E such that diamBν < δ,

N∑

ν=1

r
−p+(p−1)α
ν ω(Bν) < ε. (2.30)

Assume that the number δ = δ(ε, η) is so small that the set Γ′′ =
⋃N
ν=1(4Bν) lies in E

′.
For every ν, there exists, by virtue of Lemma 2.3 and inequality (1.31), a piecewise-

smooth surface γ (j)ν , ν = 1, 2, . . . ,N, j = 1, 2, . . ., separating the surfaces of the spheres ∂(2Bν)
and ∂(4Bν), such that

∫

γ
j
ν

ω
∣∣∣∇u(j)

∣∣∣
p−2
∣∣∣∣∣
∂u(j)

∂v

∣∣∣∣∣ds ≤ Kr
−p
ν

(
osc
2Bν

u(j)
)p−1

ω(4Bν). (2.31)

Denote by Γ(j)ν the interiority of the surface γ (j)ν . Then, Γ(j) =
⋃
ν Γ

(j)
ν ⊃ Γ′ =

⋃
ν(2Bν). Assume

that σ(j)
ν = Γ(j)∩γν. Let σ(j)

ν /= ∅ for some ν. Then, for ν, the inequality (2.31) implies the estimate

∫

σ
(j)
ν

ω
∣∣∣∇u(j)

∣∣∣
p−2
∣∣∣∣∣
∂u(j)

∂v

∣∣∣∣∣ds ≤ Kr
−p
ν

(
osc
2Bν

u(j)
)p−1

ω(4Bν). (2.32)

It is obvious that the set G \ Γ′ is a strictly interior subdomain of the domain D \ E.
Thus, we have the identity

n∑

i,k=1

∫

G\Γ′
ω|∇u|p−2bikuxkψxidx = 0, (2.33)
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for any ψ ∈ C1
0(D \ Γ′). From this, by virtue of the convergence ‖u(j) − u‖W1

pω(G\Γ′) → 0 as

j → ∞ and the fact that the ‖b(j)
ik
‖ satisfies (2.16) by some λ > 0, we find

n∑

i,k=1

∫

G\Γ′
ω
∣∣∣∇u(j)

∣∣∣
p−2
b
(j)
ik
u
(j)
xk ψxidx = δj . (2.34)

This follows from the fact that the integrand is a system of equi-integrable functions: for any
subset g ⊂ D \ Γ′, we have

n∑

i,k=1

∫

g

ω

∣∣∣∣b
(j)
ik

∣∣∣∇u(j)
∣∣∣
p−2
u
(j)
xi ψxk

∣∣∣∣dx ≤ C
∫

g

ω
∣∣∣∇u(j)

∣∣∣
p−1∣∣∇ψ∣∣dx

≤ 2C

(∫

g

ω|∇u|pdx
)1/p′(∫

g

ω
∣∣∇ψ∣∣pdx

)1/p

−→ 0

(2.35)

as mesng → 0. Here and in the sequel, speaking in general, we denote by δj different
sequences tending to zero as j → ∞.

Green’s Formulae for Approximations

Let now ϕ ∈ C1
0(D) be an arbitrary function. Assume that ψ = ϕξ(d(x)/τ), where 0 ≤ ξ(s) ≤ 1

is an infinitely differentiable function equal to zero for s ≤ 0 and to one for s ≥ 1 and τ > 0
is a parameter, for all ϕ ∈ C1

0(D), d(x) = dist(x,Γj). It is obvious that ψ ∈ C1
0(D \ Γj). Then,

(2.34) implies, for j = 1, 2, . . .,

n∑

i,k=1

∫

D\Γ′
ω
∣∣∣∇u(j)

∣∣∣
p−2
b
(j)
ik u

(j)
xk ϕxiξ dx +

n∑

i,k=1

1
τ

∫

D\Γ′
ω
∣∣∣∇u(j)

∣∣∣
p−2
b
(j)
ik u

(j)
xk dxiξ

′
(
d(x)
τ

)
ϕdx = δj .

(2.36)

By virtue of the majorant Lebesgue theorem, for τ → 0, the first summand in (2.36) tends
to the limit

∑n
i,k=1

∫
D\Γ(j) ω|∇u(j)|

p−2
b
(j)
ik u

(j)
xk ϕxidx. Let us now find the limit of the second

summand. Applying the Federer formula, we have

n∑

i,k=1

1
τ

∫

D\Γ′
ξ′
(
d(x)
τ

)
ω
∣∣∣∇u(j)

∣∣∣
p−2
b
(j)
ik
u
(j)
xk ϕxidx

=
n∑

i,k=1

1
τ

∫ τ

0

⎛

⎝
∫

{d(x)=t∩(D\Γ′)}
ϕω
∣∣∣∇u(j)

∣∣∣
p−2 b(j)

ik
u
j
xkdxi

|∇d| dst

⎞

⎠ξ′
(
t

τ

)
dt.

(2.37)
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Applying the mean value theorem, for some t0 ∈ (0, τ), we obtain

=
n∑

i,k=1

⎛

⎝
∫

d(x)=t0
ϕω
∣∣∣∇uj

∣∣∣
p−2 b(j)

ik
uxkdxi
|∇d| dst0

⎞

⎠
(
1
τ

∫ τ

0
ξ′
(
t

τ

)
dt

)

−→
n∑

i,k=1

∫

d(x)=t0
ϕω
∣∣∣∇u(j)

∣∣∣
p−2 b(j)

ik
u
(j)
xk dxi

|∇d| dst0

−→
∫

∂Γ(j)
ϕω
∣∣∣∇u(j)

∣∣∣
p−2 ∂u(j)

∂v
ds as τ −→ 0.

(2.38)

Taking this limit relation into account, from (2.36), we obtain, as τ → 0, the following
equality which is Green’ formula for approximation function uj :

n∑

i,k=1

∫

D\Γ(j)
ω
∣∣∣∇u(j)

∣∣∣
p−2
b
(j)
ik
u
(j)
xk ϕxidx =

∫

∂Γ(j)
ϕω
∣∣∣∇u(j)

∣∣∣
p−2 ∂u(j)

∂v
ds + δj . (2.39)

Whence, in view of the inequality |ϕ(x)| ≤ ‖ϕ‖C(D), x ∈ D, we have

∣∣∣∣∣

n∑

i,k=1

∫

D\Γ(j)
ω
∣∣∣∇u(j)

∣∣∣
p−2
b
(j)
ik
u
(j)
xk ϕxidx

∣∣∣∣∣ ≤
∥∥ϕ
∥∥
C(D)

∫

∂Γ(j)
ω
∣∣∣∇u(j)

∣∣∣
p−2
∣∣∣∣∣
∂u(j)

∂v

∣∣∣∣∣ds + δj

≤ ∥∥ϕ∥∥C(D)

∑

ν

∫

γν

ω
∣∣∣∇u(j)

∣∣∣
p−2
∣∣∣∣∣
∂u(j)

∂v

∣∣∣∣∣ds + δj .

(2.40)

Using the convergence ‖u(j) − u‖W1
pω(G\Γ′) → 0 (j → ∞), Lemma 1.6, conditions (1.2),

and Hölder inequality, we have the estimate for 1 < p < 2:

∣∣∣∣∣

n∑

i,k=1

∫

D\Γ(j)
ωb

(j)
ik

(∣∣∣∇u(j)
∣∣∣
p−2
u
(j)
xi − |∇u|p−2uxi

)
ϕxkdx

∣∣∣∣∣

≤ C
∫

D\Γ′
ω
∣∣∣∇
(
u(j) − u

)∣∣∣
p−1∣∣∇ϕ∣∣dx

≤ C
(∫

D\Γ′
ω
∣∣∣∇
(
u(j) − u

)∣∣∣
p
dx

)1/p′(∫

D\Γ′
ω
∣∣∇ϕ∣∣pdx

)1/p

= δj −→ 0 as j −→ ∞.

(2.41)



International Journal of Differential Equations 17

An analogous estimate for 2 ≤ p <∞ has the form

∣∣∣∣∣

n∑

i,k=1

∫

D\Γ(j)
ωb

(j)
ik

(∣∣∣∇u(j)
∣∣∣
p−2
u
(j)
xi − |∇u|p−2uxi

)
ϕxkdx

∣∣∣∣∣

≤ C
∫

D\Γ′
ω
∣∣∣∇
(
u(j) − u

)∣∣∣
(
|∇u|p−2 +

∣∣∣∇u(j)
∣∣∣
p−2)∣∣∇ϕ∣∣dx

≤ C
(∫

D\Γ′
ω
∣∣∣∇
(
u(j) − u

)∣∣∣
p
dx

)1/p(∫

D\Γ′
ω
(
|∇u|p +

∣∣∣∇u(j)
∣∣∣
p)
dx

)(p−2)/p

×
(∫

D

ω
∣∣∇ϕ∣∣pdx

)1/(p−2)

≤ 2C
∥∥∇ϕ∥∥p′

Lpω(D)‖∇u‖
p−2
Lpω(D\Γ′)

∥∥∥∇
(
u(j) − u

)∥∥∥
Lpω(D\Γ′)

= δj −→ 0 as j −→ ∞.

(2.42)

The Belongness u ∈W1
pω(D)

Taking into account (2.41) and (2.42), the estimate (2.32), and the uniform convergence u(j) →
u in G, convergence a.e. b(j)

ik
→ bik, we find

∣∣∣∣∣

n∑

i,k=1

∫

D\Γ(j)
ω|∇u|p−2bikuxkϕxidx

∣∣∣∣∣ ≤ C
∥∥ϕ
∥∥
C(D)

∑

ν

r
−p
ν

(
osc
2Bν

u(j)
)p−1

ω(Bν) + δj

≤ C∥∥ϕ∥∥C(D)

∑

ν

r
−p+(p−1)α
ν ω(Bν) + δj .

(2.43)

Therefore,

n∑

i,k=1

∫

D\Γj
ω|∇u|p−2bikuxkϕxidx = O(ε) + δj . (2.44)

Taking into account the density of the class of functions C1
0(D) in the space Ẇ1

pω(D) and
the fact that u ∈ W1

pω,loc(D \ E), we also come to the same equality (2.44) for any function
ϕ ∈ Ẇ1

pω(D). Assuming now that, in (2.44) ϕ = uξp, where ξ ∈ C∞
0 (D) is a positive function

equal to one in G, since Γj ⊂ Γ′′ and the integrand is positive, we obtain

λ

∫

G\Γ′′
ω|∇u|pdx ≤

n∑

i,k=1

∫

D\Γj
ωξ|∇u|p−2bikuxiuxkdx ≤

∫

D\Γj
ωξp−1|∇u|p−1|∇ξ||u|dx +O(ε) + βj .

(2.45)

Whence, by means of Young’s inequality, we derive

∫

D\Γ′′
ω|∇u|pdx ≤ C

∫

D

ω|∇ξ|p|u|pdx = O(1). (2.46)

Then, by virtue of the arbitrariness of ε, η (mesnE = 0), we obtain u ∈W1
pω(D).
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proof of that u(x) is a solution in D. Let us return to relation (2.44), from which, in view of u ∈
W1

pω(D) and Γ′′ ⊂ E′, we have

n∑

i,k=1

∫

D\E′
ω|∇u|p−2bikuxkϕxidx = O(ε) (2.47)

for any ϕ ∈ Ẇ1
pω(D). By virtue of the arbitrariness of ε, η, we find

n∑

i,k=1

∫

D

ω|∇u|p−2bikuxkϕxidx = 0, (2.48)

that is, the function u ∈ W1
pω(D) is a solution of (1.5) throughout the domain D and thereby

of (1.1), too.

Theorem 1.7 is proved.

Proof of Theorem 1.8. Let Λ−p+(p−1)α
ω (E) > 0 for some compact set E ⊂ D. Let us use the recent

results for a Frosman type lemma with measure [11, 17] and follow the reasoning of the
original paper [3]. We come to the following conclusion. There exists a Radon measure μ
with a support on the set E, such that μ(E) > 0 and for any ball B = B(x, r) we have

μ(B) ≤ Cr−p+(p−1)αω(B). (2.49)

Let u ∈ Ẇ1
pω be a solution of the equation

div(A(x, u,∇u)) = μ (2.50)

in the domain D = B(0, R), where B is a sufficiently large ball. The solution of (2.50) is
understood in the sense as follows: the integral identity

∫

D

A(x, u,∇u) · ∇ϕdx =
∫

D

ϕdμ (2.51)

is fulfilled for any test function ϕ ∈ Ẇ1
pω(D). Such a solution exists by virtue of μ ∈

(W1
pω(D))∗. Let us show the latter inclusion.

By virtue of ω ∈ Ap for q > p and the fact that q is sufficiently close to p, inequality
(2.49) implies for 0 < ρ < r:

r1−n
(
μ
(
B
(
x, ρ
)))1/q(

σ
(
B
(
x, ρ
)))1/p′ ≤ Cρα(p−1)/q−(n−1)(1−p/q)(σ(B(x, ρ)))(p−1)(1/p−1/q),

(37′)
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where σ(B(x, ρ)) =
∫
B(x,ρ)ω

−1/(p−1)(y)dy. This inequality defines the constant in the Adams
inequality

(∫

B(0,r)
|u|qdμ

)1/q

≤ Cp,q(r)

(∫

B(0,r)
ω|∇u|pdx

)1/p

, (2.52)

as

Cp,q(r) = sup
x∈B(0,r),0<ρ<4r

ρ1−n
(
μ
(
B
(
x, ρ
)))1/q(

σ
(
B
(
x, ρ
)))1/p′

. (2.53)

Then, by virtue of (37′), we have

Cp,q(r) ≤ Crα(p−1)/q−(n−1)(1−p/q)(σ(B(0, r)))(p−1)(1/p−1/q). (37′′)

Whence, by virtue of Hölder inequality, we obtain

∫

B(0,r)
|u|dμ ≤ Cp,q(r)

(
μ(B(0, r))

)1/q′
(∫

B(0,r)
ω|∇u|pdx

)1/p

. (2.54)

Taking into account inequalities (2.49), (37′′) and the Ap-condition, for any function u ∈
C1

0(B(0, r)), we have

∫

B(0,r)
|u|dμ ≤ C(ω(B(0, r)))1/p′r1−p+(p−1)α

(∫

B(0,r)
ω|∇u|pdx

)1/p

, (38′)

whence it follows that μ ∈ (W1
pω(D))∗.

Let us, following ideas of [10], show that u(x) ∈ Cα(D). Let h ∈ W1
pω(B(x0, r)) be a

solution of the equation

div(A(x, h,∇h)) = 0 (2.55)

with the condition h − u ∈ Ẇ1
pω(B(x0, r)). Then, for it, we have the integral identity

∫

B(x0,r)
(A(x, u,∇u) −A(x, h,∇h)) · ∇v dx =

∫

B(x0,r)
v dμ, (2.56)
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where v = u−h. The integrand in the left-hand part of (2.56) is positive. Therefore, for ρ < r/2,
we have

∫

B(x0,ρ)
(A(x, u,∇u) · ∇u +A(x, h,∇h) · ∇h)dx

=
∫

B(x0,ρ)
(A(x, h,∇h)∇u +A(x, u,∇u)∇h)dx +

∫

B(x0,r)
v dμ.

(2.57)

By virtue of Young’s inequality and conditions (1.2), (1.3), from (2.57), we find

∫

B(x0,ρ)
ω|∇u|pdx ≤ C

[∫

B(x0,ρ)
ω|∇h|pdx +

∫

B(x0,r)
v dμ

]
; C = C

(
n, p, λ

)
. (2.58)

From (2.55), we obtain

∫

B(x0,r)
A(x, h,∇h) · ∇v dx = 0, (2.59)

whence by virtue of Hölder inequality, we find

∫

B(x0,r)
ω|∇h|pdx ≤ C

∫

B(x0,r)
ω|∇u|pdx; C = C

(
n, p, λ

)
. (41′)

For the first summand of (2.58), we have the following estimates. According to [14], there
exists a positive number κ = κ(n, p, λ, Cp) ∈ (0, 1) such that for the solution of (1.1) the
inequality

osc
B(x0,r1)

h ≤ C
(
r1
r2

)κ
osc

B(x0,r2)
h, (2.60)

where C = C(n, p, Cp, λ, κ), is fulfilled for any r1 < r2. If we take into account the Caccioppoli
type estimate (see [14])

∫

B(x0,r1)
ω|∇h|pdx ≤ C

(r2 − r1)p
(

osc
B(x0,r2)

h

)p
ω(B(x0, r2)), (2.61)

then, by virtue of Moser’s inequality, we obtain

(
sup

B(x0,r2)
h

)p

≤ C

ω(B(x0, 2r2))

∫

B(x0,2r2)
ω
(
h − h−r2

)p
dx. (2.62)
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From (2.60), we derive the estimate

∫

B(x0,ρ)
ω|∇h|pdx ≤ C

(
ρ

r

)−p+pκω
(
B
(
x0, ρ

))

ω(B(x0, r))

∫

B(x0,r)
ω|∇h|pdx. (2.63)

Indeed,

∫

B(x0,ρ)
ω|∇h|pdx ≤ C

ρ

∫

B(x0,ρ)
ω|∇h|p−1

∣∣∣h − h−ρ
∣∣∣
p
dx ≤ C

ρp

∫

B(x0,ρ)
ω
∣∣∣h − h−ρ

∣∣∣
p
dx

≤ C

ρp

(
osc

B(x0,ρ)
h

)p
ω
(
B
(
x0, ρ

)) ≤ C

ρp

(
ρ

r

)κp(
osc

B(x0,r/2)
h

)p
ω
(
B
(
x0, ρ

))

≤ C

ρp

(
ρ

r

)κp
ω
(
B
(
x0, ρ

))
(

1
ω(B(x0, r))

∫

B(x0,r)

∣∣h − h−r
∣∣pdx

)

≤ C

ρp

(
ρ

r

)−p+pκω
(
B
(
x0, ρ

))

ω(B(x0, r))

∫

B(x0,r)
ω|∇h|pdx,

(2.64)

where h−r is the lower bound of the function h in the ball B(x0, r). Inequality (2.63) is proved.
Using the estimate (2.63) in (2.58), by virtue of (41′), we have for 0 < ρ < r/2

∫

B(x0,ρ)
ω|∇u|pdx ≤ C

(
ρ

r

)−p+pκω
(
B
(
x0, ρ

))

ω(B(x0, r))

∫

B(x0,r)
ω|∇u|pdx +

∫

B(x0,r)
v dμ. (2.65)

Now, let us derive an estimate for the last summand in (2.65). To this end, we use
inequality (38′) to obtain

(∫

B(x0,r)
v dμ

)
≤ C(p, n, Cp

)
(∫

B(x0,r)
ω|∇v|pdx

)1/p

, (2.66)

where for the constant we have the estimate

C
(
p, n, Cp

) ≤ Cr1−p+(p−1)α(ω(B(x0, r)))1/p
′

(2.67)

By virtue of (2.65) and (2.67), we find

∫

B(x0,ρ)
ω|∇u|pdx ≤ C

(
ρ

r

)−p+pκω
(
B
(
x0, ρ

))

ω(B(x0, r))

∫

B(x0,r)
ω|∇u|pdx

+ C
[
ω(B(x0, r))
r(1−α)p

]1/p′(∫

B(x0,r)
ω|∇u|pdx

)1/p

,

(2.68)
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whence, by virtue of Young’s inequality, we obtain

∫

B(x0,ρ)
ω|∇u|pdx ≤ C

[(
ρ

r

)−p+pκω
(
B
(
x0, ρ

))

ω(B(x0, r))
+ ε

]∫

B(x0,r)
ω|∇u|pdx + Cεω(B(x0, r))r−p+pα.

(2.69)

Assuming that 0 < α < κ, from (2.69) and Lemma 1.5, we obtain the estimate

∫

B(x0,ρ)
ω|∇u|pdx ≤ C

(
ρ

r

)−p+pαω
(
B
(
x0, ρ

))

ω(B(x0, r))

∫

B(x0,r)
ω|∇u|pdx + Cω

(
B
(
x0, ρ

))
ρ−p+pα.

(2.70)

This inequality implies

∫

B(x0,ρ)
|∇u|dx ≤

(∫

B(x0,ρ)
ω|∇u|pdx

)1/p(∫

B(x0,ρ)
ω−(1/(p−1))dx

)1/p′

≤ C
(∫

B(x0,ρ)
ωdx

)1/p(∫

B(x0,ρ)
ω−(1/(p−1))dx

)1/p′

ρ−1+α ≤ Cρn−1+α,

(2.71)

whence, by virtue of the Poincaré inequality, we obtain

∫

B(x0,ρ)

∣∣∣u − (u)ρ
∣∣∣
p
dx ≤ Cρn+α, (2.72)

where (u)ρ is average of the function uwith respect to the ball B(x0, ρ).
By (2.72) and Campanato’s Lemma 1.4, we find u ∈ Cα.
Theorem 1.8 is proved.
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