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We are concerned with the valuation of European options in the Heston stochastic volatility
model with correlation. Based on Mellin transforms, we present new solutions for the price of
European options and hedging parameters. In contrast to Fourier-based approaches, where the
transformation variable is usually the log-stock price at maturity, our framework focuses on
directly transforming the current stock price. Our solution has the nice feature that it requires
only a single integration. We make numerical tests to compare our results with Heston’s solution
based on Fourier inversion and investigate the accuracy of the derived pricing formulae.

1. Introduction

The pricing methodology proposed by Black and Scholes [1] and Merton [2] is maybe the
most significant and influential development in option pricing theory. However, the assump-
tions underlying the original works were questioned ab initio and became the subject of a
wide theoretical and empirical study. Soon it became clear that extensions are necessary to fit
the empirical data. The main drawback in the original Black/Scholes/Merton (BSM) model
is the assumption of a constant volatility.

To reflect the empirical evidence of a nonconstant volatility and to explain the so-called
volatility smile, different approaches were developed. Dupire [3] applies a partial differential
equation (PDE)method and assumes that volatility dynamics can be modeled as a determin-
istic function of the stock price and time.

A different approach is proposed by Sircar and Papanicolaou [4]. Based on the PDE
framework, they develop amethodology that is independent of a particular volatility process.
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The result is an asymptotic approximation consisting of a BSM-like price plus a Gaussian
variable capturing the risk from the volatility component.

The majority of the financial community, however, focuses on stochastic volatility
models. These models assume that volatility itself is a random process and fluctuates
over time. Stochastic volatility models were first studied by Johnson and Shanno [5], Hull
and White [6], Scott [7], and Wiggins [8]. Other models for the volatility dynamics were
proposed by E. Stein and J. Stein [9], Heston [10], Schöbel and Zhu [11], and Rogers and
Veraart [12]. In all these models the stochastic process governing the asset price dynamics
is driven by a subordinated stochastic volatility process that may or may not be inde-
pendent.

While the early models could not produce closed-form formulae, it was E. Stein and
J. Stein [9] (S&S) who first succeeded in deriving an analytical solution. Assuming that
volatility follows amean revertingOrnstein-Uhlenbeck process and is uncorrelatedwith asset
returns, they present an analytic expression for the density function of asset returns for the
purpose of option valuation. Schöbel and Zhu [11] generalize the S&S model to the case
of nonzero correlation between instantaneous volatilities and asset returns. They present a
closed-form solution for European options and discuss additional features of the volatility
dynamics.

The maybe most popular stochastic volatility model was introduced by Heston [10].
In his influential paper he presents a new approach for a closed-form valuation of options
specifying the dynamics of the squared volatility (variance) as a square-root process and ap-
plying Fourier inversion techniques for the pricing procedure. The characteristic function
approach turned out to be a very powerful tool. As a natural consequence it became standard
in option pricing theory and was refined and extended in various directions (Bates [13], Carr
and Madan [14], Bakshi and Madan [15], Lewis [16], Lee [17], Kahl and Jäckel [18], Kruse
and Nögel [19], Fahrner [20], or Lord and Kahl [21] among others). See also the study by
Duffie et al. [22, 23] for the mathematical foundations of affine processes.

Beside Fourier and Laplace transforms, there are other interesting integral transforms
used in theoretical and applied mathematics. Specifically, the Mellin transform gained great
popularity in complex analysis and analytic number theory for its applications to problems
related to the Gamma function, the Riemann zeta function, and other Dirichlet series. Its ap-
plicability to problems arising in finance theory has not been studiedmuch yet [24, 25]. Panini
and Srivastav introduce in [25]Mellin transforms in the theory of option pricing and use the
new approach to value European and American plain vanilla and basket options on non-di-
vidend paying stocks. The approach is extended in [24] to power options with a nonlinear
payoff and American options written on dividend paying assets. The purpose of this paper is
to show how the framework can be extended to the stochastic volatility problem. We derive
an equivalent representation of the solution and discuss its interesting features.

The paper is structured as follows. In Section 2 we give a formulation of the pricing
problem for European options in the square-root stochastic volatility model. Based on Mellin
transforms, the solution for puts is presented in Section 3. Section 4 is devoted to further
analysis of our new solution. We provide a direct connection to Heston’s pricing formula and
give closed-form expressions for hedging parameters. Also, an explicit solution for European
calls is presented. Numerical calculations are made in Section 5. We test the accuracy of
our closed-form solutions for a variety of parameter combinations. Section 6 concludes
this paper.
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2. Problem Statement

Let S(t) = St be the price of a dividend paying stock at time t and Vt its instantaneous
variance. Following Heston we assume that the risk neutral dynamics of the asset price are
governed by the system of stochastic differential equations (SDEs):

dSt =
(
r − q

)
Stdt +

√
Vt St dWt,

dVt = κ(θ − Vt)dt + ξ
√
Vt dZt,

(2.1)

with initial values S0, V0 ∈ (0,∞) and where r, q, κ, θ, ξ > 0. The parameter r is the risk-free
interest rate, and q is the dividend yield. Both are assumed to be constant over time. κ is
the speed of mean reversion to the mean reversion level θ, and ξ is the so-called volatility
of volatility. Wt and Zt are two correlated Brownian motions with dWtdZt = ρdt, where
ρ ∈ (−1, 1) is the correlation coefficient. The Feller condition κθ > (1/2)ξ2 guarantees that
the variance process never reaches zero and always stays positive. For practical uses it is also
worth mentioning that in most cases the correlation coefficient ρ is negative. This means that
an up move in the asset is normally accompanied by a down move in volatility.

Let PE(S, V, t) be the current price of a European put option with strike price X and
maturity T . The option guarantees its holder a terminal payoff given by

PE(S, V, T) = max(X − S(T), 0). (2.2)

Using arbitrage arguments it is straightforward to derive a two-dimensional partial differen-
tial equation (PDE) that must be satisfied by any derivative F written on S and V :

Ft +
(
r − q

)
SFS +

1
2
VS2FSS +

(
κ(θ − V ) − λξ

√
V
)
FV +

1
2
ξ2VFVV + ρξVSFSV − rF = 0,

(2.3)

on 0 < S, V < ∞, 0 < t < T (throughout this paper partial derivatives with respect to the
underlying variables will be denoted by subscripts) (see [16]). λ is called the market price
of volatility risk. Heston provides some reasons for the assumption that λ is proportional to
volatility, that is, λ = k

√
V for some constant k. Therefore, λξ

√
V = kξV = λ∗V (say). Hence,

without loss of generality, λ can be set to zero as has been done in [26, 27]. For a constant
volatility the two-dimensional PDE reduces to the fundamental PDE due to Black/Scholes
and Merton and admits a closed-form solution given by the celebrated BSM formula. If F is
a European put option, that is, F(S, V, t) = PE(S, V, t), then we have

PE
t +

(
r − q

)
SPE

S +
1
2
VS2PE

SS + κ(θ − V )PE
V +

1
2
ξ2VPE

VV + ρξVSPE
SV − rPE = 0, (2.4)
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where PE(S, V, t) : R+ × R+ × [0, T] → R+. The boundary conditions are given by

PE(S, V, T) = max(X − S(T), 0),

PE(0, V, t) = Xe−r(T−t),

PE(S, 0, t) = max
(
Xe−r(T−t) − S(t)e−q(T−t), 0

)
,

lim
S→∞

PE(S, V, t) = 0,

(2.5)

lim
V →∞

PE(S, V, t) = Xe−r(T−t). (2.6)

The first condition is the terminal condition. It specifies the final payoff of the option. The
second condition states that for a stock price of zero the put price must equal the discounted
strike price. The third condition specifies the payoff for a variance (volatility) of zero. In this
case the underlying asset evolves completely deterministically and the put price equals its
lower bound derived by arbitrage considerations. The next condition describes the option’s
price for ever-increasing asset prices. Obviously, since a put option gives its holder the right
to sell the asset the price will tend to zero if S tends to infinity. Finally, notice that if variance
(volatility) becomes infinite the current asset price contains no information about the terminal
payoff of the derivative security, except that the put entitles its holder to sell the asset forX. In
this case the put price must equal the discounted strike price, that is, its upper bound, again
derived by arbitrage arguments.

In a similar manner the European call option pricing problem with solution CE(S, V, t)
is characterized as the unique solution of (2.4) subject to

CE(S, V, T) = max(S(T) −X, 0),

CE(0, V, t) = 0,

CE(S, 0, t) = max
(
S(t)e−q(T−t) −Xe−r(T−t), 0

)
,

lim
S→∞

CE(S, V, t) = ∞,

lim
V →∞

CE(S, V, t) = S(t)e−q(T−t).

(2.7)

3. Analytic Solution Using Mellin Transforms

The objective of this section is to solve (2.4) subject to (2.5)–(2.6) in (semi) closed form. The
derivation of a solution is based on Mellin transforms. For a locally Lebesgue integrable
function f(x), x ∈ R+, the Mellin transform M(f(x), ω), ω ∈ C, is defined by

M
(
f(x), ω

)
:=f̃(ω) =

∫∞

0
f(x) xω−1 dx. (3.1)

As a complex function the Mellin transform is defined on a vertical strip in the ω-plane,
whose boundaries are specified by the asymptotic behavior of the function f(x) as x → 0+
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and x → ∞ (Fourier transforms (at least those which are typical in option pricing) usually
exist in horizontal strips of the complex plane. This is the key conceptual difference between
the two frameworks). For conditions that guarantee the existence and the connection to
Fourier and Laplace transforms, see [28] or [29]. Conversely, if f̃(ω) is a continuous, integra-
ble function with fundamental strip (a, b), then, if c is such that a < c < b and f̃(c + it) is
integrable, the inverse of the Mellin transform is given by

f(x) = M−1
(
f̃(ω)

)
=

1
2πi

∫ c+i∞

c−i∞
f̃(ω)x−ωdω. (3.2)

Let P̃E = P̃E(ω,V, t) denote the Mellin transform of PE(S, V, t). It is easily verified that
P̃E exists in the entire half plane with Re(ω) > 0, where Re(ω) denotes the real part of ω.
A straightforward application to (2.4) gives

P̃E
t + (a1V + b1)P̃E

V + (a2V + b2)P̃E
VV + (a0V + b0)P̃E = 0, (3.3)

where

a1 = −(ωρξ + κ
)
, b1 = κθ,

a2 =
1
2
ξ2, b2 = 0,

a0 =
1
2
ω(ω + 1), b0 = qω − r(ω + 1).

(3.4)

This is a one-dimensional PDE in the complex plane with nonconstant coefficients. To provide
a unique solution for 0 < V < ∞, 0 < t < T , we need to incorporate the boundary conditions
from the previous section. The transformed terminal and boundary conditions are given by,
respectively,

P̃E(ω,V, T) = Xω+1
(

1
ω

− 1
ω + 1

)
, (3.5)

P̃E(ω, 0, t) = e(qω−r(ω+1))(T−t) ·Xω+1
(

1
ω

− 1
ω + 1

)
, (3.6)

and condition (2.6) becomes

lim
V →∞

∣∣∣P̃E(ω,V, t)
∣∣∣ = ∞. (3.7)

Now, we change the time variable from t to τ = T − t and convert the backward in time
PDE into a forward in time PDE with solution domain 0 < V, τ < ∞. With P̃E(ω,V, t) =
P̃E(ω,V, τ), the resulting equation is

−P̃E
τ + (a1V + b1)P̃E

V + (a2V + b2)P̃E
VV + (a0V + b0)P̃E = 0, (3.8)
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where the coefficients a0, a1, a2, b0, b1, and b2 are given in (3.4) and the terminal condition
(3.5) becomes an initial condition

P̃E(ω,V, 0) = Xω+1
(

1
ω

− 1
ω + 1

)
. (3.9)

Additionally we have

P̃E(ω, 0, τ) = e(qω−r(ω+1))τ ·Xω+1
(

1
ω

− 1
ω + 1

)
,

lim
V →∞

∣
∣
∣P̃E(ω,V, τ)

∣
∣
∣ = ∞.

(3.10)

To simplify the PDE (3.8) further, we assume that the solution P̃E(ω,V, τ) can be written in
the form

P̃E(ω,V, τ) = e(qω−r(ω+1))τ · h(ω,V, τ) (3.11)

with an appropriate function h(ω,V, τ). It follows that h must satisfy

−hτ + (a1V + b1)hV + a2VhVV + a0Vh = 0, (3.12)

with initial and boundary conditions

h(ω,V, 0) = Xω+1
(

1
ω

− 1
ω + 1

)
,

h(ω, 0, τ) = Xω+1
(

1
ω

− 1
ω + 1

)
,

lim
V →∞

|h(ω,V, τ)| = ∞.

(3.13)

Observe that, for κ = θ = ξ = 0, that is, if the stock price dynamics are given by the standard
BSM model with constant volatility, the PDE for h is solved as

h(ω,V, τ) = Xω+1
(

1
ω

− 1
ω + 1

)
e(1/2)ω(ω+1)Vτ . (3.14)

In this case the equation for P̃E(ω,V, τ) becomes

P̃E(ω,V, τ) = Xω+1
(

1
ω

− 1
ω + 1

)
e((1/2)ω(ω+1)V+qω−r(ω+1))τ , (3.15)
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and the price of a European put option can be expressed as

PE(S, V, τ) =
1

2πi

∫ c+i∞

c−i∞
P̃E(ω,V, τ)S−ω dω, (3.16)

with 0 < c < ∞. In [24] it is shown that the last equation is equivalent to the BSM formula for
European put options.

The final step in deriving a general solution for h or equivalently for P̃E for a noncon-
stant volatility is to assume the following functional form of the solution:

h(ω,V, τ) = c̃ ·H(ω, τ) · eG(ω,τ)·a0·V , (3.17)

withH(ω, 0) = 1, G(ω, 0) = 0 and where we have set

c̃ = Xω+1
(

1
ω

− 1
ω + 1

)
. (3.18)

Inserting the functional form for h in (3.12), determining the partial derivatives, and simpli-
fying yield two ordinary differential equations (ODEs). We have

Gτ(ω, τ) = A ·G2(ω, τ) + B ·G(ω, τ) + C, (3.19)

Hτ(ω, τ) = a0 · b1 ·G(ω, τ) ·H(ω, τ), (3.20)

where A = a0a2, B = a1, and C = 1. The ODE for G(ω, τ) is identified as a Riccati equation
with constant coefficients. These types of equations also appear in frameworks based on
Fourier transforms (see [10, 11, 13], among others). Having solved for G, a straightforward
calculation shows that H(ω, τ) equals

H(ω, τ) = ea0b1
∫τ
0 G(ω,x)dx. (3.21)

Thus, we first present the solution for G. The transformation

G(ω, τ) =
1
A
u(ω, τ) − B

2A
(3.22)

gives

uτ(ω, τ) = u2(ω, τ) +
4AC − B2

4
. (3.23)

Note that this is a special case of the more general class of ODEs given by

uτ(ω, τ) = au2(ω, τ) + bτn, (3.24)
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with n ∈ N and a and b constants. This class of ODEs has solutions of the form

u(ω, τ) = − 1
a

Fτ(ω, τ)
F(ω, τ)

, (3.25)

where

F(ω, τ) =
√
τ

(
c1J1/2m

(
1
m

√
ab τm

)
+ c2Y1/2m

(
1
m

√
ab τm

))
. (3.26)

The parameters c1, c2 are again constants depending on the underlying boundary conditions,
m = (1/2)(n + 2), and J and Y are Bessel functions of the first and second kind, respectively.
See [30] for a reference. Setting m = 1 and incorporating the boundary conditions, u(ω, τ) is
solved as

u(ω, τ) =
k

2
tan((1/2)kτ) + B/k

1 − (B/k) tan((1/2)kτ)
, (3.27)

where we have set

k = k(ω) =
√
4AC − B2 =

√
ξ2ω(ω + 1) − (

ωρξ + κ
)2
. (3.28)

Thus, we immediately get

G(ω, τ) = − B

2A
+

k

2A
tan((1/2)kτ) + B/k

1 − (B/k) tan((1/2)kτ)

= − B

2A
+

k

2A
k sin((1/2)kτ) + B cos((1/2)kτ)
k cos((1/2)kτ) − B sin((1/2)kτ)

.

(3.29)

Using k2 + B2 = 4A, it is easily verified that an equivalent expression for G(ω, τ) equals

G(ω, τ) =
2 sin((1/2)kτ)

k cos((1/2)kτ) +
(
ωρξ + κ

)
sin((1/2)kτ)

(3.30)

with k = k(ω) from above. To solve for H(ω, τ) we first mention that (see [31])

∫
B cosx + C sinx
b cos+c sinx

dx =
Bc − Cb

b2 + c2
ln(b cosx + c sinx) +

Bb + Cc

b2 + c2
x. (3.31)

Therefore,

∫ τ

0
G(ω, x)dx = −Bτ

2A
+

1
A

ln
(

k

k cos((1/2)kτ) − B sin((1/2)kτ)

)
, (3.32)

H(ω, τ) = e(κθ/ξ
2)[(ωρξ+κ)τ+2 ln(k/k cos((1/2)kτ)+(ωρξ+κ) sin((1/2)kτ))]. (3.33)

Finally, we have arrived at the following result.
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Theorem 3.1. A new Mellin-type pricing formula for European put options in Heston’s [10] mean
reverting stochastic volatility model is given by

PE(S, V, τ) =
1

2πi

∫ c+i∞

c−i∞
P̃E(ω,V, τ)S−ωdω, (3.34)

with 0 < c < c∗ and where

P̃E(ω,V, τ) = c̃ · e(qω−r(ω+1))τ ·H(ω, τ) · eG(ω,τ)a0V (3.35)

with G(ω, τ) and H(ω, τ) from above. The parameters c̃ and k are given in (3.18) and (3.28),
respectively. The choice of c∗ will be commented on below.

Remark 3.2. Note that similar to Carr and Madan [14] the final pricing formula only requires
a single integration.

We now consider the issue of specifying c∗. Recall that, to guarantee the existence of
the inverse Mellin transform of P̃E(ω,V, τ) in a vertical strip of the ω-plane, we need P̃E(c +
iy, V, τ) to be integrable, and hence analytic. From (3.30) and (3.33)we have that G(ω, τ) and
H(ω, τ) have the same points of singularity with

lim
ω→ 0

G(ω, τ) =
2 sin((1/2)iκτ)

iκ cos((1/2)iκτ) + κ sin((1/2)iκτ)

=
2
iκ

sin
(
1
2
iκτ

)
e(1/2)κτ

=
1 − e−κτ

κ
,

lim
ω→ 0

H(ω, τ) = 1.

(3.36)

Furthermore, since

k(ω) =
√
ξ2ω2

(
1 − ρ2

)
+ω

(
ξ2 − 2ρξκ

) − κ2, (3.37)

it follows that k(ω) has two real roots given by

ω1/2 =
−(ξ − 2ρκ

) ±
√(

ξ − 2ρκ
)2 + 4κ2

(
1 − ρ2

)

2ξ
(
1 − ρ2

) , (3.38)

where ρ /= ± 1 and where only the positive root ω1 is of relevance. For ρ = ±1 we have a single
root

ω1 =
κ2

ξ2 ∓ 2ξκ
. (3.39)
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We deduce that all singular points of G and H are real, starting with ω1 being a removable
singularity. We therefore define c∗ as the first nonremovable singularity of G and H in {ω ∈
C | 0 < Re(ω) < ∞, Im(ω) = 0}, that is, the first real root of f(ω) except ω1, where f(ω) is
defined by

f(ω) = k(ω) cos
(
1
2
k(ω)τ

)
+
(
ωρξ + κ

)
sin

(
1
2
k(ω)τ

)
. (3.40)

If f(ω) has no roots or no other roots except ω1 in {ω ∈ C | 0 < Re(ω) < ∞, Im(ω) = 0}, then
we set c∗ = ∞. By definition it follows that ω1 ≤ c∗, with the special cases limτ → 0 c

∗ = ∞ and
limτ →∞ c∗ = ω1.

4. Further Analysis

In the previous section a Mellin transform approach was used to solve the European put op-
tion pricing problem in Heston’s mean reverting stochastic volatility model. The outcome is
a new characterization of European put prices using an integration along a vertical line seg-
ment in a strip of the positive complex half plane. Our solution has a clear and well-defined
structure. The numerical treatment of the solution is simple and requires a single integration
procedure. However, the final expression for the option’s price can still be modified to pro-
vide further insights on the analytical solution. First we have the following proposition.

Proposition 4.1. An equivalent (and more convenient) way of expressing the solution in Theorem 3.1
is

PE(S, V, τ) = Xe−rτP1 − Se−qτP2, (4.1)

with S = S(t) being the current stock price,

P1 =
1

2πi

∫ c+i∞

c−i∞

(
Xe−rτ

Se−qτ

)ω 1
ω
H(ω, τ)eG(ω,τ)a0V dω,

P2 =
1

2πi

∫ c+i∞

c−i∞

(
Xe−rτ

Se−qτ

)ω+1 1
ω + 1

H(ω, τ)eG(ω,τ)a0V dω,

(4.2)

where 0 < c < c∗.

Proof. The statement follows directly from Theorem 3.1 by simple rearrangement.

Remark 4.2. Equation (4.1) together with (4.2) provides a direct connection to Heston’s origi-
nal pricing formula given by

PE(S, V, τ) = Xe−rτΠ1 − Se−qτΠ2, (4.3)
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with

Π1 =
1
2
− 1
π

∫∞

0
Re

(
e−iω lnXϕ(ω)

iω

)

dω,

Π2 =
1
2
− 1
π

∫∞

0
Re

(
e−iω lnXϕ(ω − i)

iωϕ(−i)

)

dω,

(4.4)

where the function ϕ(ω) is the log-characteristic function of the stock at maturity S(T):

ϕ(ω) = E
[
eiω lnS(T)

]
. (4.5)

Remark 4.3. By the fundamental concept of a risk-neutral valuation, we have

PE(S, V, τ) = E
Q
t

[
e−rτ(X − S(T)) · 1{S(T)<X}

]

= Xe−rτEQ
t

[
1{S(T)<X}

] − Se−qτEQ∗

t

[
1{S(T)<X}

]
,

(4.6)

with E·
t being the time t expectation under the corresponding risk-neutral probability meas-

ure, while Q∗ denotes the equivalent martingale measure given by the Radon-Nikodym de-
rivative

dQ∗

dQ
=

S(T)e−rτ

Se−qτ
. (4.7)

So the framework allows an expression of the above probabilities as the inverse of Mellin
transforms.

A further advantage of the new framework is that hedging parameters, commonly
known as Greeks, are easily determined analytically. The most popular Greek letters widely
used for risk management are delta, gamma, vega, rho, and theta. Each of these sensitivities
measures a different dimension of risk inherent in the option. The results for Greeks are sum-
marized in the next proposition.

Proposition 4.4. Setting

I(ω, τ) = H(ω, τ)eG(ω,τ)a0V , (4.8)
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the analytical expressions for the delta, gamma, vega, rho, and theta in the case of European put options
are given by, respectively,

PE
S (S, V, τ) =

−1
2πi

∫ c+i∞

c−i∞

(
X

S

)ω+1 1
ω + 1

e(qω−r(ω+1))τ I(ω, τ)dω, (4.9)

PE
SS(S, V, τ) =

1
2πi

∫ c+i∞

c−i∞

1
S

(
X

S

)ω+1

e(qω−r(ω+1))τ I(ω, τ)dω, (4.10)

PE
V (S, V, τ) =

1
2πi

∫ c+i∞

c−i∞

X

2

(
X

S

)ω

e(qω−r(ω+1))τG(ω, τ)I(ω, τ)dω. (4.11)

Recall that the rho of a put option is the partial derivative of PE with respect to the interest rate and
equals

PE
r (S, V, τ) =

−Xτ

2πi

∫ c+i∞

c−i∞

(
X

S

)ω 1
ω
e(qω−r(ω+1))τ I(ω, τ)dω. (4.12)

Finally, the theta of the put, that is, the partial derivative of PE with respect to τ , is determined as

PE
τ (S, V, τ) =

1
2πi

∫ c+i∞

c−i∞

(
X

S

)ω X

ω(ω + 1)
e(qω−r(ω+1))τ I(ω, τ)J(ω, τ)dω, (4.13)

with

J(ω, τ) = qω − r(ω + 1) +
1
2
ω(ω + 1)(κθG(ω, τ) + VGτ(ω, τ)), (4.14)

where

Gτ(ω, τ) =

(

1 −
(
ωρξ + κ

)2

ξ2ω(ω + 1)

)
1

cos2
(
(1/2)kτ + tan−1(−(ωρξ + κ

)
/k

)) . (4.15)

Proof. The expressions follow directly from Theorem 3.1 or Proposition 4.1. The final expres-
sion for J(ω, τ) follows by straightforward differentiation and (3.20).

We point out that instead of using the put call parity relationship for valuing European
call options a direct Mellin transform approach is also possible. However, a slightly modified
definition is needed to guarantee the existence of the integral. We therefore propose to define
the Mellin transform for calls as

M
(
CE(S, V, t), ω

)
= C̃E(ω,V, t) =

∫∞

0
CE(S, V, t) S−(ω+1) dS, (4.16)
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where 1 < Re(ω) < ∞. Conversely, the inverse of this modified Mellin transform is given by

CE(S, V, t) =
1

2πi

∫ c+i∞

c−i∞
C̃E(ω,V, t)Sω dω, (4.17)

where 1 < c. Using themodification and following the lines of reasoning outlined in Section 3,
it is straightforward to derive at the following theorem.

Theorem 4.5. TheMellin-type closed-form valuation formula for European call options in the square-
root stochastic volatility model of Heston [10] equals

CE(S, V, τ) = Se−qτP ∗
2 −Xe−rτP ∗

1 , (4.18)

where

P ∗
2 =

1
2πi

∫ c+i∞

c−i∞

(
Se−qτ

Xe−rτ

)ω−1 1
ω − 1

H∗(ω, τ)eG
∗(ω,τ)a∗0V dω,

P ∗
1 =

1
2πi

∫ c+i∞

c−i∞

(
Se−qτ

Xe−rτ

)ω 1
ω
H∗(ω, τ)eG

∗(ω,τ)a∗0V dω,

(4.19)

with

H∗(ω, τ) = e(κθ/ξ
2)[−(ωρξ−κ)τ+2 ln(k∗/k∗ cos((1/2)k∗τ)−(ωρξ−κ) sin((1/2)k∗τ))],

G∗(ω, τ) =
2 sin((1/2)k∗τ)

k∗ cos((1/2)k∗τ) − (
ωρξ − κ

)
sin((1/2)k∗τ)

,

k∗ = k∗(ω) =
√
ξ2ω(ω − 1) − (

ωρξ − κ
)2
,

(4.20)

and a∗
0 = (1/2)ω(ω − 1). Furthermore, one has that 1 < c < c∗ with c∗ being characterized equiva-

lently as at the end of the previous section.

Remark 4.6. Again, a direct analogy to Heston’s original pricing formula is provided. Also,
the corresponding closed-form expressions for the Greeks follow immediately.

5. Numerical Examples

In this section we evaluate the results of the previous sections for the purpose of computing
and comparing option prices for a range of different parameter combinations. Since our nu-
merical calculations are not based on a calibration procedure, we will use notional parameter
specifications. As a benchmark we choose the pricing formula due to Heston based on Fou-
rier inversion (H). From the previous analysis it follows that the numerical inversion in both
integral transform approaches requires the calculation of logarithms with complex argu-
ments. As pointed out in [11, 18] this calculation may cause problems especially for options
with long maturities or high mean reversion levels. We therefore additionally implement
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Table 1: European option prices in Heston’s stochastic volatility model for different asset prices S and
maturities τ . Fixed parameters are X = 100, r = 0.04, q = 0.02, V = 0.09, κ = 3, θ = 0.12, ξ = 0.2, ρ = −0.5,
and c = 2.

Puts Calls

(S, τ) H H(RCA) MT Diff H H(RCA) MT Diff

(80; 0.25) 19.8379 19.8379 19.8379 1.7 · 10−6 0.4339 0.4339 0.4339 1.7 · 10−6
(90; 0.25) 11.6806 11.6806 11.6806 1.1 · 10−6 2.2267 2.2268 2.2268 1.1 · 10−6
(100; 0.25) 5.9508 5.9508 5.9508 4.9 · 10−7 6.4471 6.4471 6.4471 4.9 · 10−7
(110; 0.25) 2.6708 2.6708 2.6708 6.4 · 10−6 13.1172 13.1173 13.1173 6.4 · 10−5
(120; 0.25) 1.0870 1.0870 1.0870 7.5 · 10−6 21.4835 21.4835 21.4835 7.4 · 10−6
(80; 0.5) 20.5221 20.5221 20.5221 3.4 · 10−6 1.7062 1.7062 1.7062 3.4 · 10−6
(90; 0.5) 13.5342 13.5342 13.5342 2.2 · 10−6 4.6188 4.6188 4.6188 2.2 · 10−6
(100; 0.5) 8.4302 8.4302 8.4302 1.1 · 10−6 9.4153 9.4153 9.4153 1.1 · 10−6
(110; 0.5) 5.0232 5.0232 5.0232 3.0 · 10−7 15.9088 15.9088 15.9088 3.0 · 10−7
(120; 0.5) 2.8995 2.8995 2.8995 9.7 · 10−7 23.6856 23.6856 23.6856 9.7 · 10−7
(80; 1.0) 22.1413 22.1413 22.1413 6.7 · 10−6 4.4783 4.4782 4.4783 6.7 · 10−6
(90; 1.0) 16.2923 16.2923 16.2923 4.7 · 10−6 8.4312 8.4312 8.4312 4.7 · 10−6
(100; 1.0) 11.7819 11.7819 11.7819 2.3 · 10−6 13.7229 13.7229 13.7229 2.3 · 10−6
(110; 1.0) 8.4207 8.4207 8.4207 2.5 · 10−7 20.1636 20.1636 20.1636 2.5 · 10−7
(120; 1.0) 5.9755 5.9755 5.9755 2.3 · 10−6 27.5204 27.5204 27.5204 2.3 · 10−6
(80; 2.0) 24.5972 24.5972 24.5972 1.3 · 10−6 9.1487 9.1487 9.1487 1.3 · 10−5
(90; 2.0) 19.8041 19.8041 19.8041 8.2 · 10−6 13.9635 13.9635 13.9635 8.2 · 10−6
(100; 2.0) 15.9136 15.9136 15.9136 3.6 · 10−6 19.6809 19.6809 19.6809 3.6 · 10−6
(110; 2.0) 12.7852 12.7852 12.7852 7.2 · 10−7 26.1604 26.1604 26.1604 7.2 · 10−7
(120; 2.0) 10.2833 10.2833 10.2833 5.2 · 10−6 33.2664 33.2664 33.2664 5.2 · 10−6
(80; 3.0) 26.1731 26.1731 26.1731 1.4 · 10−6 12.8222 12.8222 12.8222 1.4 · 10−6
(90; 3.0) 21.9865 21.9865 21.9865 7.3 · 10−6 18.0533 18.0533 18.0533 7.3 · 10−7
(100; 3.0) 18.5011 18.5011 18.5011 2.3 · 10−8 23.9855 23.9855 23.9855 2.3 · 10−8
(110; 3.0) 15.6055 15.6055 15.6055 6.9 · 10−6 30.5076 30.5076 30.5076 6.9 · 10−6
(120; 3.0) 13.2004 13.2004 13.2004 1.2 · 10−6 37.5201 37.5201 37.5201 1.2 · 10−6

the rotation count algorithm proposed by Kahl and Jäckel in [18] to overcome these possible
inconsistencies (H(RCA)). TheMellin transform solution (MT) is based on (3.34) for puts and
(4.18) for calls, respectively. The limits of integration c± i∞ are truncated at c± i500. Although
any other choice of truncation is possible, this turned out to provide comparable results. To
assess the accuracy of the alternative solutions, we determine the absolute difference between
H(RCA) and MT (Diff). Table 1 gives a first look at the results for different asset prices and
expiration dates.We distinguish between in-the-money (ITM), at-the-money (ATM), and out-
of-the-money (OTM) options. Fixed parameters are X = 100, r = 0.04, q = 0.02, V = 0.09,
κ = 3, θ = 0.12, ξ = 0.2, and ρ = −0.5, whereas S and τ vary from 80 to 120 currency units and
three months to three years, respectively. Using these values, we have for the European put
ω1 = 9.6749 constant, while c∗ varies over time from 54.7066 (τ = 0.25) to 11.7046 (τ = 3.0)
and for the European call ω1 = 31.0082 with c∗ changing from 116.7385 (τ = 0.25) to 33.7810
(τ = 3.0). We therefore use c = 2 for the calculations (in both cases). Our major finding is
that the pricing formulae derived in this paper provide comparable results for all parameter
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Table 2: European option prices in Heston’s stochastic volatility model for different asset prices S and
correlations ρ. Fixed parameters are X = 100, r = 0.05, q = 0.02, V = 0.04, κ = 2, θ = 0.05, ξ = 0.2, and c = 2.

Puts Calls

(S, ρ) H H(RCA) MT Diff H H(RCA) MT Diff

(80; −1.00) 18.4620 18.4620 18.4620 1.7 · 10−6 0.1350 0.1350 0.1350 1.7 · 10−6
(100; −1.00) 5.0431 5.0431 5.0431 2.1 · 10−6 6.5170 6.5170 6.5170 2.1 · 10−6
(120; −1.00) 1.0353 1.0353 1.0353 2.6 · 10−5 22.3103 22.3103 22.3103 2.6 · 10−5
(80; −0.75) 18.5533 18.5533 18.5533 1.3 · 10−6 0.2263 0.2263 0.2263 1.3 · 10−6
(100; −0.75) 5.0403 5.0403 5.0403 4.1 · 10−6 6.5143 6.5143 6.5143 4.1 · 10−6
(120; −0.75) 0.9541 0.9541 0.9541 6.6 · 10−6 22.2291 22.2291 22.2291 6.6 · 10−6
(80; −0.50) 18.6413 18.6413 18.6413 1.0 · 10−6 0.3143 0.3143 0.3143 1.0 · 10−6
(100; −0.50) 5.0371 5.0371 5.0371 4.4 · 10−6 6.5111 6.5111 6.5111 4.4 · 10−6
(120; −0.50) 0.8695 0.8695 0.8695 2.5 · 10−6 22.1445 22.1445 22.1445 2.5 · 10−6
(80; −0.25) 18.7269 18.7269 18.7269 7.9 · 10−6 0.3999 0.3999 0.3999 7.9 · 10−6
(100; −0.25) 5.0332 5.0332 5.0332 4.7 · 10−6 6.5072 6.5072 6.5072 4.7 · 10−6
(120; −0.25) 0.7812 0.7812 0.7812 1.5 · 10−6 22.0562 22.0562 22.0562 1.5 · 10−6
(80; 0.00) 18.8104 18.8104 18.8104 4.9 · 10−5 0.4834 0.4834 0.4834 4.9 · 10−5
(100; 0.00) 5.0285 5.0285 5.0285 2.7 · 10−5 6.5025 6.5025 6.5025 3.0 · 10−5
(120; 0.00) 0.6887 0.6887 0.6887 6.0 · 10−5 21.9637 21.9637 21.9637 6.0 · 10−5
(80; 0.25) 18.8921 18.8921 18.8921 1.1 · 10−6 0.5651 0.5651 0.5651 1.1 · 10−6
(100; 0.25) 5.0229 5.0229 5.0229 5.3 · 10−6 6.4969 6.4969 6.4969 5.3 · 10−6
(120; 0.25) 0.5913 0.5913 0.5913 9.6 · 10−6 21.8663 21.8663 21.8663 9.5 · 10−6
(80; 0.50) 18.9721 18.9721 18.9721 2.2 · 10−6 0.6451 0.6451 0.6450 2.2 · 10−6
(100; 0.50) 5.0166 5.0166 5.0166 5.7 · 10−6 6.4906 6.4906 6.4906 5.7 · 10−6
(120; 0.50) 0.4882 0.4881 0.4881 1.2 · 10−6 21.7931 21.7630 21.7630 1.2 · 10−6
(80; 1.00) 19.1275 19.1275 19.1275 9.60 ·10−6 0.8005 0.8005 0.8005 1.4 · 10−5
(100; 1.00) 5.0027 5.0027 5.0027 4.2 · 10−6 6.4767 6.4767 6.4767 5.7 · 10−6
(120; 1.00) 0.2566 0.2566 0.2566 1.3 · 10−6 21.5316 21.5316 21.5316 2.0 · 10−6

combinations. The absolute differences are very small (of order 10−6 to 10−8 for puts and
10−5 to 10−8 for calls). They can be neglected from a practical point of view. In addition,
since the numerical integration is accomplished in both frameworks equivalently efficient,
the calculations are done very quickly.

Next, we examine how the option prices vary if the correlation between the underlying
asset and its instantaneous variance changes. Although from a practical point of view it may
be less realistic to allow for a positive correlation, we do not make any restrictions on ρ
and let it range from −1.00 to 1.00. We fix time to maturity to be 6 months. Also, to provide
a variety of parameter combinations, we change some of the remaining parameters slightly:
X = 100, r = 0.05, q = 0.02, V = 0.04, κ = 2, θ = 0.05, and ξ = 0.2. We abstain from presenting
the numerical values of ω1 and c∗ in this case and choose again c = 2 for the integration.
Our findings are reported in Table 2. Again, the Mellin transform approach gives satisfactory
results as the absolute differences show. For both puts and calls they are of order 10−5 to
10−6. Analyzing the results in detail, one basically observes two different kinds of behavior.
For ITM put options we have an increase in value for increasing values of ρ. The maximum
difference is 0.6655 or 3.60%. The opposite is true for OTM puts. Here we have a strict decline
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Table 3: Delta values of European option prices in Heston’s stochastic volatility model for different asset
prices S and maturities τ . Fixed parameters are X = 100, r = 0.06, q = 0.03, V = 0.16, κ = 3, θ = 0.16, ξ = 0.1,
ρ = −0.75, and c = 2.

Puts Calls

(S, τ) ΔH ΔH(RCA) ΔMT Diff ΔH ΔH(RCA) ΔMT Diff

(80; 0.25) −0.8318 −0.8318 −0.8318 2.4 · 10−7 0.1607 0.1607 0.1607 2.4 · 10−7
(90; 0.25) −0.6422 −0.6422 −0.6422 2.4 · 10−7 0.3503 0.3503 0.3503 2.4 · 10−7
(100; 0.25) −0.4348 −0.4348 −0.4348 2.4 · 10−7 0.5578 0.5578 0.5578 2.4 · 10−7
(110; 0.25) −0.2625 −0.2625 −0.2625 2.4 · 10−7 0.7300 0.7300 0.7300 2.4 · 10−7
(120; 0.25) −0.1447 −0.1447 −0.1447 2.5 · 10−7 0.8479 0.8479 0.8479 2.5 · 10−7
(80; 0.5) −0.7118 −0.7118 −0.7118 4.8 · 10−7 0.2734 0.2734 0.2734 4.8 · 10−7
(90; 0.5) −0.5558 −0.5558 −0.5558 4.8 · 10−7 0.4294 0.4294 0.4294 4.8 · 10−7
(100; 0.5) −0.4085 −0.4085 −0.4085 4.8 · 10−7 0.5766 0.5766 0.5766 4.8 · 10−7
(110; 0.5) −0.2863 −0.2863 −0.2863 4.8 · 10−7 0.6988 0.6988 0.6988 4.7 · 10−7
(120; 0.5) −0.1936 −0.1936 −0.1936 4.8 · 10−7 0.7915 0.7915 0.7915 4.8 · 10−7
(80; 1.0) −0.5892 −0.5892 −0.5892 8.6 · 10−8 0.3812 0.3812 0.3812 8.6 · 10−8
(90; 1.0) −0.4738 −0.4738 −0.4738 8.7 · 10−8 0.4966 0.4966 0.4966 8.7 · 10−8
(100; 1.0) −0.3723 −0.3723 −0.3723 8.6 · 10−8 0.5981 0.5981 0.5981 8.6 · 10−8
(110; 1.0) −0.2878 −0.2878 −0.2878 8.0 · 10−8 0.6827 0.6827 0.6827 8.0 · 10−8
(120; 1.0) −0.2199 −0.2199 −0.2199 8.6 · 10−8 0.7505 0.7505 0.7505 8.6 · 10−8
(80; 2.0) −0.4684 −0.4684 −0.4684 1.7 · 10−7 0.4733 0.4733 0.4733 1.7 · 10−7
(90; 2.0) −0.3895 −0.3895 −0.3895 1.7 · 10−7 0.5523 0.5523 0.5523 1.7 · 10−7
(100; 2.0) −0.3222 −0.3222 −0.3222 1.7 · 10−7 0.6196 0.6196 0.6196 1.7 · 10−7
(110; 2.0) −0.2659 −0.2659 −0.2659 1.7 · 10−7 0.6758 0.6758 0.6758 1.7 · 10−7
(120; 2.0) −0.2193 −0.2193 −0.2193 1.7 · 10−7 0.7224 0.7224 0.7224 1.7 · 10−7
(80; 3.0) −0.3969 −0.3969 −0.3969 2.4 · 10−7 0.5170 0.5170 0.5170 2.4 · 10−7
(90; 3.0) −0.3361 −0.3361 −0.3361 2.4 · 10−7 0.5779 0.5779 0.5779 2.4 · 10−7
(100; 3.0) −0.2847 −0.2847 −0.2847 2.4 · 10−7 0.6292 0.6292 0.6292 2.4 · 10−7
(110; 3.0) −0.2417 −0.2417 −0.2417 2.4 · 10−7 0.6723 0.6723 0.6723 2.4 · 10−7
(120; 3.0) −0.2056 −0.2056 −0.2056 2.4 · 10−7 0.7083 0.7083 0.7083 2.4 · 10−7

in price if ρ is increased. The magnitude of price reactions to changes in ρ increases, too.
The maximum change in the downward move is 0.7787 or equivalently 75.21%. The same
behavior is observed for ATM options. However, the changes are muchmoremoderate with a
maximumpercentage change of 0.80%. For European calls the situation is different. OTM calls
increase significantly in value if ρ is increased, whereas ITM and ATM call prices decrease for
an increasing ρ. The maximum percentage changes are 492.96% (OTM), 3.49% (ITM), and
0.62% (ATM), respectively.

Finally, we compare the values of delta for different (S; τ) combinations. For the cal-
culation of the delta of a European put, we use (4.9). The corresponding delta value for a
call is easily determined from the price function presented in the text. S and τ vary from
80 to 120 currency units and three months to three years, respectively. Again, the remaining
parameters are slightly altered and equal X = 100, r = 0.06, q = 0.03, V = 0.16, κ = 3, θ = 0.16,
ξ = 0.10, ρ = 0.75, and c = 2. The results are summarized in Table 3. Once more, we observe
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a high consistency with Heston’s framework based on Fourier inversion. For all parameter
combinations our results agree with Heston’s with a great degree of precision.

In summary, our numerical experiments suggest that the new framework is able to
compete with Heston’s solution based on Fourier inversion. The accuracy of the results is
very satisfying, and the framework is flexible enough to account for all the pricing features
inherent in the model. The findings justify the assessment of the Mellin transform approach
as a very competitive alternative.

6. Conclusion

We have applied a new integral transform approach for the valuation of European options on
dividend paying stocks in amean reverting stochastic volatilitymodel with correlation. Using
the new framework our main results are new analytical characterizations of options’ prices
and hedging parameters. Our equivalent solutions may be of interest for theorists as well
as practitioners. On one hand they provide further insights on the analytic solution, on the
other hand they are easily and quickly treated numerically by applying efficient numerical in-
tegration schemes. We have done extensive numerical tests to demonstrate the flexibility
and to assess the accuracy of the alternative pricing formulae. The results are gratifying and
convincing. The newmethod is very competitive and should be regarded as a real alternative
to other approaches, basically Fourier inversionmethods, existing in the literature. Also, since
the transformation variable is the current value of the asset instead of its terminal price, the
new framework may turn out to be applicable to path-dependent problems.
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[18] C. Kahl and P. Jäckel, “Not-so-complex logarithms in the Heston model,” Wilmott Magazine, 2005.
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