
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 154916, 23 pages
doi:10.1155/2011/154916

Research Article
Instable Trivial Solution of Autonomous
Differential Systems with Quadratic Right-Hand
Sides in a Cone

D. Ya. Khusainov,1 J. Diblı́k,2, 3 Z. Svoboda,2 and Z. Šmarda2
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The present investigation deals with global instability of a general n-dimensional system of
ordinary differential equations with quadratic right-hand sides. The global instability of the zero
solution in a given cone is proved by Chetaev’s method, assuming that the matrix of linear
terms has a simple positive eigenvalue and the remaining eigenvalues have negative real parts.
The sufficient conditions for global instability obtained are formulated by inequalities involving
norms and eigenvalues of auxiliary matrices. In the proof, a result is used on the positivity of a
general third-degree polynomial in two variables to estimate the sign of the full derivative of an
appropriate function in a cone.

1. Introduction

Recently, there has been a rapidly growing interest in investigating the instability conditions
of differential systems. The number of papers dealing with instability problems is rather low
compared with the huge quantity of papers in which the stability of the motion of differential
systems is investigated. The first results on the instability of zero solution of differential
systems were obtained in a general form by Lyapunov [1] and Chetaev [2].

Further investigation on the instability of solutions of systems was carried out to
weaken the conditions of the Lyapunov and Chetaev theorems for special-form systems.
Some results are presented, for example, in [3–10], but instability problems are analysed only
locally. For example, in [7], a linear system of ordinary differential equations in the matrix
form is considered, and conditions such that the corresponding forms (of the second and the
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third power) have fixed sign in some cone of the space R
n are derived. To investigate this

property another problem inverse to the known Lyapunov problem for the construction of
Lyapunov functions is solved.

In the present paper, instability solutions of systems with quadratic right-hand sides
is investigated in a cone dealing with a general n-dimensional system with quadratic right-
hand sides. We assume that the matrix of linear terms has a simple positive eigenvalue and
the remaining eigenvalues have negative real parts.

Unlike the previous investigations, we prove the global instability of the zero solution
in a given cone and the conditions for global instability are formulated by inequalities
involving norms and eigenvalues of auxiliary matrices. The main tool is the method of
Chetaev and application of a suitable Chetaev-type function. A novelty in the proof of the
main result (Theorem 3.1) is the utilization of a general third-order polynomial inequality of
two variables to estimate the sign of the full derivative of an appropriate function along the
trajectories of a given system in a cone.

In the sequel, the norms used for vectors and matrices are defined as

‖x‖ =

(
n∑
i=1

x2
i

)1/2

, (1.1)

for a vector x = (x1, . . . , xn)
T and

‖F‖ =
(
λmax

(
FTF

))1/2
, (1.2)

for anym×nmatrix F. Here and throughout the paper, λmax(·) (or λmin(·)) is the maximal (or
minimal) eigenvalue of the corresponding symmetric and positive-semidefinite matrix FTF
(see, e.g., [11]).

In this paper, we consider the instability of the trivial solution of a nonlinear
autonomous differential system with quadratic right-hand sides

ẋi =
n∑
s=1

aisxs +
n∑

s,q=1

bisqxsxq, i = 1, . . . , n, (1.3)

where coefficients ais and bisq are constants. Without loss of generality, throughout this paper
we assume

bisq = biqs. (1.4)

As emphasized, for example, in [2, 10–12], system (1.3) can be written in a general vector-
matrix form

ẋ = Ax +XTBx, (1.5)
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where A is an n × n constant square matrix, matrix XT is an n × n2 rectangular matrix

XT =
{
XT

1 , X
T
2 , . . . , X

T
n

}
, (1.6)

where the entries of the n × n square matrices Xi, i = 1, . . . , n are equal to zero except the ith
row with entries xT = (x1, x2, . . . , xn), that is,

XT
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

x1 x2 · · · xn

0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.7)

and B is a rectangular n2 × n matrix such that

BT = {B1, B2, . . . , Bn}, (1.8)

where matrices Bi = {bisq}, i, s, q = 1, . . . , n, that is, matrices

Bi =

⎛
⎜⎜⎜⎜⎜⎝

bi11 bi12 · · · bi1n

bi21 bi22 · · · bi2n

· · · · · · · · · · · ·
bin1 bin2 · · · binn

⎞
⎟⎟⎟⎟⎟⎠ (1.9)

are n×n constant and symmetric. Representation (1.5) permits an investigation of differential
systems with quadratic right-hand sides by methods of matrix analysis. Such approach was
previously used, for example, in [13].

If matrix A admits one simple positive eigenvalue, the system (1.5) can be
transformed, using a suitable linear transformation of the dependent variables, to the same
form (1.5) but with the matrix A having the form

A =

(
A0 θ

θT λ

)
, (1.10)

where A0 is an (n − 1) × (n − 1) constant matrix, θ = (0, 0, . . . , 0)T is the (n − 1)-dimensional
zero vector and λ > 0. With regard to this fact, we do not introduce new notations for the
coefficients bisq, i, s, q = 1, 2, . . . , n in (1.5), assuming throughout the paper that A in (1.5) has
the form (1.10), preserving the old notations aij for entries of matrix A0. This means that we
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assume that A = {ais}, i, s = 1, 2, . . . , n with ans = asn = 0 for s = 1, 2, . . . , n − 1 and ann = λ,
and A0 = {ais}, i, s = 1, 2, . . . , n − 1.

We will give criteria of the instability of a trivial solution of the system (1.5) if the
matrix A of linear terms is defined by (1.10).

2. Preliminaries

In this part we collect the necessary material-the definition of a cone, auxiliary Chetaev-type
results on instability in a cone and, finally, a third degree polynomial inequality, which will be
used to estimate the sign of the full derivative of a Chetaev-type function along the trajectories
of system (1.5).

2.1. Instability of the Zero Solution of Systems of Differential
Equations in a Cone

We consider an autonomous system of differential equations

ẋ = f(x), (2.1)

where f : R
n → R

n satisfies a local Lipschitz condition and f(0) = 0, that is, (2.1) admits the
trivial solution. We will consider solutions of (2.1) determined by points (x, t) = (x0, 0)where
x0 ∈ R

n. The symbol x(x0, t) denotes the solution x = x(t) of (2.1), satisfying initial condition
x(0) = x0.

Definition 2.1. The zero solution x ≡ 0 of (2.1) is called unstable if there exists ε > 0 such that,
for arbitrary δ > 0, there exists an x0 ∈ R

n with ‖x0‖ < δ and T ≥ 0 such that ‖x(x0, T)‖ ≥ ε.

Definition 2.2. A set K ⊂ Rn is called a cone if αx ∈ K for arbitrary x ∈ K and α > 0.

Definition 2.3. A cone K is said to be a global cone of instability for (2.1) if x(x0, t) ∈ K for
arbitrary x0 ∈ K and t ≥ 0 and limt→∞‖x(x0, t)‖ = ∞.

Definition 2.4. The zero solution x ≡ 0 of (2.1) is said to be globally unstable in a cone K if K
is a global cone of instability for (2.1).

Now, we prove results analogous to the classical Chetaev theorem (see, e.g., [2]) on
instability in a form suitable for our analysis. As usual, if S is a set, then ∂S denotes its
boundary and S its closure, that is, S := S ∪ ∂S.

Theorem 2.5. Let V : R
n → R, V (0, . . . , 0) = 0 be a continuously differentiable function. Assume

that the set

K = {x ∈ Rn : V (x) > 0} (2.2)

is a cone. If the full derivative of V along the trajectories of (2.1) is positive for every x ∈ K, that is, if

V̇ (x) := gradTV (x)f(x) > 0, x ∈ K, (2.3)

then K is a global cone of instability for the system (2.1).
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Proof. Let ε be a positive number. We define a neighborhood of the origin

Uε := {x ∈ Rn : ‖x‖ < ε}, (2.4)

and a constant

Mε := max
x∈Uε∩K

V (x). (2.5)

Moreover, define a set

Wδ :=
{
x ∈ Uε ∩K,V (x) ≥ δ

}
, (2.6)

where δ is a positive number such that δ < Mε. Then, Wδ /= ∅.
Let x0 ∈ Wδ∩K, then V (x0) = δ1 ∈ [δ,Mε]. We show that there exists a t = tT = tT (ε, x0)

such that x(x0, tT ) /∈ Uε and x(x0, tT ) ∈ K.
Suppose to the contrary that this is not true and x(x0, t) ∈ Uε for all t ≥ 0. Since

V̇ (x) > 0, the function V is increasing along the solutions of (2.1). Thus x(x0, t) remains inK.
Due to the compactness ofWδ, there exists a positive value β such that for x(x0, t) ∈ Wδ

d

dt
V (x(x0, t)) = gradTV (x(x0, t))f(x(x0, t)) > β. (2.7)

Integrating this inequality over the interval [0, t], we get

V (x(x0, t)) − V (x0) = V (x(x0, t)) − δ1 > βt. (2.8)

Then there exists a t = tT = tT (ε, x0) satisfying

tT >
(Mε − δ1)

β
, (2.9)

such that V (x(x0, tT )) > Mε and, consequently, x(x0, tT ) /∈ Uε. This is contrary to our
supposition. Since ε > 0 is arbitrary, we have

lim
t→∞

‖x(x0, t)‖ = ∞, (2.10)

that is, the zero solution is globally unstable, and K is a global cone of instability.

Theorem 2.6. Let V : R
n → R be a continuously differentiable function and let S,Z : R

n → R,
Z(0, . . . , 0) = 0 be continuous functions such that V = S · Z. Assume that the set

K1 = {x ∈ Rn : Z(x) > 0} (2.11)
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is a cone, and S(x) > 0 for any x ∈ K1. If the full derivative (2.3) of V along the trajectories of (2.1) is
positive for every x ∈ K1, that is, if V̇ (x) > 0 for every x ∈ K1, then K1 is a global cone of instability
for the system (2.1).

Proof. The proof is a modification of the proof of Theorem 2.5. Let ε be a positive number. We
define a neighborhood Uε of the origin by formula (2.4) and a constant

Mε := max
x∈Uε∩K1

V (x). (2.12)

Moreover, define a set

Wδ :=
{
x ∈ Uε ∩K1, V (x) ≥ δ

}
, (2.13)

where δ is a positive number such that δ < Mε. ThenWδ /= ∅.
Let x0 ∈ Wδ ∩ K1. Then V (x0) = δ1 ∈ [δ,Mε]. We show that there exists a t = tT =

tT (ε, x0) such that x(x0, tT ) /∈ Uε and x(x0, tT ) ∈ K1.
Suppose to the contrary that this is not true and x(x0, t) ∈ Uε for all t ≥ 0. Since

V̇ (x) > 0, the function V is increasing along the solutions of (2.1). Due to the compactness of
Wδ, there exists a positive value β such that for x(x0, t) ∈ Wδ

d

dt
V (x(x0, t)) = gradTV (x(x0, t))f(x(x0, t)) > β. (2.14)

Integrating this inequality over interval [0, t], we get

V (x(x0, t)) − V (x0) = V (x(x0, t)) − δ1 = S(x(x0, t))Z(x(x0, t)) − δ1 > βt. (2.15)

Since S(x(x0, t)) > 0, the inequality

Z(x(x0, t)) >
δ1 + βt

S(x(x0, t))
> 0 (2.16)

is an easy consequence of (2.15). Thus x(x0, t) remains in K1. Apart from this, (2.15) also
implies the existence of a t = tT = tT (ε, x0) satisfying

tT >
(Mε − δ1)

β
, (2.17)

such that V (x(x0, tT )) > Mε. Consequently, x(x0, tT ) /∈ Uε. This is contrary to our supposition.
Since ε > 0 is arbitrary, we have

lim
t→∞

‖x(x0, t)‖ = ∞, (2.18)

that is, the zero solution is globally unstable and K1 is a global cone of instability.
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Definition 2.7. A function V satisfying all the properties indicated in Theorem 2.5 is called a
Chetaev function for the system (2.1). A function V satisfying all the properties indicated in
Theorem 2.6 is called a Chetaev-type function for the system (2.1).

2.2. Auxiliary Inequality

Our results will be formulated in terms of global cones of instability. These will be derived
using an auxiliary inequality valid in a given cone. Let (x, y) ∈ R

2 and let k be a positive
number. We define a cone

K :=
{(

x, y
)
∈ R

2 : y > k|x|
}
. (2.19)

Lemma 2.8. Let a, b, c, d, and k be given constants such that b > 0, d > 0, k > 0, and |c| ≤ kd.
Assume, moreover, either

|a| ≤ kb, (2.20)

or

|a| > kb, (2.21)

|c|/= kd, k ≥ max

⎧⎨
⎩
√

|a + kb|
c + kd

,

√
|a − kb|
|c − kd|

⎫⎬
⎭, (2.22)

then

ax3 + bx2y + cxy2 + dy3 > 0, (2.23)

for every (x, y) ∈ K.

Proof. We partition K into two disjoint cones

K1 :=
{(

x, y
)
∈ R

2 : y > k|x|, x > 0
}
,

K2 :=
{(

x, y
)
∈ R

2 : y > k|x|, x ≤ 0
}
,

(2.24)

and rewrite (2.23) as

x
(
ax2 + cy2

)
+ y
(
bx2 + dy2

)
> 0. (2.25)

We prove the validity of (2.23) in each of the two cones separately.
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The case of the cone K1. Suppose that (2.20) holds. Estimating the left-hand side of
(2.25), we get

x
(
ax2 + cy2

)
+ y
(
bx2 + dy2

)
> x
(
ax2 + cy2

)
+ kx

(
bx2 + dy2

)

= x
[
x2(a + kb) + y2(c + kd)

]
> 0,

(2.26)

and (2.23) holds.
If inequalities (2.21) and (2.22) are valid, then, estimating the left-hand side of (2.25),

we get

x
(
ax2 + cy2

)
+ y
(
bx2 + dy2

)
> x
(
ax2 + cy2

)
+ kx

(
bx2 + dy2

)

= x
[
x2(a + kb) + y2(c + kd)

]

≥ x
[
−|a + kb|x2 + (c + kd)y2

]

= (c + kd)x
[
y2 − |a + kb|

c + kd
x2
]

= (c + kd)x

⎡
⎣y −

√
|a + kb|
c + kd

x

⎤
⎦
⎡
⎣y +

√
|a + kb|
c + kd

x

⎤
⎦

= (c + kd)x2

⎡
⎣k −

√
|a + kb|
c + kd

⎤
⎦
⎡
⎣k +

√
|a + kb|
c + kd

⎤
⎦

≥ 0,

(2.27)

and (2.23) holds again.
The case of the coneK2. Suppose that (2.20) hold, then, estimating the left-hand side of

(2.25), we get

x
(
ax2 + cy2

)
+ y
(
bx2 + dy2

)
= −|x|

(
ax2 + cy2

)
+ y
(
bx2 + dy2

)

> −|x|
(
ax2 + cy2

)
+ k|x|

(
bx2 + dy2

)

= −|x|
[
(a − kb)x2 + (c − kd)y2

]

≥ 0,

(2.28)

and (2.23) holds.
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If inequalities (2.21) and (2.22) are valid, then the estimation of (2.25) implies (we use
(2.28))

x
(
ax2 + cy2

)
+ y
(
bx2 + dy2

)

> −|x|
[
(a − kb)x2 + (c − kd)y2

]

= |c − kd||x|
[
y2 − a − kb

|c − kd|x
2
]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≥ 0 if a − kb < 0,

|c − kd||x|
[
y −
√

a − kb

|c − kd| x
][

y +

√
a − kb

|c − kd| x
]

≥ |c − kd|x2

[
k +

√
a − kb

|c − kd|

][
k −
√

a − kb

|c − kd|

]
≥ 0 if a − kb > 0.

(2.29)

Hence, (2.23) holds again.

3. Global Cone of Instability

In this part we derive a result on the instability of system (1.5) in a cone. In order to
properly formulate the results, we have to define some auxiliary vectors and matrices (some
definitions copy the previous ones used in Introduction, but with a dimension of n − 1 rather
than n). We denote

x(n−1) = (x1, x2, . . . , xn−1)T ,

bi =
(
bi1n, b

i
2n, . . . , b

i
n−1,n

)T
, i = 1, 2, . . . , n,

b̃ =
(
b1nn, b

2
nn, . . . , b

n−1
nn

)T
.

(3.1)

Apart from this, we define symmetric (n − 1) × (n − 1) matrices

B0
i =
{
bisq

}
, i = 1, 2, . . . , n, s, q = 1, 2, . . . , n − 1, (3.2)
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that is,

B0
i =

⎛
⎜⎜⎜⎜⎜⎝

bi11 bi12 · · · bi1,n−1

bi21 bi22 · · · bi2,n−1

· · · · · · · · · · · ·
bin−1,1 bin−1,2 · · · bin−1,n−1

⎞
⎟⎟⎟⎟⎟⎠,

B̃ =

⎛
⎜⎜⎜⎜⎜⎝

b11n b12n · · · b1n−1,n

b21n b22n · · · b2n−1,n

· · · · · · · · · · · ·
bn−11n bn−12n · · · bn−1n−1,n

⎞
⎟⎟⎟⎟⎟⎠.

(3.3)

Finally, we define an (n − 1) × (n − 1)2 matrix

B
T
=
{
B
T

1 , B
T

2 , . . . , B
T

n−1

}
, (3.4)

where (n − 1) × (n − 1) matrices B
T

i , i = 1, 2, . . . , n − 1 are defined as

B
T

i =

⎛
⎜⎜⎜⎜⎜⎝

b1i1 b1i2 · · · b1i,n−1

b2i1 b2i2 · · · b2i,n−1

· · · · · · · · · · · ·
bn−1i1 bn−1i2 · · · bn−1i,n−1

⎞
⎟⎟⎟⎟⎟⎠. (3.5)

We consider a matrix equation

AT
0H +HA0 = −C, (3.6)

whereH and C are (n− 1)× (n− 1)matrices. It is well-known (see, e.g., [14]) that, for a given
positive definite symmetric matrix C, (3.6) can be solved for a positive definite symmetric
matrix H if and only if the matrix A0 is asymptotically stable.

Theorem 3.1 (Main result). Assume that the matrix A0 is asymptotically stable, bnnn > 0 and h is a
positive number. Let C be an (n − 1) × (n − 1) positive definite symmetric matrix and H be a related
(n − 1) × (n − 1) positive definite symmetric matrix solving equation (3.6). Assume that the matrix
(−HB̃T − B̃H + h(B0

n)
T ) is positive definite,

∥∥∥2hbn −Hb̃
∥∥∥ ≤
√
λmin(H)h · bnnn, (3.7)
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and, in addition, one of the following conditions is valid:
either

∥∥∥∥HB
T
∥∥∥∥ ≤

√
λmin(H)

h
· λmin

(
−HB̃T − B̃H + h

(
B0
n

)T) (3.8)

or

∥∥∥∥HB
T
∥∥∥∥ >

√
λmin(H)

h
· λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
, (3.9)

a strong inequality holds in (3.7), and

√
λmin(H)

h
≥ max

{√
T1,
√
T2

}
, (3.10)

where

T1 =

∥∥∥∥HB
T
∥∥∥∥ −√λmin(H)/h · λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
−
∥∥∥2hbn −Hb̃

∥∥∥ +√λmin(H)h · bnnn
,

T2 =

∥∥∥∥HB
T
∥∥∥∥ +√λmin(H)/h · λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
∥∥∥2hbn −Hb̃

∥∥∥ +√λmin(H)h · bnnn
.

(3.11)

Then the set

K :=
{(

xT
(n−1), xn

)
:
√
hxn >

√
xT
(n−1)Hx(n−1)

}
(3.12)

is a global cone of instability for the system (1.5).

Proof. First we make auxiliary computations. For the reader’s convenience, we recall that, for
two (n − 1) × (n − 1)matricesA,A1, two 1 × (n − 1) vectors 	, 	1, two (n − 1) × 1 vectors C, C1

and two 1 × 1 “matrices” m, m1, the multiplicative rule

(
A C
	 m

)(
A1 C1

	1 m1

)
=

(
AA1 + C	1 AC1 + Cm1

	A1 +m	1 	C1 +mm1

)
(3.13)

holds. This rule can be modified easily for the case of arbitrary rectangular matrices under
the condition that all the products are well defined.



12 Abstract and Applied Analysis

We will rewrite system (1.5) in an equivalent form, suitable for further investigation.
With this in mind, we define an (n − 1)2 × (n − 1) matrix X(n−1) as

XT
(n−1) =

(
XT

1(n−1), X
T
2(n−1), . . . , X

T
n−1(n−1)

)
, (3.14)

where all the elements of the (n − 1) × (n − 1) matrices XT
i(n−1), i = 1, 2, . . . , n − 1 are equal to

zero except the ith row, which equals xT
(n−1), that is,

XT
i(n−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

x1 x2 · · · xn−1

0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.15)

Moreover, we define 1 × (n − 1) vectors Yi, i = 1, 2, . . . , n − 1 with components equal to zero
except the ith element, which equals xn, that is,

Yi = (0, . . . , 0, xn, 0, . . . , 0), (3.16)

and (n − 1) × (n − 1) zero matrix Θ.
It is easy to see that matrices XT and B in (1.5) can be expressed as

XT =

(
XT

1(n−1) YT
1 · · · XT

n−1(n−1) YT
n−1 Θ θ

θT 0 · · · θT 0 xT
(n−1) xn

)
,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0
1 b1

bT1 b1nn

· · · · · ·
B0
n bn

bTn bnnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.17)
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Now we are able to rewrite the system (1.5) under the above assumption regarding the
representation of the matrix A in the form (1.10) in an equivalent form

(
ẋ(n−1)

ẋn

)
=

(
A0 θ

θT λ

)(
x(n−1)

xn

)

+

(
XT

1(n−1) YT
1 · · · XT

n−1(n−1) YT
n−1 Θ θ

θT 0 · · · θT 0 xT
(n−1) xn

)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0
1 b1

bT1 b1nn

· · · · · ·
B0
n bn

bTn bnnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
x(n−1)

xn

)
.

(3.18)

Finally, since the equalities

n−1∑
j=1

XT
j(n−1)B

0
j = B

T
X(n−1),

n−1∑
j=1

YT
j b

T
j = B̃xn,

n−1∑
j=1

XT
j(n−1)bj = B̃x(n−1),

n−1∑
j=1

YT
j b

j
nn = b̃xn

(3.19)

can be verified easily using (3.13), we have

(
ẋ(n−1)

ẋn

)
=

⎛
⎜⎜⎝

A0 + r11
(
xT
(n−1), xn

)
r12
(
xT
(n−1), xn

)

r21
(
xT
(n−1), xn

)
λ + r22

(
xT
(n−1), xn

)
⎞
⎟⎟⎠
(
x(n−1)

xn

)
, (3.20)
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where

r11
(
xT
(n−1), xn

)
=

n−1∑
j=1

[
XT

j(n−1)B
0
j + YT

j b
T
j

]
= B

T
X(n−1) + B̃xn,

r12
(
xT
(n−1), xn

)
=

n−1∑
j=1

[
XT

j(n−1)bj + YT
j b

j
nn

]
= B̃x(n−1) + b̃xn,

r21
(
xT
(n−1), xn

)
= xT

(n−1)B
0
n + xnb

T
n ,

r22
(
xT
(n−1), xn

)
= xT

(n−1)bn + xnb
n
nn.

(3.21)

The remaining part of the proof is based on Theorem 2.6 with a Chetaev-type function V =
S · Z and with suitable functions S and Z. Such functions we define as

V
(
xT
(n−1), xn

)
=
(
xT
(n−1) xn

)(−H θ

θT h

)(
x(n−1)

xn

)
, (3.22)

that is,

V
(
xT
(n−1), xn

)
= −xT

(n−1)Hx(n−1) + hx2
n,

S
(
xT
(n−1), xn

)
=
√
xT
(n−1)Hx(n−1) +

√
hxn,

Z
(
xT
(n−1), xn

)
= −
√
xT
(n−1)Hx(n−1) +

√
hxn.

(3.23)

We will verify the necessary properties. Obviously, V = S · Z, the set

K1 : =
{(

xT
(n−1), xn

)
∈ R

n : Z
(
x(n−1), xn

)
> 0
}

=
{(

xT
(n−1), xn

)
∈ R

n :
√
hxn >

√
xT
(n−1)Hx(n−1)

} (3.24)

is a cone and S(xT
(n−1), xn) > 0 for every (xT

(n−1), xn) ∈ K1.
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The full derivative of V (in the form (3.22)) along the trajectories of the system (1.5)
(we use its transformed form (3.20)) equals

V̇
(
xT
(n−1), xn

)
=
(
ẋT
(n−1) ẋn

)(−H θ

θT h

)(
x(n−1)

xn

)
+
(
xT
(n−1) xn

)(−H θ

θT h

)(
ẋ(n−1)

ẋn

)

=
(
xT
(n−1) xn

)⎛⎝AT
0 + rT11

(
xT
(n−1), xn

)
rT21

(
xT
(n−1), xn

)
rT12

(
xT
(n−1), xn

)
λ + r22

(
xT
(n−1), xn

)
⎞
⎠(−H θ

θT h

)(
x(n−1)

xn

)

+
(
xT
(n−1) xn

)(−H θ

θT h

)⎛⎝A0 + r11
(
xT
(n−1), xn

)
r12
(
xT
(n−1), xn

)
r21
(
xT
(n−1), xn

)
λ + r22

(
xT
(n−1), xn

)
⎞
⎠

×
(
x(n−1)

xn

)
.

(3.25)

Using formula (3.13), we get

V̇
(
xT
(n−1), xn

)
=
(
xT
(n−1) xn

)⎛⎜⎝c11
(
xT
(n−1), xn

)
c12
(
xT
(n−1), xn

)
c21
(
xT
(n−1), xn

)
c22
(
xT
(n−1), xn

)
⎞
⎟⎠
⎛
⎝x(n−1)

xn

⎞
⎠, (3.26)

where

c11
(
xT
(n−1), xn

)
= −
[
A0 + r11(xT

(n−1), xn)
]T
H −H

[
A0 + r11

(
xT
(n−1), xn

)]
,

c12
(
xT
(n−1), xn

)
= hrT21

(
xT
(n−1), xn

)
−Hr12

(
xT
(n−1), xn

)
,

c21
(
xT
(n−1), xn

)
= hr21

(
xT
(n−1), xn

)
− rT12

(
xT
(n−1), xn

)
H = cT12

(
xT
(n−1), xn

)
,

c22
(
xT
(n−1), xn

)
= 2h
[
λ + r22

(
xT
(n−1), xn

)]
.

(3.27)

We reduce these formulas using (3.21). Then,

c11
(
xT
(n−1), xn

)
= −
(
AT

0H +HA0

)
−
(
B
T
X(n−1) + B̃xn

)T
H −H

(
B
T
X(n−1) + B̃xn

)
,

c12
(
xT
(n−1), xn

)
= h
(
xT
(n−1)B

0
n + xnb

T
n

)T
−H
(
B̃x(n−1) + b̃xn

)
,

c21
(
xT
(n−1), xn

)
= h
(
xT
(n−1)B

0
n + xnb

T
n

)
−
(
B̃x(n−1) + b̃xn

)T
H,

c22
(
xT
(n−1), xn

)
= 2h
(
λ + xT

(n−1)bn + xnb
n
nn

)
.

(3.28)
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The derivative (3.26) turns into

V̇
(
xT
(n−1), xn

)
= xT

(n−1)c11
(
xT
(n−1), xn

)
x(n−1) + xT

(n−1)c12
(
xT
(n−1), xn

)
xn

+ xnc21
(
xT
(n−1), xn

)
x(n−1) + xnc22

(
xT
(n−1), xn

)
xn

= xT
(n−1)

[
−
(
AT

0H +HA0

)
−
(
B
T
X(n−1) + B̃xn

)T
H −H

(
B
T
X(n−1) + B̃xn

)]
x(n−1)

+ xT
(n−1)

[
h
(
xT
(n−1)B

0
n + xnb

T
n

)T
−H
(
B̃x(n−1) + b̃xn

)]
xn

+ xn

[
h
(
xT
(n−1)B

0
n + xnb

T
n

)
−
(
B̃x(n−1) + b̃xn

)T
H

]
x(n−1)

+ xn

[
2h
(
λ + xT

(n−1)bn + xnb
n
nn

)]
xn

= −xT
(n−1)

(
AT

0H +HA0

)
x(n−1) + 2hλx2

n

− xT
(n−1)

((
B
T
X(n−1)

)T
H +HB

T
X(n−1)

)
x(n−1)

− xT
(n−1)

((
B̃xn

)T
H +HB̃xn

)
x(n−1)

+ xT
(n−1)

(
2h
(
B0
n

)T
−HB̃ − B̃H

)
x(n−1)xn

+ 2xT
(n−1)

(
hbn −Hb̃

)
x2
n

+ 2h
(
xT
(n−1)bn + xnb

n
nn

)
x2
n.

(3.29)

Finally, using (3.6), we get

V̇
(
xT
(n−1), xn

)
= xT

(n−1)Cx(n−1) + 2hλx2
n − 2xT

(n−1)HB
T
X(n−1)x(n−1)

+ 2xT
(n−1)

[
−HB̃T − B̃H + h

(
B0
n

)T]
x(n−1)xn + 2xT

(n−1)

(
2hbn −Hb̃

)
x2
n + 2hbnnnx

3
n.

(3.30)
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Let us find the conditions for the positivity of V̇ (xT
(n−1), xn) in the cone K1. We use (3.30). If

(xT
(n−1), xn) ∈ K1, then xn ≥ 0 and

V̇
(
xT
(n−1), xn

)
≥ xT

(n−1)Cx(n−1) + 2hλx2
n − 2

∥∥∥∥HB
T
∥∥∥∥ · ∥∥x(n−1)

∥∥3

+ 2λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
·
∥∥x(n−1)

∥∥2 · xn

− 2
∥∥∥2hbn −Hb̃

∥∥∥ · ∥∥x(n−1)
∥∥ · x2

n + 2hbnnnx
3
n.

(3.31)

We set

a = −2
∥∥∥∥HB

T
∥∥∥∥,

b = 2λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
,

c = −2
∥∥∥2hbn −Hb̃

∥∥∥,
d = 2hbnnn.

(3.32)

If

a
∥∥x(n−1)

∥∥3 + b
∥∥x(n−1)

∥∥2 · xn + c
∥∥x(n−1)

∥∥ · x2
n + dx3

n > 0 (3.33)

in K1, then V̇ (xT
(n−1), xn) > 0 since C is a positive definite matrix and

xT
(n−1)Cx(n−1) + 2hλx2

n ≥ λmin(C)
∥∥x(n−1)

∥∥2 + 2hλx2
n > 0. (3.34)

If (xT
(n−1), xn) ∈ K1, then

xn >

√
xT
(n−1)Hx(n−1)

h
≥

√
λmin(H)

h
·
∥∥x(n−1)

∥∥, (3.35)

K1 ⊂ K∗ :=

⎧⎨
⎩
(
xT
(n−1), xn

)
∈ R

n : xn >

√
λmin(H)

h
·
∥∥x(n−1)

∥∥
⎫⎬
⎭. (3.36)

Now, we use Lemma 2.8 with K = K∗, y = xn, x = ‖x(n−1)‖, with coefficients a, b, c, and d
defined by formula (3.32) and with k :=

√
λmin(H)/h.

Obviously |c| ≤ kd because, due to (3.7), inequality

∥∥∥2hbn −Hb̃
∥∥∥ ≤
√
λmin(H)h · bnnn (3.37)
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holds. Moreover, |a| ≤ kb if (3.8) holds, that is, if

∥∥∥∥HB
T
∥∥∥∥ ≤

√
λmin(H)

h
· λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
. (3.38)

Further, |a| > kb if (3.9) holds, that is, if

∥∥∥∥HB
T
∥∥∥∥ >

√
λmin(H)

h
· λmin

(
−HB̃T − B̃H + hn

(
B0
n

)T)
, (3.39)

and (2.22) holds due to (4.10) and the condition |c|/= kd. Thus the assumptions of Lemma 2.8
are true, the inequality (3.33) holds in the coneK∗ and, due to embedding (3.36), in the cone
K1 as well.

All the assumptions of Theorem 2.6 are fulfilled with regard to system (1.5) and the
theorem is proved, because K1 = K.

Remark 3.2. We will focus our attention to Lemma 2.8 about the positivity of a third-degree
polynomial in two variables in the coneK. We used it to estimate the derivative V̇ expressed
by formula (3.30). Obviously, there are other possibilities of estimating its sign. Let us
demonstrate one of them. Let us, for example, estimate the right-hand side of (3.31) in the
cone K1 using inequality (3.35), then

V̇
(
xT
(n−1), xn

)
≥ xT

(n−1)Cx(n−1) + 2hλx2
n − 2

∥∥∥∥HB
T
∥∥∥∥ · ∥∥x(n−1)

∥∥3

+ 2λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
·
∥∥x(n−1)

∥∥2 · xn

− 2
∥∥∥2hbn −Hb̃

∥∥∥ · ∥∥x(n−1)
∥∥ · x2

n + 2hbnnnx
3
n

≥ λmin(C)
∥∥x(n−1)

∥∥2 + 2hλx2
n − 2

∥∥∥∥HB
T
∥∥∥∥ · ∥∥x(n−1)

∥∥3

+ 2

√
λmin(H)

h
· λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
·
∥∥x(n−1)

∥∥3

− 2
∥∥∥2hbn −Hb̃

∥∥∥ · ∥∥x(n−1)
∥∥ · x2

n + 2

√
λmin(H)

h
·
∥∥x(n−1)

∥∥ · hbnnn · x2
n,

(3.40)

and the positivity of V̇ (xT
(n−1), xn) will be guaranteed if

∥∥∥∥HB
T
∥∥∥∥ ≤

√
λmin(H)

h
· λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
,

∥∥∥2hbn −Hb̃
∥∥∥ ≤
√
λmin(H)h · bnnn.

(3.41)
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We see that this approach produces only one set of inequalities for the positivity of
V̇ (xT

(n−1), xn), namely the case when (3.7) and (3.8) holds. Unfortunately, using such
approach, we are not able to detect the second case (3.7) and (3.9) when V̇ (xT

(n−1), xn) is
positive. This demonstrates the advantage of detailed estimates using the above third-degree
polynomial in two variables.

4. Planar Case

Nowwe consider a particular case of the system (1.5) for n = 2. Thismeans that, in accordance
with (1.5) and (1.10), we consider a system

ẋ1(t) = ax1(t) + b111x
2
1(t) + 2b112x1(t)x2(t) + b122x

2
2(t),

ẋ2(t) = λx2(t) + b211x
2
1(t) + 2b212x1(t)x2(t) + b222x

2
2(t),

(4.1)

where a < 0 and λ > 0. The solution of matrix equation (3.6) for A0 = (a), H = (h11), and
C = (c)with c > 0, that is,

(ah11) + (h11a) = −(c) (4.2)

gives

H = (h11) =
(
− c

2a

)
, (4.3)

with h11 = −c/2a > 0. The set K defined by (3.12)where h > 0 and x(n−1) = x1 reduces to

K =

{
(x1, x2) : x2 >

√
c

2|a|h · |x1|
}
. (4.4)

Now, from Theorem 3.1, we will deduce sufficient conditions indicating K being a global
cone of instability for system (4.1). In our particular case, we have

bi =
(
bi12

)
, i = 1, 2, b̃ =

(
b122

)
,

B0
i =
(
bi11

)
, i = 1, 2, B̃ =

(
b112
)
, B

T
=
(
b111
)
= B0

1 .

(4.5)
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Now, we compute all necessary expressions used in Theorem 3.1. We have

−HB̃T − B̃H + h
(
B0
n

)T
= −
(
− c

2a

)(
b112

)
−
(
b112

)(
− c

2a

)
+ h
(
b211

)
=
(
hb211 −

c

|a|b
1
12

)
,

∥∥∥2hbn −Hb̃
∥∥∥ =
∣∣∣∣2hb212 − c

2|a|b
1
22

∣∣∣∣,
√
λmin(H)h =

√
ch

2|a| ,

√
λmin(H)

h
=

√
c

2|a|h ,

∥∥∥∥HB
T
∥∥∥∥ =
∣∣∣∣ c

2|a|b
1
11

∣∣∣∣ = c

2|a|

∣∣∣b111∣∣∣,
λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
= hb211 −

c

|a|b
1
12,

T1 =

∥∥∥∥HB
T
∥∥∥∥ −√λmin(H)/h · λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
−
∥∥∥2hbn −Hb̃

∥∥∥ +√λmin(H)h · bnnn

=
(c/2|a|)

∣∣b111∣∣ −√c/2|a|h ·
(
hb211 − (c/|a|)b112

)
−
∣∣2hb212 − (c/2|a|)b122

∣∣ +√ch/2|a| · b222
,

T2 =

∥∥∥∥HB
T
∥∥∥∥ +√λmin(H)/h · λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
∥∥∥2hbn −Hb̃

∥∥∥ +√λmin(H)h · bnnn

=
(c/2|a|)

∣∣b111∣∣ +√(c/2|a|h) ·
(
hb211 − (c/|a|)b112

)
∣∣2hb212 − (c/2|a|)b122

∣∣ +√(ch/2|a|) · b222
.

(4.6)

Theorem 4.1 (Planar Case). Assume that a < 0, b222 > 0, h > 0, c > 0 and hb211|a| > cb112. Let

∣∣∣∣2hb212 − c

2|a|b
1
22

∣∣∣∣ ≤
√

ch

2|a| · b
2
22, (4.7)

and, in addition, one of the following conditions is valid:
either

c

2|a|

∣∣∣b111∣∣∣ ≤
√

c

2|a|h ·
(
hb211 −

c

|a|b
1
12

)
(4.8)
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or

c

2|a|

∣∣∣b111∣∣∣ >
√

c

2|a|h ·
(
hb211 −

c

|a|b
1
12

)
, (4.9)

strong inequality holds in (4.7), and

√
c

2|a|h ≥ max
{√

T1,
√
T2

}
, (4.10)

where T1 and T1 are defined by (4.6). Then the setK defined by (4.4) is a global cone of instability for
the system (4.1).

It is easy to see that the choice h = 1, c = |a| significantly simplifies all assumptions.
Therefore we give such a particular case of Theorem 4.1.

Corollary 4.2 (Planar Case). Assume that a < 0, b222 > 0 and b211 > b112. Let

∣∣∣∣2b212 − 1
2
b122

∣∣∣∣ ≤ 1√
2
· b222, (4.11)

and, in addition, one of the following conditions is valid:
either

1
2

∣∣∣b111∣∣∣ ≤ 1√
2

·
(
b211 − b112

)
(4.12)

or

1
2

∣∣∣b111∣∣∣ > 1√
2

·
(
b211 − b112

)
, (4.13)

strong inequality holds in (4.11), and

1√
2

≥ max
{√

T1,
√
T2

}
, (4.14)

where

T1 =
(1/2)

∣∣b111∣∣ − (1/√2
)
·
(
b211 − b112

)
−
∣∣2b212 − (1/2)b122

∣∣ + (1/√2
)
· b222

, T2 =
(1/2)

∣∣b111∣∣ + (1/√2
)
·
(
b211 − b112

)
∣∣2b212 − (1/2)b122

∣∣ + (1/√2
)
· b222

, (4.15)
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Then the set

K =
{
(x1, x2) : x2 >

1√
2

· |x1|
}

(4.16)

is a global cone of instability for the system (4.1).

Example 4.3. The set K defined by (4.16) is a global cone of instability for the system

ẋ1(t) = ax1(t) + x2
1(t) + 2

√
2x1(t)x2(t) + x2

2(t),

ẋ2(t) = λx2(t) + 2
√
2x2

1(t) + 2x1(t)x2(t) + 2
√
2x2

2(t),
(4.17)

where a < 0 and λ > 0 since inequalities (4.11) and (4.12) in Corollary 4.2 hold.

Example 4.4. The set K defined by (4.16) is a global cone of instability for the system

ẋ1(t) = ax1(t) + 4x2
1(t) + 2

√
2x1(t)x2(t) + x2

2(t),

ẋ2(t) = λx2(t) + 2
√
2x2

1(t) + 2x1(t)x2(t) + 20
√
2x2

2(t),
(4.18)

where a < 0 and λ > 0 since inequalities (4.11), (4.13), (4.14) in Corollary 4.2 hold.
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