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The stability of the zero solution of a system of first-order linear functional differential equations
with nonconstant delay is considered. Sufficient conditions for stability, uniform stability,
asymptotic stability, and uniform asymptotic stability are established.

1. Introduction

We begin with a classical result for the linear system

x′ = A(t)x, (L1)

where A is an n × n matrix function defined and continuous on [0,∞). By CB[0,∞), we will
denote the set of bounded functions defined and continuous on [0,∞) and by |·| the Euclidean
norm.

In 1930, Perron first formulated the following definition being named after him.

Definition 1.1 (see [1]). System (L1) is said to satisfy Perron’s condition (P1) if, for any given
vector function f ∈ CB[0,∞), the solution x(t) of

x′ = A(t)x + f(t), x(0) = 0 (N1)

is bounded.
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The following theorem by Bellman [2] is well known.

Theorem 1.2 (see [2]). If (P1) holds and |A(t)| ≤ M1 for some positive number M1, then the zero
solution of (L1) is uniformly asymptotically stable.

The proof is accomplished by making use of the basic properties of a fundamental
matrix, the Banach-Steinhaus theorem, and the adjoint system

x′ = −AT (t)x, (1.1)

where AT denotes the transpose of A.
It is shown by an example in [3] that Theorem 1.2 may not be valid if the function f

appearing in (N1) is replaced by a constant vector. However, such a theorem is later obtained
in [4] under a Perron-like condition.

Theorem 1.2 is extended by Halanay [5] to linear delay systems of the form

x′(t) = A(t)x(t) + B(t)x(t − τ), (L2)

where A, B are n × n matrix functions defined and continuous on [0,∞) and τ is a positive
real number.

Definition 1.3. System (L2) is said to satisfy Perron’s condition (P2) if for any given vector
function f ∈ CB[0,∞), the solution x(t) of

x′(t) = A(t)x(t) + B(t)x(t − τ) + f(t) (N2)

satisfying x(t) = 0, t ≤ 0, is bounded.

Theorem 1.4 (see [5]). If (P2) holds, |A(t)| ≤ M1, and |B(t)| ≤ M2 for some positive numbers M1

and M2, then the zero solution of (L2) is uniformly asymptotically stable.

The method used to prove Theorem 1.4 is similar to Bellman’s except that the adjoint
system

y′(t) = −AT (t)y(t) − BT (t + τ)y(t + τ) (1.2)

is not constructed with respect to an inner product but the functional

F
(
x, y

)
(t) =

∫ t+τ

t

yT (s)B(s)x(s − τ)ds + xT (t)y(t). (1.3)

For some extensions to impulsive differential equations, we refer the reader in particular to
[6, 7].

In this paper, we consider the more general linear delay system

x′(t) = A(t)x(t) + B(t)x
(
g(t)

)
, (1.4)
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where A and B are n × n matrix functions defined and continuous on [0,∞) and g is a
continuously differentiable increasing function defined on [0,∞) satisfying g(t) < t and
g ′(t) ≤ 1. We set h := g−1. Obviously, h ∈ C1[0,∞) and increases on [0,∞) and h(t) > t.

Perron’s condition takes the following form.

Definition 1.5. System (1.4) is said to satisfy Perron’s condition (P) if, for any given vector
function f ∈ CB[0,∞), the solution x(t) of

x′(t) = A(t)x(t) + B(t)x
(
g(t)

)
+ f(t) (1.5)

satisfying x(t) = 0, t ≤ 0 is bounded.

A natural question is whether the zero solution of (1.4) is uniformly asymptotically
stable under Perron’s condition (P). It turns out that the answer depends on the delay
function g.

The paper is organized as follows. In Section 2, we only state our results; the proofs are
included in Section 5. We define an adjoint system and give a variation of parameters formula
in Section 3 to be needed in proving the main results. Section 4 contains also some lemmas
concerning Perron’s condition and a relation useful for changing the order of integration.

2. Stability Theorems

The conclusion obtained by Bellman and Halanay for systems (L1) and (L2), respectively,
is quite strong. We are only able to prove the stability of the zero solution for more general
equation (1.4) under Perron’s condition. To get uniform stability or asymptotic stability or
uniform asymptotic stability, we impose restrictions on the delay function.

For our purpose, we denote

h∗(t) := h(t) − t, t ≥ 0,

g∗(t, t0) := sup
r∈[h(t0),t]

{
r − g(r)

}
, t, t0 ≥ 0.

(2.1)

Theorem 2.1. Let (P) hold. If there are positive numbers M1 andM2 such that

|A(t)| ≤ M1, |B(t)| ≤ M2 ∀t ≥ 0, (2.2)

then the zero solution of (1.4) is stable.

Theorem 2.2. Let (P) hold. If (2.2) is satisfied and if there exists a positive real number M3 such
that

h∗(t) ≤ M3 ∀t ≥ 0, (2.3)

then the zero solution of (1.4) is uniformly stable.
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Theorem 2.3. Let (P) hold. If (2.2) and

lim sup
t→∞

g∗(t, t0)
t − t0

= 0 for each t0 ≥ 0 (2.4)

are satisfied, then the zero solution of (1.4) is asymptotically stable.

Theorem 2.4. Let (P) hold. If (2.2), (2.3), and

lim sup
t→∞

g∗(t, t0)
t − t0

= 0 uniformly for t0 ≥ 0 (2.5)

are satisfied, then the zero solution of (1.4) is uniformly asymptotically stable.

Remark 2.5. Note that if g(t) = t − τ , then h(t) = t + τ and hence the conditions (2.3), (2.4),
and (2.5) are automatically satisfied. In this case, all theorems become equivalent, that is, the
zero solution is uniformly asymptotically stable. Thus, the results obtained by Bellman and
Halanay are recovered.

3. Variation of Parameters Formula

To establish a variation of parameters formula to represent the solutions of (1.5), one needs
an adjoint system. The following lemma helps to define the adjoint of (1.4).

Lemma 3.1. Let x(t) be a solution of (1.4). If y(t) is a solution of

y′(t) = −AT (t)y(t) − BT (h(t))y(h(t))h′(t), (3.1)

then

d

dt
F
(
x(t), y(t)

)
= 0, (3.2)

where

F
(
x, y

)
(t) =

∫h(t)

t

yT (s)B(s)x
(
g(s)

)
ds + xT (t)y(t). (3.3)

Proof. Verify directly.

Definition 3.2. The system (3.1) is said to be adjoint to system (1.4).

It is easy to see that the adjoint of system (3.1) is system (1.4); thus the systems are
mutually adjoint to each other.
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Lemma 3.3. Let Y(t, s) be a matrix solution of (3.1) for t < s satisfying Y(s, s) = I and Y(t, s) = 0
for t > s. Then x(t) is a solution of (1.5) if and only if

x(t) = YT (s, t)x(s) +
∫ s

g(s)
YT

(
h
(
β
)
, t
)
B
(
h
(
β
))
x
(
β
)
h′(β

)
dβ +

∫ t

s

YT
(
β, t

)
f
(
β
)
dβ. (3.4)

Proof. Replacing t by β in (1.5) and then integrating the resulting equation multiplied by
YT (β, t) over β ∈ [s, t], we have

∫ t

s

YT(β, t
)
A
(
β
)
x
(
β
)
dβ +

∫ t

s

YT(β, t
)
B
(
β
)
x
(
g
(
β
))
dβ +

∫ t

s

YT(β, t
)
f
(
β
)
dβ

=
∫ t

s

YT(β, t
)
x′(β

)
dβ

= x(t) − YT (s, t)x(s) −
∫ t

s

[
∂

∂β
YT(β, t

)
]
x
(
β
)
dβ

= x(t) − YT (s, t)x(s) +
∫ t

s

[
YT(β, t

)
A
(
β
)
+ YT(h

(
β
)
, t
)
B
(
h
(
β
))
h′(β

)]
x
(
β
)
dβ

= x(t) − YT (s, t)x(s) +
∫ t

s

YT(β, t
)
A
(
β
)
x
(
β
)
dβ +

∫h(t)

h(s)
YT(β, t

)
B
(
β
)
x
(
g
(
β
))
dβ.

(3.5)

Comparing both sides and using

∫h(t)

t

YT(β, t
)
B
(
β
)
x
(
g
(
β
))
dβ = 0, (3.6)

which is true in view of Y(β, t) = 0 for β > t, we get

x(t) = YT (s, t)x(s) −
∫ s

h(s)
YT(β, t

)
B
(
β
)
x
(
g
(
β
))
dβ +

∫ t

s

YT(β, t
)
f
(
β
)
dβ (3.7)

and hence

x(t) = YT (s, t)x(s) +
∫ s

g(s)
YT(h

(
β
)
, t
)
B
(
h
(
β
))
x
(
β
)
h′(β

)
dβ +

∫ t

s

YT(β, t
)
f
(
β
)
dβ. (3.8)

It is not difficult to see from (3.4) that if X(t, s) is a matrix solution of (1.4) for t > s
satisfying X(s, s) = I and X(t, s) = 0 for t < s, then

X(t, s) = YT (s, t). (3.9)

Using this relation in Lemma 3.3 leads to the following variation of parameters formula.
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Lemma 3.4. Let X(t, s) be a matrix solution of (1.4) for t > s satisfying X(s, s) = I and X(t, s) = 0
for t < s. Then x(t) is a solution of (1.5) if and only if

x(t) = X(t, s)x(s) +
∫ s

g(s)
X
(
t, h

(
β
))
B
(
h
(
β
))
x
(
β
)
h′(β

)
dβ +

∫ t

s

X
(
t, β

)
f
(
β
)
dβ. (3.10)

4. Auxiliary Results

Lemma 4.1. If (P) holds, then there is a positive number K1 such that

∫ t

0
|X(t, s)|ds ≤ K1 ∀t > 0. (4.1)

Proof. The proof follows as in [5]. We provide only the steps for the reader’s convenience.
Define

(
Sf

)
(t) =

∫ t

0
X
(
t, β

)
f
(
β
)
dβ, f ∈ CB[0,∞),

Sk

(
f
)
=
∫ tk

0
X
(
tk, β

)
f
(
β
)
dβ, f ∈ CB[0,∞),

(4.2)

for each rational number tk, k ∈ �.
In view of (P), the family of continuous linear operators {Sk} from CB[0,∞) to

CB[0,∞) is pointwise-bounded. For the space of bounded continuous functions CB[0,∞),
the usual sup norm ‖ · ‖ is used.

By the Banach-Steinhaus theorem, the family is uniformly bounded. Thus, there is
a positive number M such that ‖Sk(f)‖ ≤ M‖f‖ for every f ∈ CB[0,∞).

As the rational numbers are dense in the real numbers, for each t there is tk such that
tk → t as k → ∞ and so

∣
∣∣∣
∣

∫ t

0
X
(
t, β

)
f
(
β
)
dβ

∣
∣∣∣
∣
≤ M

∥
∥f

∥
∥ ∀f ∈ CB[0,∞). (4.3)

The final step involves choosing a sequence of functions and using a limiting process.

Lemma 4.2. If (2.2) and (4.1) are true, then there is a positive number K2 such that

|Y(s, t)| ≤ K2 ∀ 0 ≤ s < t. (4.4)

Proof. From (3.1), we have

Y(s, t) = I +
∫ t

s

AT(β
)
Y
(
β, t

)
dβ +

∫ t

s

BT(h
(
β
))
Y
(
h
(
β
)
, t
)
h′(β

)
dβ. (4.5)
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Hence, by using (4.1), we see that for all 0 ≤ s < t,

|Y(s, t)| ≤ 1 +M1K1 +M2K1 =: K2. (4.6)

Lemma 4.3. Let G(r, t) be a continuous function satisfying G(r, t) = 0 for r > t. Then

∫ t

t0

[∫h(s)

s

G(r, t)dr

]

ds =
∫ t

h(t0)

(
r − g(r)

)
G(r, t)dr +

∫h(t0)

t0

(r − t0)G(r, t)dr. (4.7)

5. Proofs of Theorems

Let t0 ≥ 0 be given. For a given continuous vector function φ defined on [g(t0), t0], let x(t) =
x(t, t0, φ) denote the solution of (1.4) satisfying

x(t) = φ(t), t ≤ t0. (5.1)

As usual,

∥∥φ
∥∥
g = sup

t∈[g(t0),t0]

∣∣φ(t)
∣∣. (5.2)

Proof of Theorem 2.1. From Lemma 3.3, we may write

x(t) = YT (t0, t)φ(t0) +
∫ t0

g(t0)
YT(h

(
β
)
, t
)
B
(
h
(
β
))
φ
(
β
)
h′(β

)
dβ. (5.3)

In view of Lemma 4.2, it follows that

|x(t)| ≤ (K2 + (h(t0) − t0)K2M2)
∥∥φ

∥∥
g . (5.4)

Hence, the zero solution is stable.

Proof of Theorem 2.2. Using (2.3) in (5.4), we get

|x(t)| ≤ K3
∥
∥φ

∥
∥
g , K3 = K2 +K2M2M3, (5.5)

from which the uniform stability follows.

Proof of Theorem 2.3. By Theorem 2.1, the zero solution is stable. We need to show the attrac-
tivity property.

From Lemma 3.3, for s ≥ t0, we can write

x
(
t, t0, φ

)
= YT (s, t)x

(
s, t0, φ

)
+
∫ s

g(s)
G
(
h
(
β
)
, t
)
x
(
β, t0, φ

)
h′(β

)
dβ, (5.6)
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where

G(s, t) = YT (s, t)B(s). (5.7)

Integrating with respect to s from t0 to t, we have

(t − t0)x
(
t, t0, φ

)
=
∫ t

t0

[

YT (s, t)x
(
s, t0, φ

)
+
∫h(s)

s

G(r, t)x
(
g(r), t0, φ

)
dr

]

ds. (5.8)

We change the order of integration by employing Lemma 4.3. After some rearrangements, we
obtain

(t − t0)x
(
t, t0, φ

)
=
∫ t

t0

YT (s, t)x
(
s, t0, φ

)
ds +

∫ t

h(t0)

(
s − g(s)

)
G(s, t)x

(
g(s), t0, φ

)
ds

+
∫h(t0)

t0

(s − t0)G(s, t)x
(
g(s), t0, φ

)
ds.

(5.9)

It follows that

(t − t0)
∣∣x
(
t, t0, φ

)∣∣ ≤ K1K3
∥∥φ

∥∥
g + g∗(t, t0)M2K1

∥∥φ
∥∥
g + h∗(t0)M2K1

∥∥φ
∥∥
g . (5.10)

In view of condition (2.4), we see from (5.10) that

lim
t→∞

∣∣x
(
t, t0, φ

)∣∣ = 0. (5.11)

Proof of Theorem 2.4. By Theorem 2.2, the zero solution is uniformly stable. From (5.10) and
(2.3), we have

(t − t0)
∣
∣x
(
t, t0, φ

)∣∣ ≤ K1K3
∥
∥φ

∥
∥
g + g∗(t, t0)M2K1

∥
∥φ

∥
∥
g +M3M2K1

∥
∥φ

∥
∥
g. (5.12)

Using condition (2.4) in the above inequality, we see that the zero solution is uniformly
asymptotically stable as t → ∞.
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