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The paper gives sufficient conditions on the existence of periodic solution for a class of
compound singular fractional differential systems with delay, involving Nishimoto fractional
derivative. Furthermore, for the particular functions, the necessary conditions on the existence of
periodic solution are also derived. Especially, for two-dimensional compound singular fractional
differential equation with delay, the criteria of existence of periodic solution are obtained. Finally,
two examples are presented to verify the validity of criteria.

1. Introduction

In real life, there are many phenomena with time delay. The mathematical model derived
from engineering, physics, mechanics, control theory, chemical reactions, biology, and
medicine was made with a significant amount of delay, such as the limited signal
transmission speed human reaction time to the outside world. Therefore, the delay is
widespread in nature and society, in the introduction of time-delay differential equations
there can be a more accurate description and explanation of various phenomena and
processes.

Fractional calculus is the promotion of classical calculus. The study found that
fractional calculus was very suitable to describe long memory and hereditary properties
of various materials and processes [1, 2]. In the recent years, fractional calculus becomes a
research hotspot, its field of concern has become wide, such as the numerical method of the
equation in [3], the existence and uniqueness of equations in [4], fractional Brownian motion,
fractional reaction-diffusion equation and random walk [5, 6], fractional wavelet transform
[7], and fractional control [8].

Most of the above-mentioned studies, utilize the Riemann-liouville fractional deriva-
tive definition, which due to its nature of its definition is simple and relatively good. But
Nishimoto definition of fractional calculus [9, 10], has not received a lot of attention, this may
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be part of the naturalization due to the complexity of its definition, but compared to Riemann-
liouville fractional calculus, it has a better nature, relevant results more concise useful.

The existence of periodic solutions of differential equations is one of the important
research directions of biomathematics [11–15], which has a wide range of applications, such
as the existence of periodic orbits of celestial movement and its stability.

In [12], the author discussed the following system:

Eẋ(t) = Ax(t) + Bx(t − τ1) + Cx(t − τ2), (1.1)

and obtained sufficient and necessary conditions for the existence of periodic solutions for the
system. Taking into account the periodic solutions of the fractional time-delay system will be
a very important practical significance; we are tried to generalize the corresponding results
to the case of fractional order.

For the above reasons we consider the following compound singular fractional
differential system with delay:

HDαx(t) = Ax(t) + Bx(t − τ1) + Cx(t + τ2), (1.2)

where Dα denotes Nishimoto fractional derivative of order α, α > 0. H,A,B, and C are
constant system matrices of appropriate dimensions, and τ1 and τ2 are constants with τ1 >
0, τ2 > 0, |H| = 0.

2. Definitions and Notations

In this section we introduce the definitions of fractional derivative/integral and related basic
properties used in the paper; more information can be obtained from [9, 10].

Definition 2.1 (see [9]). If the function f(z) is analytic (regular) inside and on C, here C :=
{C−, C+}, C− is a contour along the cut joining the points z and −∞ + iI(z), which starts from
the point at −∞, encircles the point z once counter-clockwise, and returns to the point at −∞,
C+ is a contour along the cut joining the points z and +∞ + iI(z), which starts from the point
at +∞, encircles the point z once counter-clockwise, and returns to the point at +∞,

fυ(z) =
(
f(z)

)
υ :=

Γ(υ + 1)
2πi

∫

c

f(ς)

(ς − z)υ+1
dς

(
υ ∈ R

Z− ;Z
− := {−1,−2,−3, . . .}

)
,

f−n(z) := lim
υ→−n

{
fυ(z)

}
(n ∈ N := {1, 2, 3, . . .}),

(2.1)

where ς, −π ≤ arg(ς − z) ≤ π , for C−, and 0 ≤ arg(ς − z) ≤ 2π , for C+.
Then fυ(z) (υ > 0) is said to be the fractional derivative of f(z) of order υ and

fυ(z) (υ < 0) is said to be the fractional integral of f(z) of order −υ, provided that |fυ(z)| <
∞ (υ ∈ R).

Let us recall the following useful properties associated with the definition introduced
above [9].
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Property 1. For a constant λ,

(
eλz
)

υ
= λυeλz (λ/= 0;υ ∈ R; z ∈ C). (2.2)

Property 2. For a constant λ,

(
e−λz
)

υ
= e−iπυλυe−λz (λ/= 0;υ ∈ R; z ∈ C). (2.3)

Property 3. If the function f(z) is singlevalued and analytic in some domain Ω ⊆ C, then

(
fμ(z)

)
υ
= fμ+υ(z) =

(
fυ(z)

)
μ. (2.4)

Property 4. For a constant λ,

(
zλ
)

υ
= e−iπυ

Γ(υ − λ)
Γ(−λ) zλ−υ

(
υ ∈ R; z ∈ C;

∣∣∣∣
Γ(υ − λ)
Γ(−λ)

∣∣∣∣ < ∞
)
. (2.5)

In the following section of this paper, we let Dα denote the α order Nishimoto derivative.

3. The Main Results

In this section, we discuss some problems to the system of the system (1.2).

Theorem 3.1. The sufficient condition for the existence of the nonconstant periodic solutions of
system (1.2) is that the following equation exists pure imaginary roots

det
(
λαH −A − Be−τ1λ − Ceτ2λ

)
= 0. (3.1)

Proof. Assume that ηi is pure imaginary root of (3.1), let x(t) = Keηit(K ∈ Rn), substituting
x(t) in (1.2), then

((
ηi
)α
H −A − Be−τ1(ηi) − Ceτ2(ηi)

)
K = 0. (3.2)

As ηi is pure imaginary roots of (3.1), note that

det
((

ηi
)α
H −A − Be−τ1(ηi) − Ceτ2(ηi)

)
= 0. (3.3)

So (3.1) exists nonzero solution K, then, x(t) = Keηit is the nonconstant periodic solution of
(1.2).

If the system have nonconstant periodic solutions, then we may wonder whether
the solution satisfy (3.1), in fact, as you will see it holds when the function satisfy some
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conditions. We know that if the function f(t) is a continuous smooth periodic function with
period 2l, then it can be expressed as its fourier series form

f(t) =
+∞∑

k=−∞
Cke

ikπt/l, (3.4)

where Ck = (1/2l)
∫ l
−lf(ξ)e

−ikπt/ldξ.
And as we also know that its fourier series expansion has the following properties:

f ′(t) =
+∞∑

k=−∞
Ck

ikπ

l
eikπt/l, (3.5)

we can even get the following relation if f(t) satisfy some more strictly condition:

f (k)(t) =
+∞∑

k=−∞
Ck

(
ikπ

l

)k

eikπt/l. (3.6)

To obtain the similar property of our fractional derivative, what conditions the function
should satisfy? We give the following function space.

Definition 3.2. If the periodic function f(t) is continuous and smooth on R, its α (α > 1) order
Nishimoto derivative exists, then we letΩ(t) denote the corresponding function space whose
elements have the following property:

Dαf(t) = Dα

(
+∞∑

k=−∞
Cke

ikπt/l

)

=
+∞∑

k=−∞
CkD

α
(
eikπt/l

)
=

+∞∑

k=−∞
Ck

(
ikπt

l

)α

eikπt/l, (3.7)

it is easy to know from the definition that eiλt ∈ Ω(t) (λ ∈ R), and so Ω(t) is nonempty.

Theorem 3.3. If x(t) is the non-constant periodic solution of (1.2), and further x(t) ∈ Ω(t), one can
obtain the necessity of Theorem 3.1.

Proof. Suppose the period of x(t) is 2l, x(t) is continuous and differentiable because of α > 1,
then we can denote it in the form of its fourier series:

x(t) =
+∞∑

k=−∞
Cke

ikπt/l. (3.8)

Since x(t) ∈ Ω(t), we have

Dαx(t) =
+∞∑

k=−∞
Ck

(
ikπt

l

)α

eikπt/l, (3.9)

where Ck = (1/2l)
∫ l
−lx(ξ)e

−ikπt/ldξ.
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We put (3.8) and (3.9) into (1.2), and obtain

∞∑

k=−∞

[(
ikπ

l

)α

H −A − Be−ikπτ1/l − Ceikπτ2/l
]
Cke

ikπt/l = 0, (3.10)

then multiply (1/2l)e−imπt/l (m = 0,±1,±2, . . .) on both sides of (3.10) and integrate it from −l
to l, hence

∞∑

k=−∞

[(
ikπ

l

)α

H −A − Be−ikπτ1/l − Ceikπτ2/l
]
Ck

1
2l

∫ l

−l
ei(k−m)πt/ldt = 0. (3.11)

It is easy to deduce that

1
2l

∫ l

−l
ei(k−m)πt/ldt =

⎧
⎨

⎩

1, k = m,

0, k /=m,
(3.12)

recalling (3.10), it reduces to

[(
ikπ

l

)α

H −A − Be−ikπτ1/l − Ceikπτ2/l
]
Cm = 0 (m = 0,±1,±2, . . .). (3.13)

Thus, if there are no pure imaginary roots in (3.1), then for every k we have Ck = 0, according
to (3.8), we conclude that x(t) = cons tan t vector which conflicts the suppose that x(t) is the
non-constant periodic solution of (1.2).

4. Two-Dimensional Case

For the case of the two-dimensional compound singular fractional differential system with
delay, there is

HDαx(t) = Ax(t) + Bx(t − τ1) + Cx(t + τ2), (4.1)

where α > 0, H =
(

1 0

0 0

)
, A =

(
a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
, C =

(
c11 c12

c21 c22

)
, x(t) =

(
x1(t)

x2(t)

)
,

and x1(t), x2(t) is scalar function.
Using Theorem 3.1, we obtained the following theorem.
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Theorem 4.1. If one of the following equations exists non-zero real root, then system(4.1) exists non-
constant periodic solution, further more, if x(t) ∈ Ω(t), then the conclusion is sufficient and necessary

|A| + |B| cos(2τ1y
)
+ |C| cos(2τ2y

)
+ E cos

(
τ1y
)
+ F cos

(
τ2y
)
+G cos

(
(τ2 − τ1)y

)

−b22
∣
∣y
∣
∣α cos

(
−τ1y +

π

2
α
)
− c22

∣
∣y
∣
∣α cos

(
τ2y +

π

2
α
)
− a22

∣
∣y
∣
∣α cos

(π
2
α
)
= 0

−|B| sin(2τ1y
)
+ |C| sin(2τ2y

) − E sin
(
τ1y
)
+ F sin

(
τ2y
)
+G sin

(
(τ2 − τ1)y

)

−b22
∣
∣y
∣
∣α sin

(
−τ1y +

π

2
α
)
− c22

∣
∣y
∣
∣α sin

(
τ2y +

π

2
α
)
− a22

∣
∣y
∣
∣α sin

(π
2
α
)
= 0,

(4.2)

or

|A| + |B| cos(2τ1y
)
+ |C| cos(2τ2y

)
+ E cos

(
τ1y
)
+ F cos

(
τ2y
)
+G cos

(
(τ2 − τ1)y

)

−b22
∣∣y
∣∣α cos

(
−τ1y − π

2
α
)
− c22

∣∣y
∣∣α cos

(
τ2y − π

2
α
)
− a22

∣∣y
∣∣α cos

(
−π
2
α
)
= 0

−|B| sin(2τ1y
)
+ |C| sin(2τ2y

) − E sin
(
τ1y
)
+ F sin

(
τ2y
)
+G sin

(
(τ2 − τ1)y

)

−b22
∣∣y
∣∣α sin

(
−τ1y − π

2
α
)
− c22

∣∣y
∣∣α sin

(
τ2y − π

2
α
)
− a22

∣∣y
∣∣α sin

(
−π
2
α
)
= 0,

(4.3)

where E =
∣∣∣
a11 a12

b21 b22

∣∣∣ +
∣∣∣
b11 b12

a21 a22

∣∣∣, F =
∣∣∣
a11 a12

c21 c22

∣∣∣ +
∣∣∣
c11 c12

a21 a22

∣∣∣, G =
∣∣∣
b11 b12

c21 c22

∣∣∣ +
∣∣∣
c11 c12

b21 b22

∣∣∣.

Proof. First of all we know that

(
yi
)α =

⎧
⎨

⎩

yαeπαi/2, y ≥ 0,
∣∣y
∣∣αe−παi/2, y < 0,

(4.4)

according to Theorem 3.1, we have

h
(
yi
)
=
∣∣∣yiI −A − Be−τ1yi − Ceτ2yi

∣∣∣

=

∣∣∣∣∣

(
yi
)α − a11 − b11e

−τ1yi − c11e
τ2yi −a12 − b12e

−τ1yi − c12e
τ2yi

−a21 − b21e
−τ1yi − c21e

τ2yi −a22 − b22e
−τ1yi − c22e

τ2yi

∣∣∣∣∣

= |A| + |B|e−τ1yi + |C|e2τ2yi + |E|e−τ1yi + Feτ2yi +Ge(τ2−τ1)yi

− b22
(
yi
)α
e−τ1yi − c22

(
yi
)α
eτ2yi − a22

(
yi
)α
.

(4.5)
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then

R
[
h
(
yi
)]

= |A| + |B| cos(2τ1y
)
+ |C| cos(2τ2y

)
+ E cos

(
τ1y
)
+ F cos

(
τ2y
)

+G cos
(
(τ2 − τ1)y

) − b22
∣
∣y
∣
∣α cos

(
−τ1y ± π

2
α
)

− c22
∣
∣y
∣
∣α cos

(
τ2y ± π

2
α
)
− a22

∣
∣y
∣
∣α cos

(
±π
2
α
)
= 0,

I
[
h
(
yi
)]

= −|B| sin(2τ1y
)
+ |C| sin(2τ2y

) − E sin
(
τ1y
)
+ F sin

(
τ2y
)

+G sin
(
(τ2 − τ1)y

) − b22
∣
∣y
∣
∣α sin

(
−τ1y ± π

2
α
)

− c22
∣
∣y
∣
∣α sin

(
τ2y ± π

2
α
)
− a22

∣
∣y
∣
∣α sin

(
±π
2
α
)
= 0,

(4.6)

where R [z] and I [z] denote the real and imaginary parts of z, respectively. Then using
Theorem 3.1, if there exists y ∈ R, y /= 0, h(yi) = 0, we obtain that

R
[
h
(
yi
)]

= 0,

I
[
h
(
yi
)]

= 0,
(4.7)

hence system (4.1) exists non-constant periodic solution. This proved the theorem.

5. Examples

In this section we give some concrete examples to illustrate our conclusions.

Example 5.1. We consider the following two-dimensional compound singular fractional
differential system with delay:

Dαx1(t) = −x2(t) + x1(t − 1) + x2(t − 1) + x2(t + 1),

0 = x1(t) + x1(t − 1) + x1(t + 1),
(5.1)

where H =
(

1 0

0 0

)
, A =

(
0 −1
1 0

)
, B =

(
1 1

1 0

)
, C =

(
0 1

1 0

)
, τ1 = 1, τ2 = 1, α > 1. so we have

|A| = 1, |B| = −1, |C| = −1, E = 0, F = 0, G = −2.
Using the discriminant of Theorem 4.1, we have

2 cos
(
2y
)
= −1,

0 = 0,
(5.2)

the solution is y = kπ + π/3 (k = 0,±1,±2, . . .).
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According to Theorem 4.1 , system (5.1) has non-constant periodic solution. We
suppose that y = π/3, as

((
yi
)α
I −A − Be−yi − Ceyi

)
K = 0 (5.3)

exists non-zero solution, it means that

⎛

⎜
⎝

[(
π

3

)α

cos
(πα

2

)
−
√
3
2

]

+

[(
π

3

)α

sin
(πα

2

)
+
√
3
2

]

i 0

0 0

⎞

⎟
⎠

(
k1

k2

)

=

(
0

0

)

. (5.4)

So we have k1 = 0, k2 for any real number. Supposed that k2 = 1, then we obtained a non-
constant periodic solution of system (5.1):

x(t) = e(π/3)it
(
0

1

)

. (5.5)

We can verify that x(t) is a non-constant periodic solution of system (5.1).

Example 5.2. Consider the following two-dimension compounded with singular fractional
differential equation delay system:

D1/2x1(t) = −x2(t) + x1(t − 1) + x2(t + 1),

0 = x1(t) + x2(t) + x1(t − 1) + x2(t − 1) + x1(t + 1) + x2(t + 1).
(5.6)

where H =
(

1 0

0 0

)
, A =

(
0 −1
1 1

)
, B =

(
0 1

1 1

)
, C =

(
0 1

1 1

)
, τ1 = 1, τ2 = 1, α = 1/2.

So we have |A| = 1, |B| = −1, |C| = −1, E = 0, F = 0, G = −2.
Using the discriminant of Theorem 4.1, we obtained

(
2 cosy + 1

)∣∣y
∣∣1/2 cos

π

4
+ 2 cos 2y + 1 = 0,

(
2 cosy + 1

)∣∣y
∣∣1/2 sin

π

4
= 2 sin 2y.

(5.7)

Through the simplication of this equation, we have

√
2 sin

(
2y + (π/4)

)
= −1/2, (5.8)

and the solution is y = kπ + (1/2)arc sin(−1/2√2) − π/8, k = (0,±1,±2, . . .).
According to Theorem 4.1, there exists non-constant periodic solution in the system.
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