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We introduce a new iterative scheme based on extragradient method and viscosity approximation
method for finding a common element of the solutions set of a system of equilibrium problems,
fixed point sets of an infinite family of nonexpansive mappings, and the solution set of a variational

inequality for a relaxed cocoercive mapping in a Hilbert space. We prove strong convergence
theorem. The results in this paper unify and generalize some well-known results in the literature.

1. Introduction

Let H be a real Hilbert space with inner product (-, -) and induced norm || - ||. Let C be a
nonempty, closed, and convex subset of H. Let {Fi }, be a countable family of bifunctions
from C x C to R, where R is the set of real numbers. Combettes and Hirstoaga [1] considered
the following system of equilibrium problems:

Find x € C such that (Vk eT), (Yy € C), Fr(x,y) >0. (1.1)

If I is a singleton, problem (1.1) becomes the following equilibrium problem:

Finding x € C such that F(x,y) >0, VyeC. (1.2)
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The solutions set of (1.2) is denoted by EP(F). And clearly the solutions set of problem
(1.1) can be written as (e EP(F).

Problem (1.1) is very general in the sense that it includes, as special cases,
optimization problems, variational inequalities, minimax problems, Nash equilibrium
problem in noncooperative games, and others; see for instance, [1-4].

Recall that a mapping S of a closed and convex subset C into itself is nonexpansive if

||Sx-Sy|| <|lx-y| VxyeC (1.3)

We denote fixed-points set of S by Fix(S). A mapping f : C — C is called contraction if there
exists a constant a € (0,1) such that

lfx-fy|l <alx-vy|, Vx,yeC (1.4)

A bounded linear operator B on H is strongly positive, if there is a constant y > 0 such that
(Bx,x) >7]x|* for all x € H.

Combettes and Hirstoaga [1] introduced an iterative scheme for finding a common
element of the solutions set of problem (1.1) in a Hilbert space and obtained a weak
convergence theorem. Peng and Yao [2] introduced a new viscosity approximation scheme
based on the extragradient method for finding a common element in the solutions set of
the problem (1.1), fixed-points set of an infinite family of nonexpansive mappings and the
solutions set of the variational inequality for a monotone and Lipschitz continuous mapping
in a Hilbert space and obtained a strong convergence theorem. Colao et al. [3] introduced
an implicit method for finding common solutions of variational inequalities and systems
of equilibrium problems and fixed-points of infinite family of nonexpansive mappings in
a Hilbert space and obtained a strong convergence theorem. Saeidi [4] introduced some
iterative algorithms for finding a common element of the solutions set of a system of
equilibrium problems and of fixed-points set of a finite family and a left amenable semigroup
of nonexpansive mappings in a Hilbert space and obtained some strong convergence
theorems.

Several algorithms for problem (1.2) have been proposed (see [5-20]). S. Takahashi
and W. Takahashi [5] introduced and studied the following iterative scheme by the viscosity
approximation method for finding a common element of the solutions set of problem (1.2)
and fixed-points set of a nonexpansive mapping in a Hilbert space. Let an arbitrary x; € H
define sequences {x,} and {u,} by

F(un,y) + l(y— U, Un —Xn) >0, VyeC,
P (1.5)

Xn+1 = 0 f (xy) + (1 — a)Su,, Vne N.

Shang et al. [6] introduced the following iterative scheme by the viscosity approximation
method for finding a common element of the solutions set of problem (1.2) and fixed-points
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set of a nonexpansive mapping in a Hilbert space. Let an arbitrary x; € H, define sequences
{xa} and {u,) by
1
F(un,y) + —(y -ty —x,) 20, VyeC,
P (1.6)

Xn+1 = &nY f(xn) + (I — a,B)Su,, VYn € N.

They proved that under certain appropriate conditions imposed on {a,} and {f,}, the
sequences {x,} and {u,} generated by (1.6) converge strongly to the unique solution of the
variational inequality

((B-yf)x*,x—x*)>0, VxeFix(S)NEP(F), (1.7)

which is the optimality condition for the minimization problem

1
in = (Bx,x) - .
xeFixg)lrrleP(F)2< X, x) = h(x), (1.8)

where h is a potential function for yf (ie., W'(x) = yf(x) for x € H). If C = H, the algorithm
(1.6) was also studied by Plubtieng and Punpaeng [7].

Let A: C — H be a monotone mapping. The variational inequality problem is to find
a point x € C such that

(Ax,y —x) >0 (1.9)

for all y € C. The solutions set of the variational inequality problem is denoted by VI(C, A).
Qin et al. [8] introduced the following general iterative scheme for finding a common element
of the solutions set of problem (1.2), the solutions set of a variational inequality and fixed-
points set of a nonexpansive mapping in a Hilbert space. Let an arbitrary x; € H, define
sequences {x,} and {u,} by

F(un,y) + l(y— U, U —Xn) 20, Yy eC,
P (1.10)

Xn+1 = oY f(xn) + (I —a,B)SPc(I — s, A)u,, VYne€ N.

They proved that under certain appropriate conditions imposed on {a,}, {s,} and {f,}, the
sequences {x,} and {u,} generated by (1.10) converge strongly to the unique solution of the
variational inequality

((B-yf)x*,x—x*) >0, VxeFix(S)nVI(C, A) NEP(F). (1.11)

Qin et al. [9] introduced the following general iterative scheme for finding a common
element of the solutions set of problem (1.2) and fixed-points set of a finite family of
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nonexpansive mappings in a Hilbert space. Let an arbitrary x; € H, define sequences {x,}
and {u,} by

F(un,y) + l(y— Up, Uy —Xy) 20, VyeC,
P (1.12)

Xn1 = Y f(Wexy) + (1 - a,B)W,Pc(I — s,A)u,, VYn €N,

where W, is the W-mapping generated by Ty, T, ..., Tn and Au1, Ay, ..., Aun. They proved
that under certain appropriate conditions imposed on {a,}, {s,} and {f,}, the sequences
{xn} and {u,} generated by (1.12) converge strongly to the unique solution of the variational
inequality

N
((B-yf)x*,x-x*) >0, Vxe()Fix(T;) nVI(C, A) NEP(F). (1.13)
i=1

A typical problem is to minimize a quadratic function over the fixed-points set of a
nonexpansive mapping S on a real Hilbert space H, that is,

.1
min —

xEFiX(S)2<Bx’x> - <xrb>l (114)

where b is a given point in H. In 2003, Xu [21] proved that the sequence {x,} defined by the
iterative method below, with the initial point xo € H, chosen arbitrarily:

Xp1 = (I —a,B)Sx, + ayu, n>0, (1.15)

converges strongly to the unique solution of the minimization problem (1.15) provided the
sequence {a,} satisfies certain conditions. Marino and Xu [22] combine the iterative method
(1.15) with the viscosity approximation in [23] and consider the following general iterative
method: with the initial point xg € H, chosen arbitrarily:

Xpi1 = (1= a,B)Sx, + anyf(x,), n2>0. (1.16)

They proved that if the sequence {a,} satisfies appropriate conditions, then the
sequence {x,} generated by (1.16) converges strongly to the unique solution of the variational
inequality

((B-yf)x*,x—-x") >0, x€Fix(S) (1.17)

which is the optimality condition for the minimization problem

.1
xglﬁir(ls)i(Bx,x) - h(x), (1.18)

where h is a potential function for yf.
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Recently, Qin et al. [24] introduced the following general iterative process: with the
initial point x; € C, chosen arbitrarily:

Yn = Pc(I -s,A)xy,
(1.19)
Xn+1 = Y f (Waxy) + (I — ayBYW, Pc(I - 1r,A)y,, VYn €N,

where W, is the W-mapping generated by Ty, T, ..., Tn and Au1, Ay, ..., Ann. They proved
that if the sequences of parameters {a,}, {r,} and {s,} satisfies appropriate conditions, then
the sequence {x,}, {y.} generated by (1.19) converge strongly to a point x* which is the
unique solution of the variational inequality

N
((B-yf)x*,x-x*)>0, Vxe(|F(T)nVIC,A). (1.20)
i=1

Inspired and motivated by above works, we introduce a new iterative scheme based
on extragradient method and viscosity approximation method for finding a common element
of the solutions set of a system of equilibrium problems, fixed-points set of a family of
infinitely nonexpansive mappings and the solutions set of a variational inequality for a
relaxed cocoercive mapping in a Hilbert space. We prove strong convergence theorem. The
results in this paper unify, generalize and extend some well-known results in [6-9, 21, 22, 24].

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C be a nonempty,
closed, and convex subset of H. Let symbols — and — denote strong and weak convergence,
respectively. It is well known that

[ + (1= Vy|* = Ml + 1= Vly]* - ra -V |lx -y (2.1)

forall x,y € H and A € [0,1].

For any x € H, there exists a unique nearest point in C, denoted by Pc(x), such that
llx = Pc(x)|| < |lx — y|| for all y € C. The mapping Pc is called the metric projection of H onto
C. We know that Pc is a nonexpansive mapping from H onto C, Pc(x) € C and

(x = Pc(x), Pe(x) —y) 20 (2.2)
forall x,y € H.
It is easy to see that (2.2) is equivalent to

lx =yl 2 llx = Pe@)IP + ||y = Pe() ||’ (2.3)

for all x, y € H. It is also known that Pc has the following firmly nonexpansive property:
(x =y, Pex = Pey) 2 || Pex = Pey||* (24)

forall x,y € H.
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Recall also that a mapping A of C into H is called monotone if
(Ax - Ay, x-y) >0, (2.5)
for all x,y € C. Ais said to be p-cocoercive, if for each x, y € C, we have
(Ax = Ay,x - y) 2 p| Ax - Ay, (26)

for a constant ¢ > 0. A is said to be relaxed (u,v)-cocoercive, if there exist two constants
u,v > 0 such that

(Ax - Ay, x —y) > (-u)||Ax - Ay|* +o||x-y||>, Vx,yeC. (2.7)

Let A be a monotone mapping of C into H. In the context of the variational inequality
problem the characterization of projection (2.2) implies the following:

ueVI(C,A) = u=Pc(u—-AAu), A>0,
(2.8)
u=Pc(u—-)VAu) for some L >0= u € VI(C, A).

It is also known that H satisfies the Opial’s condition [25], that is, for any sequence
{x,} C H with x, — x, the inequality

lim infl|x, — x|| < lim inf[|x, ~ y (2.9)

holds for every y € H with x #y.

A set-valued mapping T : H — 2! is called monotone if for all x,yy € H, f € Tx and
g € Ty imply (x -y, f — g) > 0. A monotone mapping T : H — 2H is maximal if its graph
G(T) of T is not properly contained in the graph of any other monotone mapping. It is known
that a monotone mapping T is maximal if and only if for (x, f) € H x H,(x -y, f - g) >0
for every (y,g) € G(T) implies f € Tx. Let A be a monotone and k-Lipschitz-continuous
mapping of C into H and let Ncv be normal cone to C at v € C, thatis, Ncv = {w € H :
(v—u,w) >0, for all u € C}. Define

Av+ Ncv ifveC,
Tov = (2.10)
0 ifvgC.

Then T is maximal monotone and 0 € Tv if and only if v € VI(C, A) (see [26]).
For solving the problem (1.1), let us assume that the bifunction F satisfies the following
condition:

(Al) F(x,x) =0forallx € C;
(A2) F is monotone, that is, F(x, y) + F(y,x) < 0 for any x,y € C;
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(A3) foreach x,y,z € C,

1%1F(tz+ (1-t)x,y) <F(x,y); (2.11)

(A4) for each x € C,y — F(x,y) is convex;

(A5) for each x € C,y — F(x,y) is lower semicontinuous.

We recall some lemmas needed later.

Lemma 2.1 (see [1, 10]). Let C be a nonempty, closed, and convex subset of H, and let F be a
bifunction from C x C to R which satisfies conditions (A1)—(A5). For p > 0 and x € H, define the
mapping Ty : H — C as follows:

T[f(x):{zeC:F(z,y)+%(y—z,z—x>20, VyEC} (2.12)

or all x € H. Then, the following statements hold:
8
(1) TﬁF (x)#0;
() TﬂF is single-valued;
(3) Tg is firmly nonexpansive, that is, for any x,y € H,

||T§(x) —T[f(y)”2 < <T§(x) —T[f(y),x—y>; (2.13)

4) Fix(TﬂF) = EP(F);
(5) EP(F) is closed and convex.

Lemma 2.2 (see [27]). Assume that {s,} is a sequence of nonnegative real numbers such that

Sn+1 S (1 —ay)sp + anfy+6,, n>1, (2.14)

where {a,}, { P} and {6, } are sequences of numbers which satisfy the conditions:
(i) {an} C[0,1], 352, ay = oo, or equivalently, [ 172, (1 — a,) = 0;
(ii) imsup,_, _fn <0;
(iii) 6, > 0(n > 1), D721 6y < 00;

Then, lim,, _, ,.s, = 0.

Lemma 2.3. In a real Hilbert space H, the following inequality holds:
[l + yl|* < %l + 2y, x +y) (2.15)

orall x,y € H.
f y
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Lemma 2.4 (see [22]). Assume that A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient ¥ > 0 and 0 < p < ||A||™Y. Then ||I - pA|| < 1 - pY.

Let S1,S,, ... be a family of infinitely nonexpansive mappings of C into itself and let
¢1,&2, ... bereal numbers such that 0 < ¢; < 1foreveryi € N. Forany n € N, define a mapping
W,, of C into C as follows:

un,n+1 = I/
un,n = énsnun,nﬂ + (1 - §n)1,

un,n—l = én—lsn—lun,n + (1 - én—l)Ir

Uk = &Skl pe + (1= &)1, (2.16)

U1 = &Skl + (1= &),

Uy =6HSUns + (1-8),
Wy =Up1 =&S1Uy2+ (1-¢1)L

Such a mapping W, is called the W-mapping generated by S,,S,-1,...,51 and
énsén-1,---,41; see [28,29].

Lemma 2.5 (see [28]). Let C be a nonempty, closed, and convex subset of a Banach space E. Let
51, S, ... be a family of infinitely nonexpansive mappings of C into itself such that (2, Fix(S;) is
nonempty, and let &1,&,, . . . be real numbers such that 0 < ¢é; < d < 1 foreveryi € N. Foranyn € N,
let Wy, be the W-mapping of C into itself generated by S,,, Sp-1, ..., 51 and é,,én-1, ..., é1. Then W,
is asymptotically reqular and nonexpansive. Further, if E is strict convex, then F(W,,) = (i, Fix(S;).

Lemma 2.6 (see [29]). Let C be a nonempty, closed, and convex subset of a strictly convex Banach
space E. Let S1,S,,... be a family of infinitely nonexpansive mappings of C into itself such that
N2, Fix(S;) is nonempty, and let &, &, . . . be real numbers such that 0 < & < d < 1 for everyi € N.
Then for every x € C and k € N, the limit lim,, _, .U, kX exists.

Remark 2.7. Using Lemma 2.6, one can define mappings Uy and W of C into itself as
follows:

Uy px = Jijr;oun,kx, (2.17)

and Wx = lim, . ,Wyx = lim,_ U, 1x for every x € C. Such a mapping W is called the
W-mapping generated by Si, Sy, ... and ¢, ¢, .. .. Since W, is nonexpansive, W : C — Cis
also nonexpansive. Indeed, observe that for each x,y € C

W= Wyl = Jim [ W = Wl < [l - . 218)
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If {x,} is a bounded sequence in C, then we have

Tim [|Wax - Wx| = 0. (2.19)

Lemma 2.8 (see [29]). Let C be a nonempty, closed and convex subset of a strictly convex Banach
space E. Let S1,S,,... be an infinite family of nonexpansive mappings of C into itself such that
Ni21 Fix(S;) is nonempty, and let &, &, ... be real numbers such that 0 < & < d < 1 for every
i € N. Then Fix(W) = (N, Fix(S,).

3. Strong Convergence Theorem

In this section, we prove strong convergence theorem which solve the problem of finding a
common element of the solutions set of a system of equilibrium problems, fixed-points set of
a family of infinitely nonexpansive mappings, and the solutions set of a variational inequality
for a relaxed cocoercive mapping in Hilbert space.

Theorem 3.1. Let C be a nonempty, closed, and convex subset of H. Let Fy, F5, ..., Fy, be bifunctions
from C x C to R which satisfies conditions (A1)—(A5). Let A : C — H be relaxed (u,v)-cocoercive
and p-Lipschitz continuous and B a strongly positive linear bounded operator on H with coefficient
¥ > 0. Assume that 0 <y <y/a. Let 51, S,, ... be a family of infinitely nonexpansive mappings of C
into itself such that Q = NZ; Fix(S;) N VI(C, A) N2, EP(Fx) #@ and let &1, &, . . . be real numbers
such that 0 < & < 6 <1 for every i € N, and let W,, be the W-mapping of C into itself generated by
Su,Su-1,-..,S1and &,,¢4-1,...,¢1. Let f : C — C be a contraction with coefficient a (0 < a < 1)
and {x,}, {u,}, and {y,} be sequences generated by

x1=x € H,
Uy = Ty Ty - T Tyl x,,

(3.1)
Yn = Pc(I -5, A)uy,

Xn1 = oY f (Wixy) + (I — ayBYW,,Pc(I — 1, A)yy,
foreveryn =1,2,..., where {a,}, {Pn}, {rn}, and {s,} are sequences of numbers which satisfy the

conditions:

(C1) {a,} C [0,1] with limy, oty =0, oy ay = 00, and > 571 |dps1 — ap| < 00;

(C2) {ry} C [a,b] and {s,} C [a,b] for some a,bwith0 < a <b < 2(v—up?)/pu?, 3201 |rus1 -
Tl < 00, and Yoy |Sps1 — Su| < 00;

(C3) iminf, . oofn > 0and 3,771 |Brs1 — Pul < oo.

Then, {xn}, {ya}, and {u,} converge strongly to a point q € Q which solves the following
variational inequality:

(Yfg-Bq,p-q) <0, VpeQ. (3.2)

Equivalently, one has g = Po(y f + (I — B))(q).
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Proof. Since a, — 0 from condition (C1), we may assume, with no loss of generality, that
a, < ||B||™! for all n. Lemma 2.4 implies ||I — a,B|| < 1 - a,¥. Next, we will assume that
II = B|| <1-7.Now, we show that the mappings I — s,A and I — r,A are nonexpansive.

Indeed, from the relaxed (u,v)-cocoercivity and u-Lipschitz continuity of A and condition
(C2), we have

0= 50 A= (= 50 AWl = ) - sn(Ax - A
= |lx - y||* - 2s0(x - y, Ax - Ay) + 53| Ax - Ay|]®
<[l = y* - 2sn [—u”Ax - Ay||* +ofjx - J/||2] + s3]l Ax - Ay|]®
< 2 2 2 2 22 2
<lx =yl + 2supul|x - y||” - 2sp0][x - y[|” + pospf|lx - |
= (1 +28,p4°U — 25,0 + ‘uzsfl> lx -y

2
< |lx-yll"
(3.3)

which implies the mapping I — s, A is nonexpansive, so is I — r, A.
For k € {0,1,2,...,m}, and for any positive integer number n, we define the operator
G)E :H — C as follows:

@?,nx =X,
(3.4)

Of x =T Ty - TPTylx, k=1,2,...,m.

Next, we show that the sequence {x,} isbounded. Let p € Q. Then from Lemma 2.1(3),
we know that for k € {1,2,...,m}, T;ﬂ * is nonexpansive and p = TﬁFn *p, and

s =pll = |07 %0 ]| = 520~ 71 < llxa - (35)
foralln=1,2,....Byp = Pc(I - s,A)p and (3.5), we have

lyn =Pl = [[Pc(I = sp Ay = Pe(I = s, A)p||

(3.6)
< (T = suA)un = (I = suA)p|| < [|un = p|| < [l = pl|-
Since xp11 = any f (Whxn) + (I — ayB)YW, Pc(I — r,A)y, and p = W,p, we have
|1 = pll = llan (y f (Wnxn) = Bp) + (I = 2uB) (WuPe(I = 1 A)yn - p) ||
< aulyf(Waxn) = Bp|| + (1 - an¥) || Pc(I = rA)yn - p|| 57

< any || fWaxn) = f(p) || + @y f (p) = Bp|l + (1 = ) |y - p|
< [1-an(¥ —ay)]|lxn = pll +a|lyf (p) - Bp||-
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By inductions, we have

(3.8)

] lyf(p) - BP”}
¥ —ay ’

] smax{nxo— |

which proves that the sequence {x,} is bounded. It follows from (3.5) and (3.6) that {y, } and
{u,} are also bounded.

Since @’ﬁ‘nxn = Ti"@’ﬁ‘;lxn and @ L Xnel = T;k+1@l[§n1xn+1 for each k = 1,2,...,m, by
Lemma 2.1, we have

1 _
Fi <®§nxn, y) + ,3_;1 <y - @’Eﬂxn,eznxn - @znlxn> >0 VyeC, (3.9)
1
(O, xn1,y) + . (y-0f, %1, 0f X -O5lx,1)20 VyeC,  (310)
Setting v = @’ﬁ‘n+1 Xp1in (3.9) and y = G)’l;n x, in (3.10), we have

1
(O X1 = Of X, Of X, — O 1x,) 20,

Fy (@Enxn,@’;ml xn+1> + 5

(3.11)
Fi (O, 01,05, 2, ) + . <@’< Xy = O, X1, OF, Xt = OF 1 21 ) 20,
Adding the two inequalities and from the monotonicity of F, we get
Ok x, -0 x, O x4 -OFlx,
<9’Em i~ O, Y IR > >0 (3.12)
n n+

and hence

2
k k
|, 21 - O xa

< <®’[§n+1xn+1 - 0% 2, (O a0 — O 1, ) + <1 - [%) (O, xnn - @’ﬂ‘;llxn+1>>.
(3.13)

Without loss of generality, let us assume that there exists a real number d such that
pn>d>0foralln=1,2,.... Hence, foreach k =1,2,...,m we have

k k
|| eﬂnﬂ Xn+1 N @ﬁn xn

k-1 k-1
< ||@ﬂn+1x”+1 - @ﬂn Xn

1
+—[Bur - ful @
ﬂ+1|'61 ﬁ'

Enu Xn+l — 915;11 Xn+1
(3.14)

1
||@k 1xn+1 —@k 1xn + Hlﬁnﬂ _ﬁn|M0/
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where M, is an approximate constant such that

k k-1
M, > max{sup{ H@ﬂmx"” - @ﬂm X+l

n>1

}, k = 12m}

It follows from (3.14) that

m
loaer = wall = || O 01 = Ot x| < lvasr = xall + 5 |Buss = | M.

Put p, = Pc(I — r,A)y,. We have
”]/n — Yn+1 ” = ||PC(I - SnA)un - PC(I - 5n+1A)un+1”
< = snA)n = (I = Sp1 A) |
= || (un — 5 AUy) — (Ups1 — SnAlpi1) + (Sns1 — Sn) Aty ||

< Nlun = Upaa || + |Sna1 — 5| M,

where M is an approximate constant such that M > max{sup,., {||Au,|l}, Mo}
Substituting (3.16) into (3.17), we have

”yn - ]/n+1|| < ||xn+1 - xn” + [%lﬁnﬂ _ﬂnl + |5n+1 - SnI]M1~

It follows from (3.18) that
lon = puaa|| = [|Pc(I = 72 A)yn = Pe(I = rni1 A) Y ||
<[ =raA)yn = (= Pt A |
= | (Yn = 70 AYn) = Y1 = T AYni1) + (Fut = 10) Ayt |
< ”yn — Yn+l ” + |Tn+1 - rn|M2

m
<t = Xustll + [ 55 [Bror = Bl +Isuss = sl + 1t = 1l | M,

where M is an approximate constant such that M > max{ M, sup,., {[|Aynsl}}-

Observe that
Xn+l = “an(ann) + (I - ‘an)WnPnr

Xn+2 = “n+1Yf(Wn+1xn+l) + (I - “n+1B)Wn+1Pn+1/

we have

Xn+2 — Xp+l = an+1Y[f(Wn+1xn+1) - f(ann)] + (I = ayB) (Wn+1pn+1 - Wnpn)
+ (a1 — o) [y f(Waxy) — BWypy].

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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It follows that

%042 = Xnall < @i ya|Wiaxna = Waall + (1= @1 ¥) [[Wisa st = Wapal|
+ |1 — aul ||y f (Waxn) = BWop,|
< anaya(||xna = Xnll + [[Wnaxn — Waxal|) (3.22)
+ (1= awa¥) (lonss = pull + |Wasrpn = Wapn|)
+ letni1 = ]|y f (Waxn) = BWypu]|-

Next we estimate || W1, =Wy, || and ||Wyi1pn—Whapn||. It follows from the definition
of W, and nonexpansiveness of S; that

IWos1xn = Wyl = [Uns1,1X0 — UpaXal|
= G151 Uns12%0 + (1= &) xn — {&1S1Un2xn + (1 = §1)xn |
= &lIS1Uns12%0 — S1Uppx4||
< &llUna10x0 — Uy pxal|
= §1l1&2SoUn,32n + (1 = &2)xn — {§S2U %0 + (1 - &) xu} ||
= &162(1S2U na1,3xn — Solln x|

3.23
< §1§2||un+1,3xn - un,3xn|| ( )

ST &l Ui i1 X — Uit X
= H?:1§i||§n+15n+1xn + (1 — §n+l)xn _ xn”
= Hztl:lléinsnﬂxn - xn||

1
<TITE &M,

where M3 is an approximate constant such that

n>1

M; > max{Mz, sup{[|Sns12n — xull}, sup{ || Sns1pn — pul| }} (3.24)
n>1

Similarly, we have

|Wis1pn = Wpn|| < TIH & M. (3.25)
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Substituting (3.19), (3.23), and (3.25) into (3.22) yields that
ll2¢ns2 = xnia |
< an+1ya(||xn+1 = x| + H?:féiMs)
+ (1= @t F) (et = all + [ 5 1Buss = Bl + 5001 = sal + st = 7l | M2 + I8 M3)
+ |1 — aul ||y f (Waxn) = BW,p,|

~ m
<1 - ana (F — ya) | l|xna — xall + M4(E|ﬂn+1 = Bu| + |Sns1 = Sl + [Fna1 — Tl + @1 — zxn|>,

+ H?:fgi
(3.26)
where M, is an approximate constant such that
My > max{Mg,snLg){ ly f (Waxy) = BW,p|| } } (3.27)
It follows from conditions (C1)—(C3) and H?;fgi < 6™ and Lemma 2.2 that
X1 = xul| — 0. (3.28)
Observe that
Xni1 = Wapn = an(y f (Waxn) = BWnpn), (3.29)
it follows from (C1) that
Jim [[Wapy = xpia || = 0. (3.30)
For p € Q, we have
lyn =PI = |Pe(I = 54 A)un = Pe(I = spA)p||*
< |t = p) = su(Aun = Ap) |
= s~ Pl ~ 250 (40—, At~ Ap) + 2] A ~ A 631

< [ln = plI* = 250 | -ull Auts = Ap||* + 0lfn = p|I*] + 52| Aues ~ Ap|?

< |xn _p”2 4 <2snu +52— zi—zv) || Asy, — AP||2‘



Abstract and Applied Analysis 15
Similarly, we have

21,0

llpw - plI* < len—PII2+<2rnu+rﬁ— P )IlAyn—APHz. (3.32)

On the other hand, we have

s = PP = lltaCy F(Wata) = Bp) + (I = auB) (Wapr — p) ||
< (an|ly f(Waxn) = Bp|| + (1 = &) |ow - pI) (3.33)

< auly fWaxn) = Bp||* + llpn = pII” + 2aullpn = plllly f (Wx) - Bp]|.

Substituting (3.32) into (3.33), we have

21,0
o1 = I < ally f W) = Byl + =+ (2r+ 13 = 22 ) g, = g
K (3.34)
+ 20| pn = p|||ly f Waxn) - Bp]|.
It follows from condition (C2) that
2av > 2
? —2bu-b* ) || Ay - Ap||
< ||y f Waxn) = Bpl[* + || — p|°
(3.35)
— ||xne1 = pI|* + 2]l pn = p|| Iy f Wan) - Bp|
< aully f(Waxn) = Bp||* + ([ln = pll + |01 =PI 1201 = 24l
+2a,||pn = p| |y f Waxn) - Bp)|.
As [|xp11 — x| — 0and lim,,_, ,a, =0, we have
lim [| Ay, - Ap|| =0 (3.36)

It is easy to see that ||p, — p|| < |ly» — pll- Using (3.33) again, we have

101 = II* < aully f (Waxa) = Bpll” + llyn = pII* + 22l = pll|ly f (Waxn) - Bp||.  (3.37)
Substituting (3.31) into (3.37), we can obtain

2
01 = P> < @llyf (Waa) = Bp||* + |0 - p||* + (2snu +8) - f;”) | Au, - Ap|?

(3.38)
+2a,||pn = pll |y f (Waxn) - Bp||.
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It follows from (C2) that

2av 2
(7 2bo - b2> | At - Apl|

<ty ||y f (Waxa) = Bp||* + || = p||* = |1 — ||

3.39
+ 200 low = pll [y Watn) - Bp| (339
< aully f(Waxn) = Bp|I* + ([lxn = pll = %01 =PI %1 = 4l
+2a||lpn = pl|ly.f Waxn) - Bp||-
As ||xp41 — x4]| — 0and lim a, =0, we have
Jlim || Au, - Ap|| = 0. (3.40)
Observe that
llon = p|I” = |Pc(I = 12 A)yn - Pe(I = 1, A)p)||*
< <(I - rnA)yn - (I - rnA)PrPn - P>
1
= I = radyy = T = A)p||* + [|pu - p||*
2
_”(I ~ 1 A)Yn — (I =1, A)p — (prn —p) “ } (3.41)
1
< S{lva =PI + llpn = I = | = ) = 1 (Awa - 4p) |}
1 2 2 2 2
< S{llxn =l + o =PI = llya = pull* = 72l Ava - Ap|
+21(Yn — pn, Ayn — Ap) }
which yields that
o =PI < 1200 = pII* = [y = pull* + 27|y = pull | Ay - Ap]|- (3.42)
Substituting (3.42) into (3.33) we have
2 2 2 2
Xn - San (ann)_B + Xn — - n = FPn
[|xne1 =l Iy f plI” + llxn = pII” = llyn = pull (3.43)

+ 27ullyn = pulll| Ayn = Ap| + 2an]lp = pI| [l f Waxn) = Bp|,
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which implies that

[y = pull® < ally f W) = Bp||* + ||xn = p|I* = |01 - |
+ 27| yn = pul| | Ayn = Ap|| + 2atu || pn = p| |y f (Waxn) - Bp|
i (3.44)
< aulyf (Waxn) = Bp||” + ([lcn = pll + [ %01 = pID) ne1 = 24l
+ 27| yn = pul| | Ayn = Ap|| + 2etu || pn = p| ||y f (Waxn) - Bp|-

It follows from (C1), ||xp41 — xn|| — 0, and ||Ay, — Ap|| — 0 that lim,— o ||yx — pull = 0.
For p € Q, we have

ly - plI°

= |Pe( - sy A)un ~ Pe(I - s, A)p||*

<A(Pc(I = s, A)un — Pc(I = 5, A)p, (I = s, A)un — (I - s, A)p)
=(Yn—p, (I = 5, Ayt — (I - 5, A)p)

1
= 5 (v = pI” + 1T = 504020 = (1 = 52 A)p|1* = [| (v = P) = [100 = p = 5 (Aun = AP)] )

1
< 5 (lyn=pl? + n =1 = 90 =P = [10a = p = 50 (A, = Ap)]|I*)

2
1
- §<||yn —plI” + [|tn =PI = |y = tta||” + 250V — 14, Aty — Ap) — 52 || Aty - Ap||2>,
(3.45)
This implies that
5= I <l =PI = = 2509 =t = ) = = pl*

2 2
< lun = pI" = Ny = wnll” + 25ul|yn = ual| | An — Ap|-
By (3.46), (3.37), and (3.5), we obtain

%1 = II” < @nlly f Wax) = Bp||* + ||t = pII* = ||yn = ] + 25u]| v — 0| || At - Ap|
+ Zaﬂllpn - P” ”Yf(wnxn) - BP”
< aullyfWaxa) = Bp||* + [|x0 = pII” = [lyn = wall”

+ 28|y = wn || || A — Ap|| + 2an|| o — p| |y f (Waxn) - Bp||.
(3.47)
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It follows that

[y = un|l < aully f (Waxa) = Bp||* + || = pI|* = [|xme1 = pII* + 25u]|yn — a | | Aut - Ap|
+2aty || pn = pl| |y f (Waxn) = Bp|
< ay|ly f(Waxn) = Bp||* + ([ln = pll + [[%0e1 = pI1) (I = %0 )

+25u||yn — un ||| An = Ap|| + 26tu| pn = p|[ ly.f (Wnxn) - Bp]|.
(3.48)

It follows from (C1), [|Au, — Ap|| — 0, and ||xp1 — x,|| — O that ||y, — u,|| — 0. It
follows from ||p, — un|| < |lpn — Yull + [y — t|| that im,, —, ||, — pull = 0.
We now show that

lim '@I[;n Xy — @kn‘lxn

n—oo ﬁ

=0, k=1,2,...,m. (3.49)

Indeed, let p € Q, it follows from the firmly nonexpansiveness of T;;n *, we have for each
ke({1,2,...,m},

||®’,§nxn - P”Z = ”T;f@’ﬂ‘;lxn - T[,Fnkp |2 < (@’gnxn -p, e’ﬁ‘;lxn -p)

1 5 ) ) (3.50)
(S I e I C Rt )
Thus, we get

|0k x—p|| <[5 % —p| - [|€fx -5 |, k=12..m @51

This implies that for each k € {1,2,...,m},
R I R I CERca | o

o AR e I R I R e
It follows from u,, = 9762 x, thatforeachk =1,2,...,m

i =11 < 1 = p” - [ @5, 0 - O | (353)
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By (3.37), (3.6), and (3.53), we have that foreach k =1,2,...,m

%1 = PII* < @allyf Wax) = Bp|l* + un = pII* + 2aullpa = p| |y f (Waxa) = Bp|

2
< [y FWaxa) = Bp||* + [ = I - ||©F, 0 - O 1

+ 20|\ pn = p| |y f (Waxn) = Bp||.

Thus, we have that foreachk=1,2,...,m

2
< aullyf Wata) = Bp||* + |0 = pI* = |01 ~ pII*

+2ay||pn = pl| ||y f (Wnxn) - Bp||

|95, -5

< ||y f Wan) = Bp|* + (|20 = p|| + | Xne1 = p]|) 1 = Xl
+2a,||pn = p|| ||y f (Waxn) - Bp||.

It follows from (C1) and ||x,+1 — x,|| — O that foreachk=1,2,...,m

|20 - &5

— 0.

Since

”Wnpn _pn” < ”Wnpn - xn+1|| + ||xn+1 - xn” + || Xn — @1 Xn
ﬂn

+ ||@[15nxn - @énxn

ot ||®;5”n"1xn - @Z‘nxn

e =yl + 1y = -
It follows from (3.56) that
Jim [|[Wopy = pu| = 0.
Observe that
IWen=pull < IWpn = Wapall + [[Wapn = pull-

It follows from Remark 2.7 that

lim [[Wp,, = pu| = 0.

19

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)
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We show that Po(y f + (I — B)) is a contraction. Indeed, for all x, y € H, we have

[Pa(yf +(I-B))(x) - Pa(yf+IT-B) W)
<Iyf+IT-B)x) - (yf+T-B)®)|l
<yllfG) = FWI + 1T = Bilf[x -yl (3.61)
<yallx -yl + (1-P)|x -yl
= (ra+1-7)[lx -yl
The Banach’s Contraction Mapping Principle guarantees that Po(y f + (I — B)) has a

unique fixed point, say g € H. Thatis, g = Po(yf + (I - B))(q).
Next, we show that

limsup(yf(q) — Bq,x, —q) <O0. (3.62)

n—oo

To show that, we choose a subsequence {x,,} of x, such that

limsup(yf(q) - Bq,x» —q) = }Eg()‘f(‘n - Bg, xy, - q). (3.63)

As {x,} is bounded, we know that there is a subsequence {xnij} of {x,} which

converges weakly to p. We may assume, without loss of generahty, that x,, — p. From
||@k X, — @k 1xn|| — Oforeach k =1,2,...,m, we obtain that@ xy, —plork=1,2,.

From Iy — pn|| — 0, we also obtain that pn; — p- Since {u,;} C C and C is closed and convex,
we obtain p € C.
Now we show that p € Q. Indeed, let us first show that p € VI(C, A). Put

(3.64)
0 if wn g C.

Awi + Ncw, if w1 €C,
Tw1 =
Since A is relaxed (u, v)-cocoercive, we have

(Ax- Ay, x-y) > (0] Ax- Ay +olx -yl 2 (o-we)x-ylF 20, (365)

which yields that A is monotone. Thus T is maximal monotone. Let (w1, w>) € G(T). Since
wy — Aw; € Ncw; and p, € C, we have

(w1 — pn, wy — Awy) > 0. (3.66)
On the other hand, from p,, = Pc(I — r,A)y,, we have

(w1 = pu, pn — I =10 A)yn) >0 (3.67)
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and hence

<w1 P ”"r_ LA Ayn> > 0. (3.68)

It follows that

(w1 = pu,, w2) > (W1 — pu,, Awn)

> (wy — pp;, Awy ) — <w1 ~ Pris Pnr;yn + Ayni>

> <w1 = Py Awr — p"r;y" - Aym>
ni

(3.69)
= (w1 = pu, Awy = Apy,) + (W1 =, Apn, = AYn,)

— <w1 — Pus Pn _yni>

Tn;

i

2 <w1 - PflilAPni - Aym) — <w1 — Pris Pni = Yni >,

Tn;

which implies that (w; — p,w>) > 0. We have p € T~'0 and hence p € VI(C, A).
We next show that p € M., EP(Fi). Indeed, by Lemma 2.1, we have that for each
k=1,2,...,m,

Fi <9’[§nxn, y) + ﬁln<y ~ Ok X, 05 x, - @E;lxn> >0, VyeC (3.70)

It follows from (A2) that

1
6 <y ~ O X, O X - @’[;n—lx,,> > Fy (y, @’Enx,,), Yy e C. (3.71)
Hence,
@’5 E @’Eflxni
<y - e’[;ni xn,-/ n; p n > 2 Fk <y/ e]ﬁ(”i xn,-), Vy (S C (372)

It follows from (A4), (A5), (@zni X, — @’E;l Xn,)/ Pn; — 0, and @Eni Xn, — p that for each
k=1,2,...,m,

Fi(y,p) <0, VyeC. (3.73)
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FortwithO<t<landy € C, lety; =ty + (1 —t)p. Since y € C and p € C, we obtain
y: € C and hence Fi(y:, p) < 0. So by (A4), we have

0= Fe(yr ve) < tFe(yr,y) + (1= OFk(yi p) < tFc(yn, y)- (3.74)
Dividing by t, we get that foreach k =1,2,...,m,
Fi(yt,y) >0. (3.75)
Letting t — 0, it follows from (A3) that foreach k =1,2,...,m,
Fe(p,y) >0 (3.76)

forall y € C and hence p € EP(Fy) for k =1,2,...,m. Thatis, p € -, EP(Fx).
We now show that p € Fix(W). Assume that p ¢ Fix(W). Since p,; — p and p# Wp,
from (3.60) and the Opial condition we have

lim inf[| py, — p|| <lim inf]|p, - Wp||
<liminf{||pn, = Wen || + [Wpn - Wpl|) (3.77)

<timinfllp,, - ]|

which is a contradiction. So, we get p € Fix(W) = (N2, Fix(S;). This implies that p € Q.
Since g = Po(yf + (I - B))(g), we have

limsup(yf(q) = B4, x - q) = lim (yf(q) = B4, xn, - q)
ne (3.78)

=(rf(q) -Bq,p-q) <0.
That is, (3.62) holds. Next, we consider

%1 = qll” = llta(rf (Waxa) = Bg) + (I - @ B) (Waps - 9)
< (1= )’ [|Wapn = qI* + 20 (y f (Wnx) = Bg, %1 ~ 4)
< (1= @)’ || %0 = 4| + 200y (f W) = £(q), %n1 = q)

+2a,(yf(q) - Bq, Xni1 - q)

(3.79)

< (1)t~ I + aara(llxn - ql* + 501 - 4l

+2a,(yf(q) - Bq, Xni1 - q)
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So, we can obtain

(rf(q) - Bg,xn:1 - q)

(1-a,§) +apya
[l

2 2
I =l € S g 2o

1 aycx

1-2a,y +a,ya aZy? 2
= I ey - g |- g

1-ayya aya
20 B
m(Yf(‘I) 9, %ne1 = q) (3.80)
2a, (¥ - ay) 2
< [1‘ Toaya |l
2a,(F—ay) [ 1 any?
=~ -B 7 An+ N7~ N\
+ 1—anle Y—tX)f(Yf(q) qr Xn+1 — q>+2(Y “Y)

where M is an approximate constant such that M > sup, ., {[[x, — qll*}}.
Putl, =2a,(y—ay)/(1-ayya) and t, = (1/(y—ay)){yf(q) -Bq, xn1—q) + (“n?z/z(?_
ay))M. That is,

s = alF < (180~ gl + bt @81)

From condition (C1) and Lemma 2.2, we concluded that x, — g € Q. It is easy to see that
u, — gand y, — g. This completes the proof. O

Corollary 3.2. Let C be a nonempty, closed and convex subset of H. Let F be a bifunction from
C x C to R satisfies conditions (A1)—(A5). Let A : C — H be relaxed (u,v)-cocoercive and -
Lipschitz continuous and B a strongly positive linear bounded operator on H with coefficient ¥ > 0.
Assume that 0 < y < y/a. Let S1,S5,... be a family of infinitely nonexpansive mappings of C
into itself such that T = N2, Fix(S;) N VI(C, A) NEP(F) #0, let &1, &>, . . . be real numbers such that
0 < ¢ <6 < 1foreveryi € N and W, be the W-mapping of C into itself generated by S,,, Sy-1, ..., 51
and &y, &n-1,...,¢&1. Let f : C — C be a contraction with coefficient a (0 < a < 1) and {x,}, {u,}
and {y,} be sequences generated by

x;1=x € H,

F(un,y) + l<y—un,un -x,) 20, VYyeC,
P (3.82)

Yn =Pc - s, A)u,,

Xn1 = Oy f(Waxy) + (I — ayBYW,, Pc(I — 1, A)y,
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for every n = 1,2,..., where {a,}, {Pn}, {rn} and {s,} are sequences of numbers satisfying the
conditions:
(C1) {a,} C [0,1] with limy, oty =0, 3oy ay = 00, and > 71 [tpe1 — ap| < o0;

(C2) (ra) C [a,b]and (s, ] C [a,b] for some a, bwith0 < a <b < 2(v-u?)/ 12, 552 [Fusi -
Tn| < 00, and 3521 |Sn+1 — Sn| < 00;

(C3) liminf,, oo, > 0and 3521 |Bus1 — Pul < oo.

Then, {x,} and {y,} converge strongly to q € I, which solves the following variational
inequality:

(yfg-Bgq,p—q) <0, Vpel. (3.83)

Proof. Let m = 1, by Theorem 3.1, we obtain the desired result. O

Corollary 3.3. Let C be a nonempty, closed, and convex subset of H. Let A : C — H be relaxed
(u, v)-cocoercive and p-Lipschitz continuous and let B be a strongly positive linear bounded operator
on H with coefficient ¥ > 0. Assume that 0 < y < y/a. Let 51,5,,... be a family of infinitely
nonexpansive mappings of C into itself such that A = (2 Fix(S;) N VI(C, A) #0, let &, &, ... be
real numbers such that 0 < ¢ < 6 <1 for every i € N, and let W), be the W-mapping of C into itself
generated by Sy, Sy-1,...,51 and &y, &1, ..., é1. Let f : C — C be a contraction with coefficient
a (0<a<1)and {x,}, {un}, and {y,} be sequences generated by

x1=x€C,

Yn = Pc(I = 5,.A)xp, (3.84)
Xn+1 = oY f(Waxy) + (I — ayBYW,, Pc(I — 1, A)y,
for every n = 1,2,..., where {an}, {Pn}, {rn}, and {s,} are sequences of numbers satisfying the
conditions:

(C1) {a,} C [0,1] with limy, oty =0, Doy ay = 00, and > 21 |tps1 — &p| < 00;

(C2) {rn} C [a,b]and {s,} C [a,b] for some a,bwith0 < a <b <2(v—up?)/p?, 3o [rne1—
Tl < oo and 71 |Sus1 — Su| < 00.

Then, {x,} and {y,} converge strongly to q € A, which solves the following variational
inequality:

(yfg—-Bgq,p-q) <0, VYpeA. (3.85)

Proof. Let F(x,y) = 0 for x, y € C, by Corollary 3.2 we obtain the desired result. O

Corollary 3.4. Let C be a nonempty, closed and convex subset of H. Let F1, F, ..., F,, be bifunctions
from C x C to R satisfies conditions (A1)—(A5). Let A : C — H be relaxed (u,v)-cocoercive and
u-Lipschitz continuous and B a strongly positive linear bounded operator on H with coefficient y > 0
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such that = = L, EP(Fx) N VI(C, A) #0. Let f : C — C be a contraction with coefficient a (0 <
a <1)and {x,}, {u,} and {y,} be sequences generated by
x1=x € H,
_ mFum Fm—l‘_' FyFy
u, =T X Tﬂn Tﬂn Tﬂn Xy,
Yn = Pc(I - s, A)uy,

Xne1 = AnY f(xn) + (I = ayB)Pc(I — 1, A)yn

(3.86)

for every n = 1,2,..., where {a,}, {Pn}, {ra} and {s,} are sequences of numbers satisfying the
conditions:

(C1) {a,} C [0,1] with limy, oty =0, Doy ay = 00, and > 571 |dps1 — ap| < 00;

(C2) {ry} C [a,b] and {s,} C [a,b] for some a,bwith0 < a <b < 2(v—up?)/p?, 3221 |ru1 -
Tl <00, and Yoy [Sps1 — Su| < 00;

(C3) iminfy, . oofn > 0and 3,771 |Brs1 — Pul < oo.

Then, {x,}, {y} and {u,} converge strongly to q € Q, which solves the following variational
inequality:

(yfa-Bq,p-q)<0, VYpekE. (3.87)

Remark 3.5. (i) If s, = 0 for all n > 0, by Corollary 3.2, we get Theorem 2.1in [9]. If 5, = 0 and
Si =1foralln > 0, by Corollary 3.2, we get Theorem 2.1 in [8] with S =1.Ifs, =0, r, = 0 and
S; =1 forall n >0, by Corollary 3.2, we get Theorem 3.1 in [6] with S = I and Theorem 3.3 in
[7]withS=Tand C = H.
(ii) Corollary 3.3 extends, generalizes and improves the main results in [21, 22, 24].
(iii) It is easy to see that Theorem 3.1 is different from the main results in [1-4].
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