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1. Introduction

The concepts of stability and asymptotic stability introduced by Lyapunov could be called
stabilities under sudden perturbations. The perturbation suddenly moves the systems from
its equilibrium state but then immediately disappears. Stability says that the effect of this
will not be great if the sudden perturbation is not too great. Asymptotic stability states, in
addition, that if the sudden perturbation is not great, the effect of the perturbation will tend
to disappear. In practice, however, the perturbations are not simply impulses, and this led
Duboshin (1940) and Malkin (1944) to consider what they called stability under constantly
acting perturbations, today known as total stability. This says that if the perturbation is not
too large and if the system is not too far from the origin initially it will remain near the
origin. Total stability can be described roughly as the property that a bounded perturbation
has a bounded effect on the solution [1]. Many results have been obtained concerning total
stability [1–9].

In [10], Hamaya discussed the relationship between total stability and stability under
disturbances from hull for the integrodifferential equation

x′(t) = ̂f(t, x(t)) +
∫0

−∞
F(t, s, x(t + s), x(t))ds, (1.1)
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where ̂f : R × R
d → R

d is continuous and is almost periodic in t uniformly for x ∈ R
d,

and F : R × (−∞, 0] × R
d × R

d → R
d is continuous and is almost periodic in t uniformly for

(s, x, y) ∈ R∗ = (−∞, 0] × R
d × R

d. He showed that for a periodic integrodifferential equation,
uniform stability and stability under disturbances from hull are equivalent. Also, he showed
the existence of an almost periodic solution under the assumption of total stability in [11].

Song and Tian [12] studied periodic and almost periodic solutions of discrete Volterra
equations with unbounded delay of the form

x(n + 1) = f(n, x(n)) +
0
∑

j=−∞
B
(

n, j, x
(

n + j
)

, x(n)
)

, n ∈ Z
+, (1.2)

where f : Z × R
d → R

d is continuous in x ∈ R
d for every n ∈ Z, and for any j, n ∈ Z (j ≤ n),

B : Z × Z × R
d × R

d → R
d is continuous for x, y ∈ R

d. They showed that under some suitable
conditions, if the bounded solution of (1.2) is totally stable, then it is an asymptotically almost
periodic solution of (1.2), and (1.2) has an almost periodic solution. Also, Song [13] proved
that if the bounded solution of (1.2) is uniformly asymptotically stable, then (1.2) has an
almost periodic solution.

Choi and Koo [9] investigated the existence of an almost periodic solution of (1.2) as
a discretization of the results in [10]. The purpose of this paper is to study the total stability
for the discrete Volterra equation of the form

x(n + 1) = f(n, x(n)) +
0
∑

j=−∞
B
(

n, j, x
(

n + j
)

, x(n)
)

+ h(n, xn). (1.3)

To do this, we will employ to change Hamaya’s results in [2] for the integrodifferential
equation

x′(t) = ̂f(t, x(t)) +
∫0

−∞
F(t, s, x(t + s), x(t))ds + ̂h(t, xt), (1.4)

into results for the discrete Volterra equation (1.3).

2. Preliminaries

We denote by Z,Z+,Z−, respectively, the set of integers, the set of nonnegative integers, and
the set of nonpositive integers. Let R

d denote d-dimensional Euclidean space.

Definition 2.1 (see [12]). A continuous function f : Z × R
d → R

d is said to be almost periodic
in n ∈ Z uniformly for x ∈ R

d if for every ε > 0 and every compact set K ⊂ R
d, there

corresponds an integer N = N(ε,K) > 0 such that among N consecutive integers there is
one, here denoted by p, such that

∣

∣f
(

n + p, x
) − f(n, x)∣∣ < ε (2.1)

for all n ∈ Z, uniformly for x ∈ R
d.
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Definition 2.2 (see [12]). Let B : Z×Z
∗ → R

d be continuous for x, y ∈ R
d, for any n ∈ Z, j ∈ Z

−,
where Z

∗ = Z
− ×R

d ×R
d. B(n, j, x, y) is said to be almost periodic in n uniformly for (j, x, y) ∈ Z∗

if for any ε > 0 and any compact set K∗ ⊂ Z∗, there exists a number l = l(ε,K∗) > 0 such that
any discrete interval of length l contains a τ for which

∣

∣B
(

n + τ, j, x, y
) − B(n, j, x, y)∣∣ ≤ ε (2.2)

for all n ∈ Z and all (j, x, y) ∈ K∗.
For the basic results of almost periodic functions, see [8, 14, 15].
Let l−(Rd) denote the space of all R

d-valued bounded functions on Z
− with

∥

∥φ
∥

∥ = sup
j∈Z−

∣

∣φ
(

j
)∣

∣ <∞ (2.3)

for any φ ∈ l−(Rd).

Consider the discrete Volterra equation with unbounded delay of the form

x(n + 1) = f(n, x(n)) +
0
∑

j=−∞
B
(

n, j, x
(

n + j
)

, x(n)
)

+ h(n, xn), n ∈ Z
+, (2.4)

under certain conditions for f, B, and h (see below). We assume that, given φ ∈ l−(Rd), there
is a solution x of (1.3) such that x(n) = φ(n) for n ∈ Z

−, passing through (0, φ0), φ0 ∈ l−(Rd).
LetK be any compact subset of R

d such that φ(j) ∈ K for all j ≤ 0 and x(n) ∈ K for all
n ≥ 1.

For any φ, ψ ∈ l−(Rd), we set

ρ
(

φ, ψ
)

=
∞
∑

q=0

ρq
(

φ, ψ
)

2q
[

1 + ρq
(

φ, ψ
)] , (2.5)

where ρq(φ, ϕ) = max−q≤j≤0|φ(j) − ψ(j)|, q ≥ 0. Then ρ defines a metric on the space l−(Rd).
Note that the induced topology by ρ is the same as the topology of convergence on any finite
subset of Z

− [12].
In view of almost periodicity, for any sequence (n′k) ⊂ Z

+ with n′k → ∞ as k → ∞,
there exists a subsequence (nk) ⊂ (n′k) such that

f(n + nk, x) −→ g(n, x) (2.6)

uniformly on Z × S for any compact set S ⊂ R
d,

B
(

n + nk, n + l + nk, x, y
) −→ D

(

n, n + l, x, y
)

(2.7)
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uniformly on Z × S∗ for any compact set S∗ ⊂ Z∗. We define the hull

H
(

f, B
)

=
{(

g,D
)

: (2.6) and (2.7) hold for some sequence

(nk) ⊂ Z
+ with nk → ∞ as k → ∞}.

(2.8)

Note that (f, B) ∈ H(f, B) and for any (g,D) ∈ H(f, B), we can assume the almost periodicity
of g and D, respectively [12].

3. Main Results

We deal with the discrete Volterra equation with unbounded delay of the form

x(n + 1) = f(n, x(n)) +
0
∑

j=−∞
B
(

n, j, x
(

n + j
)

, x(n)
)

+ h(n, xn), n ∈ Z
+. (3.1)

Throughout this paper we assume the following.

(H1) f : Z × R
d → R

d is continuous in x ∈ R
d for every n ∈ Z and is almost periodic in

n ∈ Z uniformly for x ∈ R
d.

(H2) B : Z × Z
∗ → R

d is continuous in x, y ∈ R
d for any n ∈ Z, j ∈ Z

− and is almost
periodic in n ∈ Z uniformly for (j, x, y) ∈ Z

∗ = Z
− ×R

d ×R
d. Moreover, for any ε > 0

and any τ > 0 there exists a numberM =M(ε, τ) > 0 such that

−M
∑

j=−∞

∣

∣B
(

n, j, x
(

n + j
)

, x(n)
)∣

∣ ≤ ε (3.2)

for all n ∈ Z whenever |x(j)| ≤ τ for all j ∈ Z
−.

(H3) h : Z × l−(Rd) → R
d is continuous in φ ∈ l−(Rd) for every n ∈ Z. xn ∈ l−(Rd) is

defined as xn(j) = x(n + j) for j ∈ Z
−. Furthermore, for any r > 0, there exists a

function αr : Z → R
d with the property that αr(n) → 0 as n → ∞ and

∣

∣h
(

n, φ
)∣

∣ ≤ αr(n) (3.3)

whenever |φ(j)| ≤ r for all j ∈ Z
−.

(H4) Equation (3.1) has a bounded solution u(n) = u(n, φ0) defined on Z
+, through

(0, φ0), φ0 ∈ l−(Rd) such that for some 0 ≤M <∞,

∣

∣

∣u
(

n, φ0
)∣

∣

∣ ≤M. (3.4)
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Note that for any (g,D) ∈ H(f, B), D(n, j, x, y) satisfies (H2) with B = D [12]. The
limiting equation of (3.1) is defined as

x(n + 1) = g(n, x(n)) +
0
∑

j=−∞
D
(

n, j, x
(

n + j
)

, x(n)
)

, n ∈ Z
+, (3.5)

where (g,D) ∈ H(f, B). We assume that for any solution v(n) of (3.5), v(n) ∈ K for all n ≥ 1,
where K is the above-mentioned compact set in R

d.

Theorem 3.1 (see [12]). Under the assumptions (H1)–(H4), if u(n) = u(n, φ0), φ0 ∈ l−(Rd) is a
bounded solution of (3.1), passing through (0, φ0) and (g,D) ∈ H(f, B), then the limiting equation
(3.5) of (3.1) has a bounded solution on Z.

Total stability requires that the solution of x′(t) = ̂f(t, x) is “stable” not only with
respect to the small perturbations of the initial conditions, but also with respect to the
perturbations, small in a suitable sense, of the right-hand side of the equation.

Definition 3.2. The bounded solution u(n) of (3.1) is said to be totally stable if for any ε > 0
there exists a δ = δ(ε) > 0 such that if n0 ≥ 0, ρ(un0 , xn0) < δ, and p(n) is a function such that
|p(n)| < δ for all n ≥ n0, then ρ(un, xn) < ε for all n ≥ n0, where x(n) is any solution of

x(n + 1) = f(n, x(n)) +
0
∑

j=−∞
B
(

n, j, x
(

n + j
)

, x(n)
)

+ h(n, xn) + p(n) (3.6)

such that xn0(j) ∈ K for all j ∈ Z
−.

Definition 3.3. A function φ : Z → R
d is called asymptotically almost periodic if it is a sum of an

almost periodic function φ1 and a function φ2 defined on Z which tends to zero as n → ∞,
that is, φ(n) = φ1(n) + φ2(n) for all n ∈ Z.

It is known [15] that the decomposition φ = φ1 + φ2 in Definition 3.3 is unique.
Moreover, φ is asymptotically almost periodic if and only if for any integer sequence (τ ′k)
with τ ′

k
→ ∞ as k → ∞, there exists a subsequence (τk) ⊂ (τ ′

k
) for which φ(n+ τk) converges

uniformly for n ∈ Z as k → ∞ [15].

Theorem 3.4. Under the assumptions (H1)–(H4), if u(n) is a bounded and totally stable solution of
(3.1), then it is asymptotically almost periodic.

Proof. Let (nk) be an integer sequence with nk → ∞ as k → ∞. Set uk(n) = u(n + nk), k =
1, 2, . . . . Then uk(n) is a solution of

x(n + 1) = f(n + nk, x(n)) +
0
∑

j=−∞
B
(

n + nk, j, x
(

n + j
)

, x(n)
)

+ h(n + nk, xn) (3.7)

and uk(n) ∈ K for k = 1, 2, . . . . Clearly, uk(n) is totally stable with the same number (ε, δ) for
the total stability of u(n). We can assume that (uk(n)) converges uniformly on any finite set
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in Z
− as k → ∞ by taking a subsequence if necessary. Then there exists a number k1(ε) > 0

such that ρ(uk0 , u
m
0 ) < δ(ε)whenever k,m ≥ k1(ε). Put

p(n) = f(n + nm, um(n)) +
0
∑

j=−∞
B
(

n + nm, j, um
(

n + j
)

, um(n)
)

+ h(n + nm, umn ) − f(n + nk, um(n))

−
0
∑

j=−∞
B
(

n + nk, j, um
(

n + j
)

, um(n)
) − h(n + nk, umn ).

(3.8)

Then um(n) = u(n + nm) is a solution of

x(n + 1) = f(n + nk, x(n)) +
0
∑

j=−∞
B
(

n + nk, j, x
(

n + j
)

, x(n)
)

+ h(n + nk, xn) + p(n) (3.9)

and um(n) ∈ K for all n ∈ Z. We will show that there exists a number k2(ε) > 0 such that
|p(n)| < δ(ε) for all n ≥ 0 whenever k,m ≥ k2(ε).

Note that for all x ∈ K, there exists a number c > 0 such that |x| ≤ c. It is clear that
|uk(n)| ≤ c and |um(n)| ≤ c for all n ∈ Z.

In view of (H2), there exists a numberM =M(c, ε) > 0 such that

−M
∑

j=−∞

∣

∣B
(

n + nm, j, um
(

n + j
)

, um(n)
)∣

∣ ≤ 1
5
δ(ε), n ∈ Z,

−M
∑

j=−∞

∣

∣B
(

n + nk, j, um
(

n + j
)

, um(n)
)∣

∣ ≤ 1
5
δ(ε), n ∈ Z.

(3.10)

From the almost periodicity of f(n, x) and B(n, j, x, y), respectively, there exists a number
k2(ε) ≥ k1(ε) for which

∣

∣B
(

n + nm, j, um
(

n + j
)

, um(n)
) − B(n + nk, j, um

(

n + j
)

, um(n)
)∣

∣

<
δ(ε)
5M

, n ∈ Z, j ∈ [−M + 1, 0],
(3.11)

∣

∣f(n + nm, um(n)) − f(n + nk, um(n))
∣

∣ <
1
5
δ(ε), n ∈ Z, (3.12)

whenever k,m ≥ k2(ε). Since h(n, φ) → 0 as n → ∞, we obtain that if k,m ≥ k2(ε), then

|h(n + nm, umn ) − h(n + nk, umn )| <
1
5
δ(ε), n ∈ Z

+. (3.13)



Abstract and Applied Analysis 7

Then, by (3.10), and (3.11), we have

0
∑

j=−∞

∣

∣B
(

n + nm, j, um
(

n + j
)

, um(n)
) − B(n + nk, j, um

(

n + j
)

, um(n)
)∣

∣

≤
−M
∑

j=−∞

∣

∣B
(

n + nm, j, um
(

n + j
)

, um(n)
)∣

∣

+
−M
∑

j=−∞

∣

∣B
(

n + nk, j, um
(

n + j
)

, um(n)
)∣

∣

+
0
∑

j=−M+1

∣

∣B
(

n + nm, j, um
(

n + j
)

, um(n)
) − B(n + nk, j, um

(

n + j
)

, um(n)
)∣

∣

<
1
5
δ(ε) +

1
5
δ(ε) +

δ(ε)
5M

M

=
3
5
δ(ε).

(3.14)

Therefore we have

∣

∣p(n)
∣

∣ ≤ ∣

∣f(n + nm, um(n)) − f(n + nk, um(n))
∣

∣

+
0
∑

j=−∞

∣

∣B
(

n + nm, j, um
(

n + j
)

, um(n)
) − B(n + nk, j, um

(

n + j
)

, um(n)
)∣

∣

+ |h(n + nm, umn ) − h(n + nk, umn )|

<
1
5
δ(ε) +

3
5
δ(ε) +

1
5
δ(ε)

= δ(ε),

(3.15)

k,m ≥ k2(ε), by (3.12), (3.13), and (3.14). Since uk(n) is totally stable, we obtain that
ρ(ukn, u

m
n ) < ε for all n ≥ 0 if k,m ≥ k2(ε). This implies that for all k,m ≥ k2(ε),

|u(n + nk) − u(n + nm)| ≤ sup
−M≤s≤0

|u(n + nk + s) − u(n + nm + s)| < 4ε (3.16)

for all ε ≤ (1/4) and all n ≥ 0. It follows that for any (nk) ⊂ Z with nk → ∞ as k → ∞ there
exists a subsequence (nkj ) ⊂ (nk) such that (u(n+nkj )) converges uniformly on Z

+ as j → ∞,
that is, u(n) is asymptotically almost periodic. This completes the proof.

Remark 3.5. Hino et al. [5] showed that for the functional differential equation

x′(t) = ̂f(t, xt), (3.17)
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the solution v(t) of the limiting equation

x′(t) = ĝ(t, xt),
(

v, ĝ
) ∈ H

(

u, ̂f
)

(3.18)

of (3.17) is asymptotically almost periodic if v(t) is totally stable. Here (v, ĝ) ∈ H(u, ̂f)means
that there exists a sequence (tk), tk → ∞ as k → ∞, such that ̂f(t + tk, φ) → ĝ(t, φ) ∈ H( ̂f)
uniformly on any compact set in B and u(t+ tk) → v(t) uniformly on any compact interval in
the set of nonnegative real numbers, where the space B is the fading memory space by Hale
and Kato [16].

Theorem 3.6. Assume that (H1)–(H4). If the solution v(n) of (3.5) satisfying (v, g,D) ∈
H(u, f, B) is totally stable, then the bounded solution u(n) of (3.1) is also totally stable.

Proof. From (v, g,D) ∈ H(u, f, B), there exists a sequence (nk) ⊂ Z, nk → ∞ as k → ∞, such
that f(n+nk, x) → g(n, x) uniformly on Z×K, B(n+nk, j, x, y) → D(n, j, x, y) uniformly on
Z×S∗ ×K ×K for any compact set S∗ ⊂ Z

−, and u(n+nk) → v(n) uniformly on any compact
set in R as k → ∞. Set uk(n) = u(n + nk), k = 1, 2, . . . . Then it is clear that uk(n) is a solution
of

x(n + 1) = f(n + nk, x(n)) +
0
∑

j=−∞
B
(

n + nk, j, x
(

n + j
)

, x(n)
)

+ h(n + nk, xn), (3.19)

such that uk0(j) ∈ K for all j ≤ 0, where uk0(j) = uk(0 + j) = u(j + nk). Note that for all
x ∈ K, |x| ≤ c for some c > 0. Let x(τ) be a function such that x(τ) ∈ K for all τ ≤ n. By (H2),
there exists a numberM =M(c, ε) > 0 such that

−M
∑

j=−∞

∣

∣B
(

n + nk, j, x
(

n + j
)

, x(n)
)∣

∣ ≤ 1
5
δ

(

1
2
δ
(ε

2

)

)

, (3.20)

where δ(·) is the number for the total stability of v(n). Also, we have

−M
∑

j=−∞

∣

∣D
(

n, j, x
(

n + j
)

, x(n)
)∣

∣ ≤ 1
5
δ

(

1
2
δ
(ε

2

)

)

(3.21)

for the sameM since B(n+ nk, j, x, y) → D(n, j, x, y). Hence, by the same argument as in the
proof of Theorem 3.4, there exists a positive integer k0(ε) such that if k ≥ k0(ε), then

∣

∣

∣

∣

∣

∣

f(n + nk, x(n)) +
0
∑

j=−∞
B
(

n + nk, j, x
(

n + j
)

, x(n)
)

+ h(n + nk, xn)

−g(n, x(n)) −
0
∑

j=−∞
D
(

n, j, x
(

n + j
)

, x(n)
)

∣

∣

∣

∣

∣

∣

< δ

(

1
2
δ
(ε

2

)

)

,

(3.22)

ρ
(

uk0 , v0
)

< δ

(

1
2
δ
(ε

2

)

)

. (3.23)
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Put

r(n) = f
(

n + nk, uk(n)
)

+
0
∑

j=−∞
B
(

n + nk, j, uk
(

n + j
)

, uk(n)
)

+ h
(

n + nk, ukn
)

− g
(

n, uk(n)
)

−
0
∑

j=−∞
D
(

n, j, uk
(

n + j
)

, uk(n)
)

.

(3.24)

Then uk(n) is a solution of

x(n + 1) = g(n, x(n)) +
0
∑

j=−∞
D
(

n, j, x
(

n + j
)

, x(n)
)

+ r(n) (3.25)

such that uk0(j) ∈ K for j ≤ 0. Note that |r(n)| < δ((1/2)δ(ε/2)) for n ≥ 0 by (3.22). From
(3.22) and the fact that v(n) is totally stable, we have

ρ
(

ukn, vn
)

<
1
2
δ
(ε

2

)

(3.26)

for all n ≥ 0.
Let m = k0(ε). To show that u(n) is totally stable we will show that if n0 ≥ 0,

ρ(un0 , yn0) < (1/2)δ(ε/2), and |p(n)| < (1/2)δ(ε/2) for n ≥ n0, then ρ(un, yn) < ε for all
n ≥ n0, where y(n) is a solution of

x(n + 1) = f(n, x(n)) +
0
∑

j=−∞
B
(

n, j, x
(

n + j
)

, x(n)
)

+ h(n, xn) + p(n) (3.27)

such that yn0(j) ∈ K for all j ≤ 0. Suppose that this is not the case. Then there exists an integer
σ > n0 such that

ρ
(

uσ, yσ
)

= ε for σ > n0, ρ
(

un, yn
)

< ε for n0 ≤ n < σ. (3.28)

We set z(n) = y(n + nm). Then z(n) is a solution of

x(n + 1) = f(n + nm, x(n)) +
0
∑

j=−∞
B
(

n + nm, j, x
(

n + j
)

, x(n)
)

+ h(n + nm, xn) + p(n + nm)

(3.29)

defined on [n0 − nm, σ − nm] such that zn0−nm(j) = yn0(j) ∈ K for all j ≤ 0. Also, z(n) is a
solution of

x(n + 1) = g(n, x(n)) +
0
∑

j=−∞
D
(

n, j, x
(

n + j
)

, x(n)
)

+ q(n), (3.30)
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where

q(n) = f(n + nm, z(n)) +
0
∑

j=−∞
B
(

n + nm, j, z
(

n + j
)

, z(n)
)

+ h(n + nm, zn) + p(n + nm) − g(n, z(n)) −
0
∑

j=−∞
D
(

n, j, z
(

n + j
)

, z(n)
)

.

(3.31)

Note that |z(n)| ≤ c for all n ≤ σ − nm, and |p(n + nm)| < (1/2)δ(ε/2) for n ≥ n0 − nm. Thus
|q(n)| < δ(ε/2) for n0 − nm ≤ n ≤ σ − nm. Also, we have

ρ(un0 , vn0−nm) <
1
2
δ
(ε

2

)

, ρ(un0 , zn0−nm) = ρ
(

un0 , yn0
)

<
1
2
δ
(ε

2

)

(3.32)

from (3.26). Thus we obtain

ρ(vn0−nm, zn0−nm) ≤ ρ(vn0−nm, un0) + ρ(un0 , zn0−nm) < δ
(ε

2

)

. (3.33)

Since v(n) is totally stable, we have

ρ(vσ−nm, zσ−nm) <
ε

2
. (3.34)

On the other hand, (3.26) implies that

ρ(un, vn−nm) <
1
2
δ
(ε

2

)

, n ≥ n0. (3.35)

Hence, if n0 ≥ 0, ρ(un0 , yn0) < (
1
2
)δ(

ε

2
), and |p(n)| < (1/2)δ(ε/2) for n ≥ n0, then we obtain

ρ
(

uσ, yσ
) ≤ ρ(uσ, vσ−nm) + ρ(vσ−nm, zσ−nm) < ε. (3.36)

This contradicts (3.28). Therefore ρ(un, yn) < ε for all n ≥ n0 when n0 ≥ 0, ρ(un0 , yn0) < δ
∗(ε)

and |p(n)| < δ∗(ε) for all n ≥ n0, where δ∗(ε) = (1/2)δ(ε/2). Consequently, u(n) is totally
stable.

The following definitions are the discrete analogues of Hamaya’s definitions in [2].

Definition 3.7. The bounded solution u(n) of (3.1) is said to be attracting in H(f, B) if there
exists a δ0 > 0 such that for any n0 ≥ 0 and any (v, g,D) ∈ H(u, f, B), ρ(vn0 , xn0) < δ0 implies
ρ(vn, xn) → 0 as n → ∞, where x(n) is a solution of (3.5) such that xn0(j) ∈ K for all j ≤ 0.

Definition 3.8. The bounded solution u(n) of (3.1) is said to be totally asymptotically stable if it is
totally stable and there exists a δ0 > 0 and for any ε > 0 there exists an η(ε) > 0 and a T(ε) > 0
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such that if n0 ≥ 0, ρ(un0 , xn0) < δ0 and p(n) is any function which satisfies |p(n)| < η(ε) for
n ≥ n0, then ρ(un, xn) < ε for all n ≥ n0 + T(ε), where x(n) is a solution of

x(n + 1) = f(n, x(n)) +
0
∑

j=−∞
B
(

n, j, x
(

n + j
)

, x(n)
)

+ h(x, xn) + p(n) (3.37)

such that xn0(j) ∈ K for all j ≤ 0.

Note that the total asymptotic stability is equivalent to the uniform asymptotic stability
whenever p(n) ≡ 0.

Theorem 3.9. Under the assumptions (H1)–(H4), if the bounded solution u(n) of (3.1) is attracting
inH(f, B) and totally stable, then it is totally asymptotically stable.

Proof. Let δ0 be the number for the attracting of u(n) in H(f, B) and let δ∗0 = δ(δ0/2), where
δ(·) is the number for the total stability of u(n). Suppose that u(n) is not totally asymptotically
stable. Then there exists a number ε > 0 with ε ≤ (δ0/4) and exist sequences (jk), (nk), (pk),
and (xk) such that jk ≥ 0, nk ≥ jk + 2k, ρ(ujk , x

k
jk
) < δ∗0 and ρ(unk , x

k
nk) ≥ ε for all k = 1, 2, . . .,

where xk(n) is a solution of

x(n + 1) = f(n, x(n)) +
0
∑

j=−∞
B
(

n, j, x
(

n + j
)

, x(n)
)

+ h(x, xn) + pk(n). (3.38)

such that xkjk(j) ∈ K for all j ≤ 0 and pk : Z → R
d with |pk(n)| < min{1/k, δ∗0} for n ≥ jk. Note

that ρ(ujk , x
k
jk
) < δ∗0 and |pk(n)| < δ∗0 for n ≥ jk. Then we have

ρ
(

un, x
k
n

)

<
1
2
δ0 (3.39)

for all n ≥ jk and k = 1, 2, . . . , since u(n) is totally stable. Also, there exists an integer number
k0(ε) > 0 such that if k ≥ k0(ε), then |pk(n)| < 1/k < δ(ε) for all n ≥ jk.

We claim that ρ(un, xkn) ≥ δ(ε) on [jk +k, jk +2k] if n ≥ n0. If we assume that ρ(un, xkn) <
δ(ε) on [jk + k, jk + 2k], then ρ(un, xkn) < ε for n ≥ jk + 2k since u(n) is totally stable. This
contradicts ρ(unk , x

k
nk) ≥ ε, k = 1, 2, . . ., because nk ≥ jk + 2k.

Now, for the sequence (jk + k), taking a subsequence if necessary, there exists a
(v, g,D) ∈ H(u, f, B).

If we set yk(n) = xk(n + jk + k), then yk(n) is the defined on [−k, k]. There exists a
subsequence of (yk(n)), which we denote by (yk(n)) again, and a function y(n) such that
yk(n) → y(n) uniformly on any compact set in R as k → ∞ such that y0(j) ∈ K for all j ≤ 0.
Moreover, we can show that y(n) is a solution of

x(n + 1) = g(n, x(n)) +
0
∑

j=−∞
D
(

n, j, x
(

n + j
)

, x(n)
)

(3.40)
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such that y0(j) ∈ K for all j ≤ 0, by the same method as in [13, Theorem 3.1] . We have

δ(ε) < ρ
(

un+jk+k, y
k
n

)

<
δ0
2
, 0 ≤ n ≤ k, k ≥ k0. (3.41)

Then, by letting k → ∞, we obtain

δ(ε) < ρ
(

vn, yn
) ≤ δ0

2
, n ≥ 0. (3.42)

Since u(n) is attracting in H(f, B), we have ρ(vn, yn) → 0 as n → ∞. This contradicts
ρ(vn, yn) ≥ δ(ε). Hence u(n) is totally asymptotically stable. This completes the proof of the
theorem.
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