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1. Introduction

In this paper, we consider optimal control problem (P). Find u0 ∈ Uad such that

J
(
u0(·)
)
≤ J(u(·)), ∀u ∈ Uad, (1.1)

where J is the cost functional given by

minimize J(u(·)) :=
∫

[0,σ(T))
T

l(x(t;u), u(t))Δt, (1.2)

and x(·;u) ∈ AC([0, T]
T
,R) is a solution corresponding to the control u ∈ Uad of the following

equation:

xΔ(t) = p(t)x(t) + f(t) + u(t), for Δ-a.e., t ∈ [0, ρ(T)]
T
,

x(0) = x0,
(1.3)
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where T ⊂ R is a bounded time scale, [0, T]
T
= [0, T] ∩ T and σ(T) := maxT. The admissible

control set is

Uad := {u(t), t ∈ [0, T]
T
, u is Δ-measurable and u(t) ∈ U}. (1.4)

Here, the control set U is a bounded, closed, and convex subset of R.
Time scale calculus was initiated by Hilger in his Ph.D. thesis in 1988 [1] in order to

unite two existing approaches of dynamic models-difference and differential equations into
a general framework, which can be used to model dynamic processes whose time domains
are more complex than the set of integers (difference equations) or real numbers (differential
equation). There are many potential applications for this relatively new theory. The optimal
control problems on time scales are also an interesting topic, and many researchers are
working in this area. Existing results on the literature of time scales are restricted to problems
of the calculus of variations, which were introduced by Bohner [2] and by Hilscher and
Zeidan [3]. There are many opportunities for applications in economics [4, 5]. More general
optimal control problems on time scales were studied in [6, 7].

To the best of our knowledge, it seems that there is not too much work about the
necessary conditions of optimal control problems on time scales by adapting the method of
calculus of variations. That motivates us to investigate new necessary conditions of optimal
control problem on time scales. In this paper, based on the Gateaux differential on time scales,
we establish necessary conditions for Lagrange optimal control problems on time scales.
Moreover, we present an economic model to demonstrate our results.

The paper is organized as follows. We present some necessary preliminary definitions
and results about the time scales T in Section 2. In Section 3, based on the existence and
uniqueness of solutions of a linear dynamic equation on time scales, we derive existence
and uniqueness of system solutions for the controlled system. Then, we prove the minimum
principle on time scales for the optimal control problem (P) in Section 4. Finally, in Section 5,
an example is given to demonstrate our results.

2. Preliminaries

A time scale T is a closed nonempty subset of R. The two most popular examples are T = R

and T = Z. The forward and backward jump operators σ, ρ : T → T are defined by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}. (2.1)

We put inf∅ = supT and sup∅ = infT, where ∅ denotes the empty set. If there is the finite
maxT, then σ(maxT) = maxT, and if there exists the finite minT, then ρ(minT) = minT.
The graininess function μ : T → [0,+∞) is μ(t) := σ(t) − t. A point t ∈ T is called left-dense
(left-scattered, right-dense, and right-scattered) if ρ(t) = t (ρ(t) < t, σ(t) = t, and σ(t) > t)
holds. If T has a left-scattered maximum valueM, then we denote T

k := T−{M}. Otherwise,
T
k := T.

Definitions and propositions of Lebesgue Δ-measure μΔ and Lebesgue integral can be
seen in [8–10].

Definition 2.1. Let P denote a proposition with respect to t ∈ T and A a subset of T. If there
exists E1 ⊂ Awith μΔ(E1) = 0 such that P holds on A \E1, then P is said to hold Δ-a.e., on A.
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Remark 2.2. For each t0 ∈ T \ {maxT}, the single-point set {t0} is Δ-measurable, and its Δ-
measure is given by

μΔ({t0}) = σ(t0) − t0 = μ(t0). (2.2)

Obviously, E1 ⊂ A does not have any right-scattered points. For a set E ⊂ T, define the
Lebesgue Δ-integral of f over E by

∫
Ef(t)Δt and let f ∈ L1

T
(E,R) (see [8]).

Lemma 2.3 (see [8]). Let f : [a, b)
T

→ R. f̃ : [a, b) → R is the extension of f to real interval
[a, b], defined by

f̃(t) :=

⎧
⎨
⎩
f(t) if t ∈ [a, b)

T
,

f(ti) if t ∈ (ti, σ(ti)), for some i ∈ I,
(2.3)

where {ti}i∈I , I � N is the index of the set of all right-scattered points of [a, b]
T
. Then, f ∈

L1
T
([a, b)

T
,R) if and only if f̃ ∈ L1([a, b],R). In this case,

∫

[a,b)
T

f(t)Δt =
∫

[a,b]
f̃(t)dt. (2.4)

Definition 2.4. Suppose that f : [a, b)
T

→ R. f ∈ L∞
T
([a, b)

T
,R), if there exists a constant

C ∈ R such that

∣∣f(t)∣∣ ≤ C Δ-a.e. t ∈ [a, b)
T
. (2.5)

Definition 2.5 (see [10]). A function f : T → R is said to be absolutely continuous on T if for
every given constant ε > 0, there is a constant δ > 0 such that if {[ak, bk)T

}nk=1, with ak, bk ∈ T,
is a finite pairwise disjoint family of subintervals of T satisfying

n∑
k=1

(bk − ak) < δ, (2.6)

then

n∑
k=1

∣∣f(bk) − f(ak)
∣∣ < ε. (2.7)

If T = [a, b]
T
, then we denote all absolutely continuous functions on [a, b]

T
as AC([a, b]

T
,R).

Lemma 2.6. If f is Lebesgue Δ-integrable on [a, b)
T
, then the integral F(t) =

∫
[a,t)

T

f(l)Δl, t ∈
[a, b)

T
is absolutely continuous on [a, b]

T
. Moreover,

FΔ(t) = f(t), for Δ-a.e. t ∈ [a, b)
T
. (2.8)
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Proof. F(t) =
∫
[a,t)

T

f(l)Δl =
∫
[a,t]f̃(l)dl where f̃(l) is introduced in (2.3) and f̃ ∈ L1([a, t],R)

from Lemma 2.3. Now, by the standard Lebesgue integration theory, F(·) is an absolutely
continuous function on the real interval [a, b] and

F ′(t) = f̃(t), a.e. t ∈ [a, b]. (2.9)

Using Definition 2.5, F(t) =
∫
[a,t)

T

f(l)Δl is also absolutely continuous on [a, b]
T
.

Let F be differentiable at t for t ∈ [a, b)
T
. If t is right-scattered, that is, t = ti for some

{ti}i∈I , it follows from the continuity of F at t that

FΔ(t) =
F(σ(ti)) − F(ti)

μ(ti)
=

∫
[ti,σ(ti))

f̃(s)ds

σ(ti) − ti =

∫
[ti,σ(ti))

f(s)ds

σ(ti) − ti = f(ti) = F ′(ti). (2.10)

If t is right dense,

lim
s→ t,s∈T

F(t) − F(s)
t − s = lim

s→ t

F(t) − F(s)
t − s = F ′(t). (2.11)

Hence, F is Δ-differentiable at t and FΔ(t) = F ′(t). That is,

E1 :=
{
t ∈ [a, b)

T
: �FΔ(t)

}
⊂ {t ∈ [a, b) : �F ′(t)

}
=: E2. (2.12)

The continuity of F guarantees that F is Δ-differentiable at every right-scattered point ti.
Moreover, (2.9) implies λ(E2) = 0. We deduce that E1 does not contain any right-scattered
points and

μΔ(E1) = λ(E1) = 0. (2.13)

Hence, F is Δ-differentiable Δ-a.e., on [a, b)
T
and

FΔ(t) = F ′(t) = f̃(t) = f(t) for Δ-a.e. t ∈ [a, b)
T
. (2.14)

The proof is complete.

It follows from Definition 2.5 and Lemma 2.6 that one can easy to prove the following
integration by parts formula on time scales.

Lemma 2.7. If f, g : [a, b]
T

→ R are absolutely continuous functions on [a, b]
T
, then f · g is

absolutely continuous on [a, b]
T
and the following equality is valid:

∫

[a,b)
T

(
fΔg + fσgΔ

)
(s)Δs = f(b)g(b) − f(a)g(a) +

∫

[a,b)
T

(
fgΔ + fΔgσ

)
(s)Δs. (2.15)
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Let C([a, b]
T
,R) denote the linear space of all continuous functions f : [a, b]

T
→ R on

time scale T with the maximum norm ‖f‖C = maxt∈[a,b]
T
|f(t)|. The following statement can

be understood as a time scale version of the Arzela-Ascoli theorem.

Lemma 2.8 (see [11] (Arzela-Ascoli theorem)). Let X be a subset of C([a, b]
T
,R) satisfying the

following conditions:

(i) X is bounded;

(ii) for any given ε > 0, there exists δ > 0 such that t1, t2 ∈ [a, b]
T
, |t1 − t2| < δ implies

|f(t1) − f(t2)| < ε for all f ∈ X (i.e., the functions in X are equicontinuous).

Then, X is relatively compact.

3. Existence and Uniqueness of Solutions for
a Controlled System Equation

In order to derive necessary conditions, we prove the existence and uniqueness of solutions
for controlled system equation (1.3).

Definition 3.1. A function x ∈ AC([0, T]
T
,R) is said to be a solution of problem (1.3) if

(i) x is Δ-differentiable Δ-a.e. on [0, T)
T
and xΔ ∈ L1

T
([0, T)

T
,R);

(ii) x(0) = x0 and xΔ(t) = p(t)x(t) + f(t) + u(t), Δ-a.e. on [0, T)
T
.

We assume the following.

[HF] p is regressive rd-continuous function and f ∈ L1
T
([0, T)

T
,R).

[HL] The scalar functions l(x, u) alongwith their partial derivation {lx, lu} are continuous
and uniformly bounded on R × U for almost all t ∈ [0, T]

T
.

Theorem 3.2 (existence and uniqueness of solutions for the controlled system equation). If
assumption [HF] holds, for any u ∈ Uad, problem (1.3) has a unique solution in [0, T]

T
which given

by

x(t) = ep(t, 0)x0 +
∫

[0,t)
T

ep(t, σ(τ))
(
f(τ) + u(τ)

)
Δτ, t ∈ [0, T]

T
. (3.1)

Proof. For conciseness, we just give a brief proof. Define a function F as

F(t) = f(t) + u(t), t ∈ [0, T)
T
. (3.2)

Then, problem (1.3) is equivalent to

xΔ(t) = p(t)x(t) + F(t), for Δ-a.e., t ∈ [0, ρ(T)]
T
,

x(0) = x0.
(3.3)
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Since F ∈ L1
T
([0, T)

T
,R), there exists a sequence {Fn} in C([0, T]T

,R) such that ‖F − Fn‖L1
T

→
0. Therefore, the Cauchy problem

xΔ
n = p(t)xn + Fn(t),

xn(0) = x0, t ∈ [0, ρ(T)]
T
,

(3.4)

has an unique classical solution given by

xn(t) = ep(t, 0)x0 +
∫

[0,t)
T

ep(t, σ(τ))Fn(τ)Δτ, t ∈ [0, T]
T
. (3.5)

Now, we define

x(t) = ep(t, 0)x0 +
∫

[0,t)
T

ep(t, σ(τ))F(τ)Δτ, t ∈ [0, T]
T
. (3.6)

Then,

‖xn − x‖C = max
t∈[0,T]

T

|xn(t) − x(t)|

≤
∫

[0,T)
T

∣∣ep(t, σ(τ))
∣∣ · |Fn(τ) − F(τ)|Δτ

≤ sup
t,τ∈[0,T]

T

∣∣ep(t, τ)
∣∣ · ‖F − Fn‖L1

T

−→ 0,

(3.7)

and Lemma 2.6 can be applied to testify that x tailors to Definition 3.1.

Let

M1 = sup
t∈[0,T]

T

∣∣ep(t, 0)
∣∣, M2 = sup

t,τ∈[0,T]
T

∣∣ep(t, τ)
∣∣. (3.8)

Define the HamiltonianH(x, ψσ, u) as

H
(
x, ψσ, u

)
= l(x, u) + ψσ

(
px + f + u

)
. (3.9)

4. Necessary Conditions for Optimal Control Problem (P)

In this section, we will present the minimum principle on time scales for the optimal control
problem (P).
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Theorem 4.1 (minimum principle on time scales). Suppose that [HF] and [HL] hold. If u0 is an
optimal solution for problem (P) and x0(·;u0) is an optimal trajectory corresponding to u0, then it is
necessary that there exists a function ψ ∈ AC([σ(0), σ(T)]

T
,R) satisfying the following conditions:

∫

[0,σ(T))
T

〈
Hu

(
x0(t), ψσ(t), u0(t)

)
, u(t) − u0(t)

〉
Δt ≥ 0, ∀u ∈ Uad, (4.1)

ψΔ(t) = −Hx

(
x0(t), ψσ(t), u0(t)

)
= −p(t)ψσ(t) − lx

(
x0(t), u0(t)

)
, t ∈ [σ(0), T]

T
, (4.2)

ψ(σ(T)) = 0. (4.3)

Proof. This theorem can be proved in the following several steps.
(i) For all ε ∈ [0, 1] and for all u ∈ Uad, define uε = u0 + ε(u − u0). Since U is a bounded

closed convex set, then U<ad is also a closed convex subset of L∞
T
([0, T]

T
,R) and uε ∈ Uad.

Because u0 ∈ Uad is optimal,

J
(
u0(·)
)
≤ J(uε(·)), ∀ε ∈ [0, 1], ∀u ∈ Uad. (4.4)

lim
ε→ 0

uε(t) = u0(t), on [0, T]
T
. (4.5)

(ii) Now, we verify that {xε(·;uε)} converges to x0(·;u0) in C([0, T]
T
,R) as ε → 0 by using

Arzela-Ascoli theorem (Lemma 2.8). By boundedness of Uad, we have

|xε(t;uε)| =
∣∣∣∣∣ep(t, 0)x0 +

∫

[0,t)
T

ep(t, σ(τ))
[
f(τ) + uε(τ)

]
Δτ

∣∣∣∣∣

≤ ∣∣ep(t, 0)x0
∣∣ +
∫

[0,t)
T

∣∣ep(t, σ(τ))
[
f(τ) + uε(τ)

]∣∣Δτ

≤M1|x0| +M2

∫

[0,T)
T

∣∣[f(τ) + uε(τ)]∣∣Δτ

≤M1|x0| +M2

[∫

[0,T)
T

∣∣f(τ)∣∣Δτ +
∫

[0,T)
T

|uε(τ)|Δτ
]

≤M.

(4.6)

{xε(·;uε)} is uniformly bounded on [0, T]
T
.

Taking arbitrary points t1 and t2 of the segment [0, T]
T
and using the absolutely

continuity of integral and the boundedness of Uad, we obtain

|(xε(t1;uε) − xε(t2;uε))|

≤ ∣∣ep(t1, t2) − 1
∣∣ ·
∣∣∣∣∣

[
ep(t2, 0)x0 +

∫

[0,t2)T

ep(t2, σ(τ))
[
f(τ) + uε(τ)

]
Δτ

]∣∣∣∣∣

+
∣∣ep(t1, t2)

∣∣ ·
∣∣∣∣∣
∫

[t2,t1)T

ep(t2, σ(τ))
[
f(τ) + uε(τ)

]
Δτ

∣∣∣∣∣.

(4.7)
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Since

ep(t1, t2) −→ 1,

|(xε(t1;uε) − xε(t2;uε))| −→ 0, as |t1 − t2| −→ 0.
(4.8)

Hence, {xε(·;uε)} is equicontinuous in [0, T]
T
.

It follows from (4.5) that

∣∣∣xε(t;uε) − x0
(
t;u0
)∣∣∣ =
∣∣∣∣∣
∫

[0,t)
T

ep(t, σ(τ))
(
uε(τ) − u0(τ)

)
Δτ

∣∣∣∣∣

≤
∫

[0,t)
T

∣∣ep(t, σ(τ))
∣∣ ·
∣∣∣
(
uε(τ) − u0(τ)

)∣∣∣Δτ

≤M2

∫

[0,T)
T

∣∣∣
(
uε(τ) − u0(τ)

)∣∣∣Δτ

−→ 0, as ε −→ 0.

(4.9)

By Arzela-Ascoli theorem (Lemma 2.8), we obtain

xε −→ x0 in C([0, T]
T
,R). (4.10)

(iii) Denote

y(t) := lim
ε↓0

xε(t) − x0(t)
ε

. (4.11)

Then, y satisfies the following initial value problem:

yΔ(t) = p(t)y(t) +
(
u(t) − u0(t)

)
, forΔ-a.e., t ∈ [0, ρ(T)]

T
(4.12)

with

y(0) = 0. (4.13)

We call (4.12) and (4.13) the variational equations.
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(iv) We calculate the Gateaux differential of J at u0 ∈ Uad in the direction u − u0. It
follows from hypotheses [HL], Lemma 2.3, and (4.4) that

0 ≤ lim
ε↓0

J(uε(·)) − J(u0(·))

ε

= lim
ε↓0

∫

[0,σ(T))
T

l(xε(t;uε), uε(t)) − l(x0(t;u0), u0(t))

ε
Δt

= lim
ε↓0

∫

[0,σ(T)]

l
(

˜xε(t;uε), ũε(t)
)
− l
(

˜x0(t;u0), ũ0(t)
)

ε
dt

= lim
ε↓0

∫

[0,σ(T)]

{∫1
0

[〈
lx
(
x0 + θ
(
x̃ε − x̃0

)
, ũ0 + θε

(
ũ − ũ0
))
,
x̃ε − x̃0

ε

〉

+
〈
lu
(
x̃0 + θ
(
x̃ε − x̃0

)
, ũ0 + θε

(
ũ − ũ0
))
, ũ − ũ0

〉]
dθ

}
dt

=
∫

[0,σ(T)]

[〈
lx
(
x̃0(t), ũ0

)
, ỹ(t)
〉
+
〈
lu
(
x̃0(t), ũ0

)
, ũ(t) − ũ0(t)

〉]
dt

=
∫

[0,σ(T))
T

[〈
lx
(
x0(t), u0

)
, y(t)
〉
+
〈
lu
(
x0(t), u0

)
, u(t) − u0(t)

〉]
Δt.

(4.14)

Here, the “title” is the corresponding extension function in Lemma 2.3. That is,

ũε(t) :=

⎧
⎨
⎩
uε(t) = u0(t) + ε

(
u(t) − u0(t)) if t ∈ [0, T]

T
,

uε(ti) = u0(ti) + ε
(
u(ti) − u0(ti)

)
if t ∈ (ti, σ(ti)), for some i ∈ I,

(4.15)

where {ti}i∈I , I � N, is the set of all right-scattered points of [0, T]
T
. Obviously

ũε(t) = ũ0(t) + ε
(
ũ(t) − ũ0(t)

)
, t ∈ [0, T]. (4.16)

By the variational equations (4.12) and (4.13), we define an operator T1 : L1
T ([0, T)T

,R) →
C([0, T]

T
,R) as

y(t) := T1
(
u − u0
)
(t) =
∫

[0,t)
T

ep(t, σ(τ))
[
u(τ) − u0(τ)

]
Δτ, t ∈ [0, T]

T
. (4.17)

Then, T1 is a continuous linear operator. Furthermore, due to the uniform bound of lx, T2 :
C([0, T]

T
,R) → R, given by

T2y :=
∫

[0,σ(T))
T

〈
lx
(
x0(t), u0(t)

)
, y(t)
〉
Δt, (4.18)
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is also a linear continuous functional. Hence, T2 ◦ T1 : L1
T ([0, T)T

,R) → R defined by

T2 ◦ T1
(
u − u0
)
=
∫

[0,σ(T))
T

〈
lx
(
x0(t), u0(t)

)
, y(t)
〉
Δt (4.19)

is a bounded linear functional.
By the Riesz representation theorem (see [12, Theorem 2.34]), there is a ψσ ∈

L∞
T ([0, T]T

,R) such that

∫

[0,σ(T))
T

〈
lx
(
x0(t), u0(t)

)
, y(t)
〉
Δt =
∫

[0,σ(T))
T

〈
u(t) − u0(t), ψσ(t)

〉
Δt. (4.20)

Using (4.20), (4.14), and (3.9), we obtain

0 ≤
∫

[0,σ(T))
T

[〈
lx
(
x0(t), u0(t)

)
, y(t)
〉
+
〈
lu
(
x0(t), u0(t)

)
, u(t) − u0(t)

〉]
Δt

=
∫

[0,σ(T))
T

[〈
lu
(
x0(t), u0(t)

)
+ ψσ(t), u(t) − u0(t)

〉]
Δt

=
∫

[0,σ(T))
T

〈
Hu

(
x0(t), ψσ(t), u0(t)

)
, u(t) − u0(t)

〉
Δt, ∀u ∈ Uad.

(4.21)

Hence we have derived the necessary condition (4.1).
(v) Now, we can claim that ψ ∈ AC([0, σ(T)]

T
,R) and the last part of necessary

conditions are true. Using Lemma 2.7, (4.12), and (4.13) as well as (4.20), we obtain

T2
(
y
)
=
∫

[0,σ(T))
T

〈
lx
(
x0(t), u0(t)

)
, y(t)
〉
Δt

=
∫

[0,σ(T))
T

〈
yΔ(t) − p(t)y(t), ψσ(t)

〉
Δt

=
∫

[0,σ(T))
T

〈
yΔ(t), ψσ(t)

〉
Δt −
∫

[0,σ(T))
T

〈
p(t)y(t), ψσ(t)

〉
Δt

= y(σ(T))ψ(σ(T)) −
∫

[0,σ(T))
T

〈
y(t), ψΔ(t)

〉
Δt −
∫

[0,σ(T))
T

〈
y(t), p(t)ψσ(t)

〉
Δt

= y(σ(T))ψ(σ(T)) −
∫

[0,σ(T))
T

〈
y(t), ψΔ(t) + p(t)ψσ(t)

〉
Δt.

(4.22)

From the first and the last equalities, we have

y(σ(T))ψ(σ(T)) −
∫

[0,σ(T))
T

〈
y(t), ψΔ(t) + p(t)ψσ(t) + lx

(
x0(t), u0(t)

)〉
Δt = 0. (4.23)
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Hence, similar to Theorem 3.2, one may choose ψσ as the solution of the following backward
problem:

ψΔ(t) = −p(t)ψσ(t) − lx
(
x0(t), u0(t)

)
, for Δ-a.e. t ∈ [σ(0), T]

T
,

ψ(σ(T)) = 0.
(4.24)

This completes the proof.

Remark 4.2. If the control set U = R, then (4.1) reduces to

Hu

(
x0(t), ψσ(t), u0(t)

)
= 0, Δ-a.e. on [0, T]

T
. (4.25)

5. Example (A Model in Economics)

In this section, for illustration, we will apply Theorem 4.1 to the following economics model.
This model had been discussed by the method of Nabla version calculus of variation on time
scales (see [4, 13]). We briefly present it here. A consumer is seeking to maximize his lifetime
utility subject to certain constraints. During each period in his life, a consumer has to make
a decision regarding how much to consume and how much to spend. Utility is the value
function of the consumer that one wants to maximize. It can depend on numerous variables,
in this simple example, it depends only on the consumption of some generic production C.
Utility function u(C) abides by the Law of DiminishingMarginal Utility, that is to say, u′(C) >
0 and u′′(C) < 0.

5.1. Discrete Time Model

A representative consumer has to make decisions not just about one period but about the
sequence of C

′
s: C0,C1, . . . ,CT. The problem is to find a consumption path that would

maximize lifetime utility U as follows:

maxU(C) =
T∑
t=0

(
1

1 + δ

)t
u(Ct), (5.1)

where Ct is the consumption during period t, u is one-period utility, and 0 < δ < 1 is the
(constant) discount rate. We assume that the future consumption is less than the current
consumption, so we discount the future at the rate δ. The consumer is limited by the budget
constraints:

At+1 = (1 + r)At + Yt − Ct, AT

(
1

1 + r

)T
≥ 0, (5.2)

where At+1 is the amount of assets held at the beginning of period t + 1, Yt is the income
received in period t, and r is the constant interest rate. AT(1/(1 + r))T ≥ 0 that can be
interpreted as “we are not allowed to borrow without limit.”
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5.2. Continuous Time Model

The same problem can be solved in a continuous time case, where lifetime utility is the sum
of instantaneous utilities:

max U(C) =
∫T
0
u(C(t))e−δtdt (5.3)

with respect to the path {C(t), t ∈ [0, T]} subject to the constraint

A′(t) = A(t)r + Y (t) − C(t). (5.4)

5.3. Time Scale Calculus Model

A consumer receives income at one time point, asset holdings are adjusted at a different time
point, and consumption takes place at another time point. Consumption and saving decisions
can be modeled to occur with arbitrary, time-varying frequency. Hence, the time scale version
of this model can de described by

maxU(C) =
∫

[0,σ(T))
T

u(C(t))ê−δ(t, 0)Δt, (5.5)

subject to the budget constraint

AΔ(t) = rA(t) + Y (t) − C(t), t ∈ [0, ρ(T)], (5.6)

where ê−δ(t, 0) is the Nabla exponential function of −δ,

ê−δ(t, 0) := exp

(∫

[0,t)
T

ξ̂ν(τ)(−δ)∇τ
)
. (5.7)

Note that (see [14] for more details)

ê−δ(t, 0) :=

⎧
⎪⎪⎨
⎪⎪⎩

e−δt if T = R,
(

1
1 + δ

)t
if T = Z.

(5.8)

Now, we use Theorem 4.1 to solve this model. The Hamiltonian

H
(
A,ψσ, C

)
= −u(C(t))ê−δ(t, 0) + ψσ(t)(rA(t) + Y (t) − C(t)). (5.9)
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Optimal consumption satisfies the following necessary conditions:

−u′(C(t))ê−δ(t, 0) − ψσ(t) = 0,

ψΔ(t) = −rψσ(t).
(5.10)

If T = R, then (5.8), (5.10) imply

C′(t) = (δ − r) u
′(C(t))

u′′(C(t))
. (5.11)

Due to u′(C) > 0 and u′′(C) < 0, it shows that C′
t > 0 if r > δ. Hence, the consumer will wait

to consume.
If T = Z, then (5.8), (5.10) imply

u′(Ct) =
1 + r
1 + δ

u′(Ct+1). (5.12)

It follows from u′(C) > 0 and u′′(C) < 0 that if u′(Ct+1) < u′(Ct), thenCt+1 > Ct. Therefore if the
interest rate r is higher than the future’s discount rate δ, the consumer will wait to consume
until next periods. Therefore, we obtain the same results as [4].
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