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It has been known for some time that proportional output feedback will stabilize MIMO,
minimum-phase, linear time-invariant systems if the feedback gain is sufficiently large. High-gain
adaptive controllers achieve stability by automatically driving up the feedback gain monotonically.
More recently, it was demonstrated that sample-and-hold implementations of the high-gain
adaptive controller also require adaptation of the sampling rate. In this paper, we use recent
advances in the mathematical field of dynamic equations on time scales to unify and generalize
the discrete and continuous versions of the high-gain adaptive controller. We prove the stability of
high-gain adaptive controllers on a wide class of time scales.
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1. Introduction

The concept of high-gain adaptive feedback arose from a desire to stabilize certain classes
of linear continuous systems without the need to explicitly identify the unknown system
parameters. This type of adaptive controller does not identify system parameters at all, but
rather adapts the feedback gain itself in order to regulate the system. A number of papers
examine the details of various kinds of high-gain adaptive controllers [1–4], among others.
More recently, several papers have discussed one particularly practical angle on the high-gain
adaptive controller, namely, how to cope with input/output sampling. In particular, Owens
[5] showed that it is not generally possible to stabilize a linear system with adaptive high-
gain feedback under uniform sampling. Thus, Owens et al., develop a mechanism to adapt
the sampling rate as well as the gain, a notion subsequently improved upon by Ilchmann and
Townley [6, 7], Ilchmann and Ryan [8], and Logemann [9].
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In this paper, we employ results from the burgeoning new field of mathematics
called dynamic equations on time scales to accomplish three principal objectives. First, we
use time scales to unify the continuous and discrete versions of the high-gain controller,
which have previously been treated separately. Next we give an upper bound on the system
graininess to guarantee stabilizability for a much wider class of time scales than previously
known, including mixed continuous/discrete time scales. Third, the paper represents the
first application of several fairly recent advances in stability theory and Lyapunov theory
for systems on time scales, and two new lemmas are presented in that vein. We also give a
simulation of a high-gain controller on a mixed time scale.

2. Background

We first state two assumptions that are required in the subsequent text.

(A1) The system model and feedback law are given by the linear, time-invariant, mini-
mum phase system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) = x0, (2.1)

u(t) = −k(t)y(t) (2.2)

for t ≥ 0. System parameters A ∈ R
n×n, B,CT ∈ R

n×m, x0 ∈ R
n, and n are unknown.

The feedback gain k : R → R
+ is piecewise continuous, and nondecreasing as

t → ∞. By minimum phase, we mean that the polynomial

det

[
A − λI B

C 0

]
(2.3)

with λ ∈ C is Hurwitz (zeros in open left hand plane).

(A2) Furthermore,

(CB)T + (CB) > 0, (2.4)

that is, (CB)T + (CB) is positive definite. (In [3], it is pointed out that a nonsingular
input/output transformation T always exists such that B̃ = BT−1 and C̃ = TC give

(C̃B̃)
T
+ (C̃B̃) > 0.)

Under these conditions, it has been known for some time (e.g., [1]) that there are a
wide class of gain adaptation laws k(t) = f(y(t)), f : R

m → R, that can asymptotically
stabilize system (2.1) in the sense that

y ∈ L2[t0,∞), lim
t→∞

k(t) <∞. (2.5)
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Subsequently, various authors [1, 5, 6, 10] assumed that the output is obtained via sample-
and-hold, that is, yi := y(ti) with ki := k(ti) and i ∈ N0. Thus it becomes necessary also to
adapt the sample period hi := ti+1 − ti, so the closed-loop control objectives are

yi ∈ �2[i0,∞), lim
i→∞

ki <∞, lim
i→∞

hi > 0. (2.6)

Though several variations on these results exist, these remain the basic control results for
continuous and discrete high-gain adaptive controllers. The continuous and discrete cases
have previously been treated quite differently, but we now construct a common framework
for both using time-scale theory.

3. A Time-Scale Model

The system of (A1) can be replaced by

xΔ(t) = Â(t)x(t) + B̂(t)u(t), y(t) = Cx(t), x(0) = x0,

u(t) = k(t)y(t), t ∈ T,
(3.1)

where T is any time scale unbounded above with 0 ∈ T. With a series expansion similar to
[1], we see that

Â(t) := expc
(
μ(t)A

)
A, B̂(t) = expc

(
μ(t)A

)
B, (3.2)

where expc is the matrix power series function

expc(X) := I +
1
2
X +

1
6
X2 + · · · + 1

n!
Xn−1 + · · · (3.3)

and μ is the time scale graininess. Implementing control law, (2.2) then gives

xΔ(t) = A(t)x(t), A(t) := expc
(
μ(t)A

)
(A − k(t)BC). (3.4)

Note that Â, B̂, and A may all be time-varying, but we will henceforth drop the explicit
reference to t for these variables. For future reference, we also note that if supt∈Tμ(t) < ∞,
then ‖Â‖ and ‖B̂‖ are also bounded (c.f. Appendix).

The design objectives are to find graininess μ and feedback gain k as functions of the
output y,

μ(t) = g
(
y(t)

)
, g : R

m −→ [0,∞),

k(t) = f
(
y(t)

)
, f : R

m −→ R
+

(3.5)
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with t ∈ T and k ∈ Crd(T) nondecreasing, such that

y ∈ L2[t0,∞)
T

:=

{
w :

∫∞
t0

|w(t)|2Δt <∞
}
, lim

t→∞
k(t) <∞. (3.6)

It is important to keep in mind the generality of the expressions above. A great deal of
mathematical machinery supports the existence of delta derivatives on arbitrary times scales,
as well as the existence and characteristics of solutions to (3.4). See, for example, [11, 12].

4. Stability Preliminaries

We begin this section with a definition and theorem from the work of Pötzsche et al. [13].

Definition 4.1. The set of exponential stability for the time-varying scalar equation zΔ(t) =
λ(t)z(t), z0 := z(t0) with λ : T → C and z, λ ∈ Crd(T), is given by

S(T) := SC(T) ∪ SR(T), (4.1)

where

SC(T) :=

{
η(t) ∈ C : α = −lim sup

t→∞

1
t − t0

∫ t
t0

log
∣∣1 + μ(t)η(t)

∣∣
μ(t)

Δt > 0

}
, (4.2)

SR(T) :=
{
η(t) ∈ R : ∀t ∈ T, ∃τ > t with τ ∈ T such that 1 + μ(t)η(t) = 0

}
, (4.3)

with η ∈ Crd(T) and arbitrary t0 ∈ T.

Theorem 4.2 (see [13]). Solutions of the scalar equation zΔ(t) = λ(t)z(t) are exponentially stable
on an arbitrary T if and only if λ(t) ∈ S(T).

We note here that Pötzche, Siegmund, and Wirth did not explicitly consider scenarios
where η is time-varying, but their stability analysis remains unchanged for η(t).

The set SR(T) contains nonregressive eigenvalues λ(t), and a loose interpretation of
SC(T) suggests that it is necessary for a regressive eigenvalue to reside in the area of the
complex plane where ‖1 + μ(t)λ(t)‖ < 1 “most” of the time. The contour ‖1 + μ(t)λ(t)‖ = 1 is
termed the Hilger Circle. Since the solution of zΔ(t) = λ(t)z(t) is x(t) = z0eλ(t, t0), Theorem 4.2
states that if λ(t) ∈ S(T) then some K(t0) > 1 exists such that

‖z(t)‖ = ‖z0‖‖eλ(t, t0)‖ ≤ ‖z0‖Ke−α(t−t0), (4.4)

where eλ is a generalized time scale exponential. The Hilger Circle will be important in the
upcoming Lyapunov analysis, as will the following lemmas.

Lemma 4.3. Let z ∈ Crd(T) be a function which is known to satisfy the inequality zΔ(t) ≤ λ(t)z(t),
z(0) = z0 ∈ R with λ : T → R and λ ∈ Crd(T). If z(t) > 0 for all t ≥ t0 ∈ T, then λ(t) ∈ R+.
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Proof. Defining v(t) = zΔ(t) − λ(t)z(t) gives rise to the initial value problem

zΔ(t) − λ(t)z(t) = v(t), z(0) = z0, t ∈ T, (4.5)

where v(t) ≤ 0.
First, suppose λ(t) is negatively regressive for t ≥ t0, that is, λ(t) < −1/μ(t) with μ(t) >

0. Then (4.5) yields zσ = μλz + z + μv = z(1 + μλ) + μv < 0.
On the other hand, suppose λ(T) is nonregressive for some T > t0, T ∈ T. If λ(t) <

−1/μ(t) over T > t ≥ t0, then invoke the preceding argument. If λ(t) > −1/μ(t) over T > t ≥ t0,
then solve (4.5) to get

z(t) = eλ(t, t0)z0 +
∫ t
t0

eλ(t, σ(τ))v(τ)Δτ, T > t ≥ t0. (4.6)

Since eλ(t, t0) > 0 for t < T , we see that
∫ t
t0
eλ(t, σ(τ))v(τ)Δτ < 0. However, for t ≥ T , (4.6)

becomes

z(t) = 0 +
∫ρ(T)
t0

eλ(t, σ(τ))v(τ)Δτ, t ≥ T. (4.7)

Thus, z(t) < 0 for all t ≥ t0 for both negatively regressive and nonregressive λ(t), a
contradiction of the Lemma’s presupposition. This leaves only λ(t) ∈ R+.

At this point we pause briefly to discuss Lyapunov theory on time scales. DaCunha
produced two pivotal works [14, 15] on solutions P of the generalized time scale Lyapunov
equation,

A(t)TP(t) + P(t)A(t) + μ(t)AT (t)P(t)A(t) = −Q(t), t ∈ T, (4.8)

where A(t), P(t), Q(t) ∈ R
n×n, A and Q are known and Q(t) > 0. Though it will not be

necessary to solve (4.8) in this work, we will see that the form of (4.8) leads to an upper bound
on the graininess that is generally applicable to MIMO systems, an advancement beyond
previous works which gave an explicit bound only for SISO systems. DaCunha proves that
a positive definite solution P(t) to the time scale Lyapunov equation with positive definite
Q(t) exists if the eigenvalues of A(t) are in the Hilger circle for all t ∈ T. Furthermore, P(t) is
unique. As with the well-known result from continuous system theory (c.f. [16]), the solution
is constructive, with

P(t) =
∫

St

ΦT
A(t)(s, 0)Q(t)ΦA(t)(s, 0)Δs, (4.9)

where ΦA(t, t0) denotes the transition matrix for the linear system xΔ(t) = A(t)x(t), x(t0) = I.
The correct interpretation of this integral is crucial: for each t ∈ T, the time scale over which
the integration is performed is St := μ(t)N0, which has constant graininess for each fixed
t. (Since this paper was written, we have explored the subject on algebraic and dynamic
Lyapunov equations in more detail; we refer the interested reader to [17].)
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Before the next lemma, we define

K :=
{
k : T −→ R

+ | k ∈ Crd(T), kΔ(t) ≥ 0 ∀t ∈ T, lim
t→∞

k(t) =∞
}
. (4.10)

The next lemma follows directly.

Lemma 4.4. Given assumptions (A1) and (A2) and k ∈ K, there exists a nonzero graininess μ(t)
and a time t∗ such that, for all μ(t) ≤ μ(t) and t > t∗, the matrix −kCB̂ satisfies a time scale Lyapunov
equation with P = I, Q(t) ≥ ε2 for small ε2 > 0, and B̂ from (3.2).

Proof. We construct μ(t) as

μ(t) :=
1
k(t)

⎛
⎜⎝λmin

{
CB + (CB)T

}
λmax

{
(CB)TCB

} − ε1

⎞
⎟⎠, t ∈ T, (4.11)

with ε1 > 0 sufficiently small so that μ(t) > 0 on T. This holds if

(CB)T + CB − μ(t)k(t)(CB)TCB = ε1I. (4.12)

Multiplying (4.12) by −k(t) gives

(−k(t)CB)T + (−k(t)CB) + μ(t)(−k(t)CB)T (−k(t)CB) = −k(t)ε1I. (4.13)

(We now drop the explicit time-dependence for readability.) Set

Σ
(
μ
)

:= expc
(
μA
)
− I, (4.14)

so that B̂(μ) = [I + Σ(μ)]B, yielding

(
−kCB̂

)T
+
(
−kCB̂

)
+ μ
(
−kCB̂

)T(
−kCB̂

)
= −k(ε1I − Z), (4.15)

where each term of Z is a product of contants times Σ(μ). Since ‖Σ(μ)‖ → 0 as μ → 0 (c.f.
Appendix), there exists a time t∗ ∈ T when ‖Z‖ < ε1. Because the preceding arguments admit
any graininess μ(t) ≤ μ(t), it follows that

(
−kCB̂

)T
+
(
−kCB̂

)
+ μ
(
−kCB̂

)T(
−kCB̂

)
= −kQ, t > t∗, μ(t) ≤ μ(t), (4.16)

where Q(t) ≥ ε2 and ε2 := ε1 − ‖Z‖ > 0.

We comment briefly on the intuitive implication of Lemma 4.4. Equation (4.16) shows
that there exist positive definite Q(t) and P = I to satisfy an equation of the form (4.8).
According to DaCunha, this implies that the eigenvalues of −kCB̂ lie strictly within the Hilger
circle for t > t∗.
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5. System Stability

We now come to the three central theorems of the paper. If BC is not known to be full rank,
or cannot be full rank because of the input/output dimensions, then it must be assumed (or
determined a priori) that the eigenvalues ofA−k(t)BC attain negative real parts at some point
in time. This phenomenon is investigated in-depth by other authors [1, 4]. We then make use
of the observation by Owens et al. [3] that there must exist some k∗ > 0 such that if k(t) ≡ k∗
the system of (A1) has a positive-real realization. This, together with the Kalman-Yakubovich
Lemma [16], implies existence of P,Q > 0 so that

(A − k∗BC)TP + P(A − k∗BC) = −Q, PB = CTCB. (5.1)

Theorem 5.1 (Exponential Stability). In addition to (A1) and (A2), suppose

(i) t ∈ T where T is a time scale which is unbounded above but with μ(t) ≤ μ(t),

(ii) k ∈ K (implying from (4.11) that μ(t) → 0, but not necessarily monotonically),

(iii) BC is not necessarily full rank, but there exists a time t∗ ∈ T such that the eigenvalues of
(A − k(t)BC) are strictly in the left-hand complex plane for t ≥ t∗.

Then the system (3.1), is exponentially stable in the sense that there exists time t0 ∈ T and constants
K(t0) ≥ 1, α ≥ 0, such that

‖x(t)‖ ≤ ‖x(t0)‖Ke−(1/2)α(t−t0), t ≥ t0. (5.2)

Proof. Set k∗ := k(t∗). Then assumption (iii) is the prerequisite for (5.1). Again, we suppress
the time-dependence of x, k, μ, Â, and B̂. Similarly to Lemma 4.4, terms containing Σ(μ) may
be added to the first equality in (5.1) to obtain

(
Â − k∗B̂C

)T
P + P

(
Â − k∗B̂C

)
≤ −ε3, t ≥ t∗∗, (5.3)

for some small ε3 > 0. Note t = t∗∗ is the point at which terms involving Σ(μ) become small
enough for (5.3) to hold. Defining Z1 := CTCΣB − PΣB, the second equality in (5.1) gives

PB̂ = CTCB̂ + Z1. (5.4)
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Consider the Lyapunov function V = x(t)TPx(t) with P from (5.1). Then, using (5.1),
(5.3) and Lemma 4.4,

VΔ = xTΔPx + xσTPxΔ

= xT
[
ATP + PA + μATPA

]
x

= xT
[(
Â − k∗B̂C

)T
P + P

(
Â − k∗B̂C

)
− (k − k∗)

(
CTB̂TP + PB̂C

)

+μ
(
Â − kB̂C

)T
P
(
Â − kB̂C

)]
x

≤ xT
[
−ε3 − (k − k∗)

(
CTB̂TCTC + CTCB̂C + 2Z1C

)

+μÂTPÂ − 2μkÂTPB̂C + μk2CTB̂TCTCB̂C + μk2CTB̂TZ1C
]
x

= xT
[
−ε3 + μÂTPÂ

]
x

+ yT
[
−k
(
CB̂
)T
− kCB̂ + μk2

(
CB̂
)T
CB̂ + μk2B̂TZ1 + k∗

((
CB̂
)T

+ CB̂
)]

y

+ xT
[
−(k − k∗)2Z1 − 2μkÂTPB̂

]
y

≤ −
(
ε3 − μ

∥∥∥ÂTPÂ
∥∥∥)xTx − (kε2 − μk

∥∥∥B̂∥∥∥‖kZ1‖ − 2k∗
∥∥∥CB̂∥∥∥)yTy

+
(

2‖kZ1‖ + 2μk
∥∥∥ÂTPB̂

∥∥∥)xTy.

(5.5)

At this point, we observe the following.

(a) ‖ÂTPÂ‖ is bounded because Â is bounded. Set γ1 := supt∈T‖ÂTPÂ‖.

(b) μk is bounded by assumption (i) and (4.11).

(c) ‖kZ1‖ is bounded because k is proportional to 1/μ and (1/μ)‖Σ(μ)‖ → const as
μ → 0. Set γ2 := supt∈T2‖kZ1‖.

(d) Set γ3 := supt∈Tμk‖B̂‖γ2.

(e) Set γ4 := supt∈T2k∗‖CB̂‖.

(f) Set γ5 := supt∈T2μk‖ÂTPB̂‖.

Recalling the standard inequality xTy ≤ βxTx + (1/β)yTy for any β > 0, we then have

VΔ ≤ −
(
ε3 − μγ1 − βγ2 − βγ5

)
xTx −

(
kε2 − γ3 − γ4 −

1
β
γ2 −

1
β
γ5

)
yTy. (5.6)
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By assumption (ii), there exists a time t0 ≥ max{t∗, t∗∗} such that, for sufficiently small β,

VΔ ≤
−
(
ε3 − μγ1 − βγ2 − βγ5

)
γmin(P)

V := η(t)V, t ≥ t0, (5.7)

with η(t) < 0. Then, by [11, Theorem 6.1], Theorem 4.2, and Lemma 4.3 it follows that there
exists K(t0) ≥ 1 so that

‖x(t)‖ ≤ K‖x(t0)‖e−(1/2)α(t−t0), t ≥ t0, (5.8)

where α is defined in (4.2).

We point out that, when BC is full rank, assumption (iii) above is no longer necessary
as there always exists a k∗ such that the eigenvalues of (A − k(t)BC) are strictly real-negative
for k(t) ≥ k∗. One more lemma is required before the next theorem.

Lemma 5.2. If T is a time scale with bounded graininess (i.e., μ∞ := supt∈Tμ(t) <∞), then

c1

∫∞
t0

eαtdt ≤
∫∞
t0

eαtΔt ≤ c2

∫∞
t0

eαtdt, (5.9)

where c1, c2, α ∈ R and c1, c2 > 0.

Proof. Consider the case when α > 0. The process of time scale integration is akin to the
approximation of a continuous integral via a left-endpoint sum of (variable width) rectangles.
If the function to be summed is increasing (as in this case), the sum of rectangular areas will
be less than the continuous integral, meaning c2 = 1, c1 < 1. One estimate of the lower bound,
then, follows by simply increasing c1 until c1e

αt meets one of the rectangle right endpoints
which are given by eαρ(t). Thus c1e

αt ≤ eαρ(t), or equivalently, c1e
ασ(t) ≤ eαt. This in turn yields

c1 ≤ e−αμ(t). Therefore, the most conservative bound is given by c1 ≤ e−αμ∞ . The case for α < 0
can be argued similarly, leading to the lemma’s following conclusion:

c1 =

⎧⎨
⎩
e−αμ∞ , α > 0,

1, α ≤ 0,
c2 =

⎧⎨
⎩

1, α ≥ 0,

e−αμ∞ , α < 0.
(5.10)

We are now in a position to state the main theorem of the paper.

Theorem 5.3. In addition to (A1) and (A2), assume the prototypical update law, kΔ(t) = ‖y(t)‖2

with k0 := k(0) > 0. Then limt→∞k(t) <∞ and y ∈ L2[t0,∞)
T
.
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Proof. For the sake of contradiction, assume k(t) → ∞ as t → ∞. Then k ∈ K. Theorem 5.1
yields x ∈ L∞[t0,∞)

T
and therefore y ∈ L∞[t0,∞)

T
. The solution for k(t) is (by [11, Theorem

2.77]),

k(t) = k(t0) +
∫ t
t0

∥∥y(τ)∥∥2Δτ ≤ k(t0) + ‖C‖2
∫ t
t0

‖x(τ)‖2Δτ, t ≥ t0. (5.11)

In conjunction with Lemma 5.2, this allows

lim
t→∞

k(t) ≤ k(t0) + ‖C‖2
∫∞
t0

‖x(t)‖2Δt

≤ k(t0) + ‖C‖2‖x(t0)‖2K2
∫∞
t0

e−α(t−t0)Δt

= k0 + ‖C‖2‖x(t0)‖2K2
∫∞

0
e−αtΔt

<∞.

(5.12)

This contradicts the assumption, so it must be that k(t) < ∞ for t ∈ T. It also immediately
follows that

∫∞
t0
‖y‖2Δt <∞.

It seems possible that Theorem 5.3 may be improved to show that the output is
convergent, that is, y(t) → 0 as t → ∞. This is left as an open problem.

6. Discussion

We remark here that there is a great amount of freedom in the choice of the update law for
k(t) (c.f. [5]). We use the simplest choice for convenience (as do most of authors); the essential
arguments remain unchanged for other choices. There is also freedom in the choice of update
for μ(t). The expression (4.12) can be simplified to

(CB)T + CB − μ(t)k(t)(CB)TCB > 0, t ∈ T, (6.1)

for any μ(t) ≤ μ(t). In the SISO case, this further reduces to the expression derived by
Owens [5], that μkCB < 2. It requires the graininess (which may interpreted as the system
sampling step size for sample-and-hold systems) to share at least an inverse relationship
with the gain, but is otherwise quite unrestrictive. Ilchmann and Townley [7] note that
μ(t) = 1/(k(t) log k(t)) meets μkCB < 2 after sufficient time without knowledge of CB.
While previous works have always constructed a monotonically decreasing step size, the time
scale-based arguments in this paper reveal even greater freedom: μ(t) may actually increase,
jump between continuous, and discrete intervals, or even exhibit bounded randomness. Two
examples of the usefulness of this freedom come next.

For the first example, we point out that the notation in the previous sections somewhat
belies the fact that the system’s time domain (its time scale) may be fully or partially discrete,
and thus there is no guarantee in Theorem 5.3 that the output has stabilized between samples.
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As pointed out in [7] and elsewhere, a sampled system with period μ is detectable if and only
if

λk − λl
2πj

μ/∈Z for any λk /=λl, j =
√
−1, (6.2)

where λk, λl ∈ {0, spec(A)}. We next comment on how to circumvent the intrasample
stabilization problem. Both of the following methods essentially permit the graininess μ to
“wiggle” a bit so that an output sample must eventually occur away from a zero-crossing.
Recalling that μ(t) ≤ μ(t) from Theorem 5.1(i), let μ(t) = μ(t)v(t), where 0 < v ≤ 1 is one of
the sequences below:

(1) Let v be consist of an infinitely repeated subsequence with n! + 1 elements that
are random numbers between 0 and 1. Let these elements, labeled v1, v2, . . . , be irrational
multiples of each other. Assume μ(t) converges to μv1 > 0 such that y(t) = 0 but the
true continuous output is nonzero. This implies that there exist integers k, l such that
(λk − λl)μv1/2πj ∈ Z. As sequence v advances, there may be at worst n! combinations of
j, k such that (λj − λk)μvr/2πj ∈ Z for r = 1 · · ·n!. However, at the next instant in time,
(λk − λl)μvn!+1/2πj must be irrational and therefore not in Z. The controller will detect a
nonzero output and continue to adapt k(t) and μ(t). In practice, of course, it is not possible
to obtain a sequence of truly irrational numbers, but most modern computer controllers have
enough accuracy to represent the ratio of two very large integers, so that this technique would
only fail for impractically high magnitudes of ‖λk − λl‖.

(2) Let v be a sequence of random numbers in the specified range. Even in a computer
with only 8-bit resolution for v, the probability of (λ1 − λ2)μv/2πi ∈ Z drops drastically after
a few sample periods.

We remark here that if (6.2) holds, then (A, C) is detectable because (A,C) is
detectable. Thus, the stability of y implies the stability of x. We do not dwell on this here,
but see, for example, [7] for a similar argument.

For the second example, we consider a problem posed by distributed control networks
(c.f. [18, 19]). Here, one communication network supports many control loops as well as
a certain volume of unrelated high-priority traffic. The (unpredictable) high-priority traffic
may block the control traffic at times, forcing longer-than-anticipated sample periods. In
normal operation, the controller may sample fast enough to behave, for all practical purposes,
like a continuous control with μ(t) = 0. At the blocking instant, tb, μ(tb) rises to some
unpredictable level. The scheduling question is when should the blocked controller emit
a communications packet of high enough priority to override the block? One answer is
straightforward: just before μ(tb) exceeds μ(tb), the known maximum sample period that
will guarantee plant stability. (In [19] we suggest that even longer delays are possible under
certain conditions.) Intuitively, lower gains permit longer blocking delays.

The example of the previous paragraph is closely modeled using the variable P[a, b]
time-scale, which is continuous for an interval a, then has a gap for an interval b, then repeats.
Figure 1 shows the regulation of a system implementing an adaptive gain controller in a
blocking situation:

A =

[
0 1

−1 1

]
, B =

[
1

1

]
, C = [1, 0]. (6.3)
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Figure 1: In graph (A), output y(t) (thick line) and gain k(t) are plotted. In graph (B), μ(t) (thick line) is
kept at 90% of μ(t) during blocking. A block occurs after every 1 second of continuous control.

The gain begins at k0 = 1/2 and the sampling period at μ(0) = 0. The bounding function for
the graininess is μ(t) = 1.9/k(t) (so that μkCB < 2).

7. Conclusions

In summary, the paper illustrates a new unified continuous/discrete approach to the high-
gain adaptive controller. Using developments in the new field of time-scale theory, the unified
results reveal that this type of feedback control works well on a much wider variety of time
scales than explored in previous literature, including those that switch between continuous
(or nearly continuous) and discrete domains or those without monotonically decreasing
graininess. A simulation of an adaptive controller on a mixed continuous/discrete time scale
is also given. It is our hope that time-scale theory may find wider application in the broad
fields of signals and systems as it seems that many of the tools needed in those fields are
beginning to appear in their generalized forms.

Appendix

We comment on the properties of the “expc” function referenced in the main body of the
paper.

Lemma A.1. The power series (3.3) has the following properties:

(1) expc(X)X = X expc(X).

(2) expc(X) = (eX − I)X−1 when X−1 exists.

(3) For real, scalar arguments x, expc(x) = eix/2sinc(x/2), where sinc denotes the sine
cardinal function. (This is the motivation for the expc notation.)

(4) ‖expc(X)‖ ≤ exp(‖X‖).
(5) ‖expc(X) − I‖ ≤ exp(‖X‖) − 1.

Proof. Parts 1–3 follow immediately from the definition. To verify 4, note

∥∥∥∥∥
∞∑
n=1

Xn−1

n!

∥∥∥∥∥ ≤
∞∑
n=1

‖X‖n−1

n!
≤
∞∑
n=1

‖X‖n−1

(n − 1)!
= exp(‖X‖). (A.1)
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Part 5 follows from a similar argument. Note that, by property 5, the decomposition
expc(μX) = I + Σ(μ) gives ‖Σ(μ)‖ → 0 as μ → 0, with uniform convergence.
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