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1. Introduction

In this paper, we consider the following boundary value problem:

ut − uxx = −a(x, t)f(u), 0 < x < 1, t ∈ (0, T),

ux(0, t) = 0, ux(1, t) = b(t)g
(
u(1, t)

)
, t ∈ (0, T),

u(x, 0) = u0(x) ≥ 0, 0 ≤ x ≤ 1,

(1.1)

where f : [0,∞) → [0,∞) is a C1 function, f(0) = 0, g : [0,∞) → [0,∞) is a C1 convex
function, g(0) = 0, a ∈ C0([0, 1] × R+), a(x, t) ≥ 0 in [0, 1] × R+, at(x, t) ≤ 0 in [0, 1] × R+,
b ∈ C1(R+), b(t) > 0 in R+, b′(t) ≥ 0 in R+. The initial data u0 ∈ C2([0, 1]), u′0(0) = 0, u′0(1) =
b(1)g(u0(1)).
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Here (0, T) is the maximal time interval on which the solution u of (1.1) exists. The
time T may be finite or infinite. Where T is infinite, we say that the solution u exists globally.
When T is finite, the solution u develops a singularity in a finite time, namely

lim
t→ T

∥
∥u(·, t)

∥
∥
∞ = +∞, (1.2)

where ‖u(·, t)‖∞ = max0≤x≤1|u(x, t)|.
In this last case, we say that the solution u blows up in a finite time and the time T is

called the blow-up time of the solution u.
In good number of physical devices, the boundary conditions play a primordial role

in the progress of the studied processes. It is the case of the problem described in (1.1)
which can be viewed as a heat conduction problem where u stands for the temperature,
and the heat sources are prescribed on the boundaries. At the boundary x = 0, the heat
source has a constant flux whereas at the boundary x = 1, the heat source has a nonlinear
radition haw. Intensification of the heat source at the boundary x = 1 is provided by the
function b. The function g also gives a dominant strength of the heat source at the boundary
x = 1.

The theoretical study of blow-up of solutions for semilinear parabolic equations with
nonlinear boundary conditions has been the subject of investigations of many authors (see
[1–7], and the references cited therein).

The authors have proved that under some assumptions, the solution of (1.1) blows
up in a finite time and the blow-up time is estimated. It is also proved that under some
conditions, the blow-up occurs at the point 1. In this paper, we are interested in the numerical
study. We give some assumptions under which the solution of a semidiscrete form of (1.1)
blows up in a finite time and estimate its semidiscrete blow-up time. We also show that the
semidiscrete blow-up time converges to the theoretical one when the mesh size goes to zero.
An analogous study has been also done for a discrete scheme. For the semidiscrete scheme,
some results about numerical blow-up rate and set have been also given. A similar study
has been undertaken in [8, 9] where the authors have considered semilinear heat equations
with Dirichlet boundary conditions. In the same way in [10] the numerical extinction has
been studied using some discrete and semidiscrete schemes (a solution u extincts in a finite
time if it reaches the value zero in a finite time). Concerning the numerical study with
nonlinear boundary conditions, some particular cases of the above problem have been treated
by several authors (see [11–15]). Generally, the authors have considered the problem (1.1) in
the case where a(x, t) = 0 and b(t) = 1. For instance in [15], the above problem has been
considered in the case where a(x, t) = 0 and b(t) = 1. In [16], the authors have considered
the problem (1.1) in the case where a(x, t) = λ > 0, b(t) = 1, f(u) = up, g(u) = uq. They have
shown that the solution of a semidiscrete form of (1.1) blows up in a finite time and they
have localized the blow-up set. One may also find in [17–22] similar studies concerning other
parabolic problems.

The paper is organized as follows. In the next section, we present a semidiscrete
scheme of (1.1). In Section 3, we give some properties concerning our semidiscrete scheme. In
Section 4, under some conditions, we prove that the solution of the semidiscrete form of (1.1)
blows up in a finite time and estimate its semidiscrete blow-up time. In Section 5, we study
the convergence of the semidiscrete blow-up time. In Section 6, we give some results on the
numerical blow-up rate and Section 7 is consecrated to the study of the numerical blow-up
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set. In Section 8, we study a particular discrete form of (1.1). Finally, in the last section, taking
some discrete forms of (1.1), we give some numerical experiments.

2. The semidiscrete problem

Let I be a positive integer and define the grid xi = ih, 0 ≤ i ≤ I, where h = 1/I. We
approximate the solution u of (1.1) by the solution Uh(t) = (U0(t), U1(t), . . . , UI(t))

T of the
following semidiscrete equations

dUi(t)
dt

− δ2Ui(t) = −ai(t)f
(
Ui(t)

)
, 0 ≤ i ≤ I − 1, t ∈

(
0, Thb

)
, (2.1)

dUI(t)
dt

− δ2UI(t) =
2
h
b(t)g

(
UI(t)

)
− aI(t)f

(
UI(t)

)
, t ∈

(
0, Thb

)
, (2.2)

Ui(0) = ϕi ≥ 0, 0 ≤ i ≤ I, (2.3)

where ϕi+1 ≥ ϕi, 0 ≤ i ≤ I − 1,

δ2U0(t) =
2U1(t) − 2U0(t)

h2
, δ2UI(t) =

2UI−1(t) − 2UI(t)
h2

,

δ2Ui(t) =
Ui+1(t) − 2Ui(t) +Ui−1(t)

h2
.

(2.4)

Here (0, Thb ) is the maximal time interval on which ‖Uh(t)‖∞ is finite where ‖Uh(t)‖∞ =
max0≤i≤IUi(t). When Thb is finite, we say that the solution Uh(t) blows up in a finite time
and the time Th

b
is called the blow-up time of the solution Uh(t).

3. Properties of the semidiscrete scheme

In this section, we give some lemmas which will be used later.
The following lemma is a semidiscrete form of the maximum principle.

Lemma 3.1. Let ah(t) ∈ C0([0, T),RI+1) and let Vh(t) ∈ C1([0, T),RI+1) such that

dVi(t)
dt

− δ2Vi(t) + ai(t)Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ (0, T),

Vi(0) ≥ 0, 0 ≤ i ≤ I.
(3.1)

Then we have Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ (0, T).

Proof. Let T0 < T and define the vector Zh(t) = eλtVh(t) where λ is large enough that ai(t)−λ >
0 for t ∈ [0, T0], 0 ≤ i ≤ I. Let m = min0≤i≤I, 0≤t≤T0Zi(t). Since for i ∈ {0, . . . , I}, Zi(t) is a
continuous function, there exists t0 ∈ [0, T0] such that m = Zi0(t0) for a certain i0 ∈ {0, . . . , I}.
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It is not hard to see that

dZi0

(
t0
)

dt
= lim

k→ 0

Zi0

(
t0
)
− Zi0

(
t0 − k

)

k
≤ 0,

δ2Zi0

(
t0
)
=
Zi0+1

(
t0
)
− 2Zi0

(
t0
)
+ Zi0−1

(
t0
)

h2
≥ 0 if 1 ≤ i0 ≤ I − 1,

δ2Zi0

(
t0
)
=

2Z1
(
t0
)
− 2Z0

(
t0
)

h2
≥ 0 if i0 = 0,

δ2Zi0

(
t0
)
=

2ZI−1
(
t0
)
− 2ZI

(
t0
)

h2
≥ 0 if i0 = I.

(3.2)

A straightforward computation reveals that

dZi0

(
t0
)

dt
− δ2Zi0

(
t0
)
+
(
ai0

(
t0
)
− λ

)
Zi0

(
t0
)
≥ 0. (3.3)

We observe from (3.2) that (ai0(t0) − λ)Zi0(t0) ≥ 0 which implies that Zi0(t0) ≥ 0 because
ai0(t0) − λ > 0. We deduce that Vh(t) ≥ 0 for t ∈ [0, T0] and the proof is complete.

Another form of the maximum principle for semidiscrete equations is the following
comparison lemma.

Lemma 3.2. Let Vh(t),Uh(t) ∈ C1([0, T),RI+1) and f ∈ C0(R × R,R) such that for t ∈ (0, T)

dVi(t)
dt

− δ2Vi(t) + f
(
Vi(t), t

)
<
dUi(t)
dt

− δ2Ui(t) + f
(
Ui(t), t

)
, 0 ≤ i ≤ I, (3.4)

Vi(0) < Ui(0), 0 ≤ i ≤ I. (3.5)

Then we have Vi(t) < Ui(t), 0 ≤ i ≤ I, t ∈ (0, T).

Proof. Define the vector Zh(t) = Uh(t) − Vh(t). Let t0 be the first t ∈ (0, T) such that Zi(t) > 0
for t ∈ [0, t0), 0 ≤ i ≤ I, but Zi0(t0) = 0 for a certain i0 ∈ {0, . . . , I}. We observe that

dZi0

(
t0
)

dt
= lim

k→ 0

Zi0

(
t0
)
− Zi0

(
t0 − k

)

k
≤ 0,

δ2Zi0

(
t0
)
=
Zi0+1

(
t0
)
− 2Zi0

(
t0
)
+ Zi0−1

(
t0
)

h2
≥ 0 if 1 ≤ i0 ≤ I − 1,

δ2Zi0

(
t0
)
=

2Z1
(
t0
)
− 2Z0

(
t0
)

h2
≥ 0 if i0 = 0,

δ2Zi0

(
t0
)
=

2ZI−1
(
t0
)
− 2ZI

(
t0
)

h2
≥ 0 if i0 = I,

(3.6)
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which implies that

dZi0

(
t0
)

dt
− δ2Zi0

(
t0
)
+ f

(
Ui0

(
t0
)
, t0

)
− f

(
Vi0

(
t0
)
, t0

)
≤ 0. (3.7)

But this inequality contradicts (3.4) and the proof is complete.

4. Semidiscrete blow-up solutions

In this section under some assumptions, we show that the solution Uh of (2.1)–(2.3) blows
up in a finite time and estimate its semidiscrete blow-up time.

Before starting, we need the following two lemmas. The first lemma gives a property
of the operator δ2 and the second one reveals a property of the semidiscrete solution.

Lemma 4.1. LetUh ∈ R
I+1 be such thatUh ≥ 0. Then we have

δ2g
(
Ui

)
≥ g ′

(
Ui

)
δ2Ui for 0 ≤ i ≤ I. (4.1)

Proof. Apply Taylor’s expansion to obtain

g
(
U1

)
= g

(
U0

)
+
(
U1 −U0

)
g ′
(
U0

)
+

(
U1 −U0

)2

2
g ′′

(
η0
)
,

g
(
Ui+1

)
= g

(
Ui

)
+
(
Ui+1 −Ui

)
g ′
(
Ui

)
+

(
Ui+1 −Ui

)2

2
g ′′

(
θi
)
, 1 ≤ i ≤ I − 1,

g
(
Ui−1

)
= g

(
Ui

)
+
(
Ui−1 −Ui

)
g ′
(
Ui

)
+

(
Ui−1 −Ui

)2

2
g ′′

(
ηi
)
, 1 ≤ i ≤ I − 1,

g
(
UI−1

)
= g

(
UI

)
+
(
UI−1 −UI

)
g ′
(
UI

)
+

(
UI−1 −UI

)2

2
g ′′

(
ηI
)
,

(4.2)

where θi is an intermediate between Ui and Ui+1 and ηi the one between Ui−1 and Ui. The
first and last equalities imply that

δ2g
(
U0

)
= g ′

(
U0

)
δ2U0 +

(
U1 −U0

)2

h2
g ′′

(
η0
)
,

δ2g
(
UI

)
= g ′

(
UI

)
δ2UI +

(
UI−1 −UI

)2

h2
g ′′

(
ηI
)
.

(4.3)

Combining the second and third equalities, we see that

δ2g
(
Ui

)
= g ′

(
Ui

)
δ2Ui +

(
Ui+1 −Ui

)2

2h2
g ′′

(
θi
)
+

(
Ui−1 −Ui

)2

2h2
g ′′

(
ηi
)
, 1 ≤ i ≤ I − 1. (4.4)

Use the fact that g ′′(s) ≥ 0 for s ≥ 0 and Uh ≥ 0 to complete the rest of the proof.
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Lemma 4.2. LetUh be the solution of (2.1)–(2.3). Then we have

Ui+1(t) > Ui(t), 0 ≤ i ≤ I − 1, t ∈
(
0, Thb

)
. (4.5)

Proof. Let t0 be the first t > 0 such that Ui+1(t) > Ui(t) for 0 ≤ i ≤ I − 1 but Ui0+1(t0) = Ui0(t0)
for a certain i0 ∈ {0, . . . , I − 1}. Without loss of generality, we may suppose that i0 is the
smallest integer which satisfies the equality. Introduce the functions Zi(t) = Ui+1(t)−Ui(t) for
0 ≤ i ≤ I − 1. We get

dZi0

(
t0
)

dt
= lim

k→ 0

Zi0

(
t0
)
− Zi0

(
t0 − k

)

k
≤ 0,

δ2Zi0

(
t0
)
=
Zi0+1

(
t0
)
− 2Zi0

(
t0
)
+ Zi0−1

(
t0
)

h2
> 0 if 1 ≤ i0 ≤ I − 2,

δ2Zi0

(
t0
)
= δ2Z0

(
t0
)
=
Z1

(
t0
)
− 3Z0

(
t0
)

h2
> 0 if i0 = 0,

δ2Zi0

(
t0
)
= δ2ZI−1

(
t0
)
=
ZI−2

(
t0
)
− 3ZI−1

(
t0
)

h2
> 0 if i0 = I − 1,

(4.6)

which implies that

dZi0

(
t0
)

dt
− δ2Zi0

(
t0
)
− ai0+1

(
t0
)
f
(
Ui0+1(t0

))

+ ai0
(
t0
)
f
(
Ui0

(
t0
))

< 0 if 0 ≤ i0 ≤ I − 2,

dZi0

(
t0
)

dt
− δ2Zi0

(
t0
)
+

2
h
b
(
t0
)
gi0+1

(
t0
)
− ai0+1

(
t0
)
f
(
Ui0+1(t0

))

+ ai0
(
t0
)
f
(
Ui0

(
t0
))

< 0 if i0 = I − 1.

(4.7)

But this contradicts (2.1)-(2.2) and we have the desired result.

The above lemma says that the semidiscrete solution is increasing in space. This
property will be used later to show that the semidiscrete solution attains its minimum at
the last node xI .

Now, we are in a position to state the main result of this section.

Theorem 4.3. Let Uh be the solution of (2.1)–(2.3). Suppose that there exists a positive integer A
such that

δ2ϕi − ai(0)f
(
ϕi
)
≥ 0, 1 ≤ i ≤ I − 1,

δ2ϕI − aI(0)f
(
ϕI

)
+ b(0)gI

(
ϕI

)
≥ Ag

(
ϕI

)
.

(4.8)

Assume that

f(s)g ′(s) − f ′(s)g(s) ≥ 0 for s ≥ 0. (4.9)
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Then the solutionUh blows up in a finite time Thb and we have the following estimate

Thb ≤
1
A

∫+∞

‖ϕh‖∞

ds

g(s)
. (4.10)

Proof. Since (0, Thb ) is the maximal time interval on which ‖Uh(t)‖∞ < ∞, our aim is to show
that Thb is finite and satisfies the above inequality. Introduce the vector Jh such that

Ji(t) =
dUi(t)
dt

, 0 ≤ i ≤ I − 1, JI(t) =
dUI(t)
dt

−Ag
(
UI(t)

)
. (4.11)

A straightforward calculation gives

dJi
dt
− δ2Ji =

d

dt

(
dUi

dt
− δ2Ui

)
, 0 ≤ i ≤ I − 1,

dJI
dt
− δ2JI =

d

dt

(
dUI

dt
− δ2UI

)
−Ag ′

(
UI

)dUI

dt
+Aδ2g

(
UI

)
.

(4.12)

From Lemma 4.1, we have δ2g(UI) ≥ g ′(UI)δ2UI which implies that

dJI
dt
− δ2JI ≥

d

dt

(
dUI

dt
− δ2UI

)
−Ag ′

(
UI

)
(
dUI

dt
− δ2UI

)
. (4.13)

Using (2.1), we get

dJi
dt
− δ2Ji ≥ −a′i(t)f

(
Ui

)
− ai(t)f ′

(
Ui

)dUi

dt
, 0 ≤ i ≤ I − 1,

dJI
dt
− δ2JI ≥ −a′I(t)f

(
UI

)
− aI(t)f ′

(
UI

)dUI

dt
+

2
h
b′(t)g

(
UI

)

+
2
h
b(t)g ′

(
UI

)dUI

dt
−Ag ′

(
UI

)
(
− aI(t)f

(
UI

)
+

2
h
b(t)g

(
UI

)
)
.

(4.14)

It follows from the fact that a′i(t) ≤ 0, b′(t) ≥ 0 and dUi/dt = Ji +Ag(Ui) that

dJI
dt
− δ2JI ≥

(
− aI(t)f ′

(
UI

)
+

2
h
b(t)g ′

(
UI

)
)
JI +AaI(t)

(
g ′
(
UI

)
f
(
UI

)
− f ′

(
UI

)
g
(
UI

))
.

(4.15)

We deduce from (4.9) that

dJi
dt
− δ2Ji ≥ −ai(t)f ′

(
Ui

)
Ji, 0 ≤ i ≤ I − 1,

dJI
dt
− δ2JI ≥

(
− aI(t)f ′

(
UI

)
+

2
h
b(t)g ′

(
UI

)
)
JI .

(4.16)
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From (4.8), we observe that

Ji(0) = δ2ϕi − ai(0)f
(
ϕi
)
≥ 0, 0 ≤ i ≤ I − 1,

JI(0) = δ2ϕI − aI(0)f
(
ϕI

)
+ b(0)gI

(
ϕI

)
−Ag

(
ϕI

)
≥ 0.

(4.17)

We deduce from Lemma 3.1 that Ji(t) ≥ 0, 0 ≤ i ≤ I, which implies that dUI/dt ≥ g(UI),
0 ≤ i ≤ I. Obviously we have

dUI

g
(
UI

) ≥ Adt. (4.18)

Integrating this inequality over (t, Th
b
), we arrive at

Thb − t ≤
1
A

∫+∞

UI(t)

ds

g(s)
, (4.19)

which implies that

Thb ≤
1
A

∫+∞

‖Uh(0)‖∞

ds

g(s)
. (4.20)

Since the quantity on the right hand side of the above inequality is finite, we deduce that the
solution Uh blows up in a finite time. Use the fact that ‖Uh(0)‖∞ = ‖ϕh‖∞ to complete the rest
of the proof.

Remark 4.4. The inequality (4.19) implies that

Th
b
− t0 ≤

1
A

∫+∞

‖Uh(t0)‖∞

ds

g(s)
if 0 < t0 < Thb ,

Ui(t) ≤ H
(
A
(
Th
b
− t

))
, 0 ≤ i ≤ I,

(4.21)

where H(s) is the inverse of G(s) =
∫+∞
s (dz/g(z)).

Remark 4.5. If g(s) = sq, then G(s) = s1−q/(q − 1) and H(s) = ((q − 1)s)1/(1−q).

5. Convergence of the semidiscrete blow-up time

In this section, we show the convergence of the semidiscrete blow-up time. Now we will
show that for each fixed time interval [0, T] where u is defined, the solution Uh(t) of (2.1)–
(2.3) approximates u, when the mesh parameter h goes to zero.

Theorem 5.1. Assume that (1.1) has a solution u ∈ C4,1([0, 1] × [0, T]) and the initial condition at
(2.3) satisfies

∥∥ϕh − uh(0)
∥∥
∞ = o(1) as h −→ 0, (5.1)
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where uh(t) = (u(x0, t), . . . , u(xI, t))
T . Then, for h sufficiently small, the problem (2.1)–(2.3) has a

unique solutionUh ∈ C1([0, T],RI+1) such that

max
0≤t≤T

∥
∥Uh(t) − uh(t)

∥
∥
∞ = O

(∥∥ϕh − uh(0)
∥
∥
∞ + h2) as h −→ 0. (5.2)

Proof. Let α > 0 be such that

∥
∥u(·, t)

∥
∥
∞ ≤ α for t ∈ [0, T]. (5.3)

The problem (2.1)–(2.3) has for each h, a unique solution Uh ∈ C1([0, Thb ),R
I+1). Let t(h) ≤

min{T, Th
b
} the greatest value of t > 0 such that

∥∥Uh(t) − uh(t)
∥∥
∞ < 1 for t ∈

(
0, t(h)

)
. (5.4)

The relation (5.1) implies that t(h) > 0 for h sufficiently small. By the triangle inequality, we
obtain

∥∥Uh(t)
∥∥
∞ ≤

∥∥u(·, t)
∥∥
∞ +

∥∥Uh(t) − uh(t)
∥∥
∞ for t ∈

(
0, t(h)

)
, (5.5)

which implies that

∥∥Uh(t)
∥∥
∞ ≤ 1 + α for t ∈

(
0, t(h)

)
. (5.6)

Let eh(t) = Uh(t) − uh(t) be the error of discretization. Using Taylor’s expansion, we have for
t ∈ (0, t(h)),

dei(t)
dt

− δ2ei(t) = −ai(t)f ′
(
ξi(t)

)
ei(t) + o

(
h2), 0 ≤ i ≤ I − 1,

deI(t)
dt

− δ2eI(t) = −aI(t)f ′
(
ξI(t)

)
eI(t) +

2
h
b(t)g ′

(
UI(t)

)
eI(t) + o

(
h2),

(5.7)

where θI(t) is an intermediate value between UI(t) and u(xI, t) and ξi(t) the one between
Ui(t) and u(xi, t). Using (5.3) and (5.6), there exist two positive constants K and L such that

dei(t)
dt

− δ2ei(t) ≤ L
∣∣ei(t)

∣∣ +Kh2, 0 ≤ i ≤ I − 1,

deI(t)
dt

−
(
2eI−1(t) − 2eI(t)

)

h2
≤
L
∣∣eI(t)

∣∣

h
+ L

∣∣eI(t)
∣∣ +Kh2.

(5.8)
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Consider the function z(x, t) = e((M+1)t+Cx2)(‖ϕh−uh(0)‖∞+Qh2) whereM, C,Q are constants
which will be determined later. We get

zt(x, t) − zxx(x, t) = (M + 1 − 2C − 4C2x2)z(x, t),

zx(0, t) = 0, zx(1, t) = 2Cz(1, t),

z(x, 0) = eCx
2
(‖ϕh − uh(0)‖∞ +Qh2).

(5.9)

By a semidiscretization of the above problem, we may choose M, C, Q large enough that

d

dt
z
(
xi, t

)
> δ2z

(
xi, t

)
+ L

∣
∣z
(
xi, t

)∣∣ +Kh2, 0 ≤ i ≤ I − 1,

d

dt
z
(
xI, t

)
> δ2z

(
xI, t

)
+
L

h

∣
∣z
(
xI, t

)∣∣ + L
∣
∣z
(
xI, t

)∣∣ +Kh2,

z
(
xi, 0

)
> ei(0), 0 ≤ i ≤ I.

(5.10)

It follows from Lemma 3.2 that

z
(
xi, t

)
> ei(t) for t ∈

(
0, t(h)

)
, 0 ≤ i ≤ I. (5.11)

By the same way, we also prove that

z
(
xi, t

)
> −ei(t) for t ∈

(
0, t(h)

)
, 0 ≤ i ≤ I, (5.12)

which implies that

z
(
xi, t

)
>
∣∣ei(t)

∣∣ for t ∈
(
0, t(h)

)
, 0 ≤ i ≤ I. (5.13)

We deduce that

∥∥Uh(t) − uh(t)
∥∥
∞ ≤ e

(Mt+C)(∥∥ϕh − uh(0)
∥∥
∞ +Qh2), t ∈

(
0, t(h)

)
. (5.14)

Let us show that t(h) = T . Suppose that T > t(h). From (5.4), we obtain

1 =
∥∥Uh

(
t(h)

)
− uh

(
t(h)

)∥∥
∞ ≤ e

(MT+C)(∥∥ϕh − uh(0)
∥∥
∞ +Qh2). (5.15)

Since the term on the right hand side of the above inequality goes to zero as h tends to zero, we
deduce that 1 ≤ 0, which is impossible. Consequently t(h) = T , and the proof is complete.

Now, we are in a position to prove the main result of this section.

Theorem 5.2. Suppose that the problem (1.1) has a solution u which blows up in a finite time Tb such
that u ∈ C4,1([0, 1] × [0, Tb)) and the initial condition at (2.3) satisfies

∥∥ϕh − uh(0)
∥∥
∞ = o(1) as h −→ 0. (5.16)
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Under the assumptions of Theorem 4.3, the problem (2.1)–(2.3) admits a unique solution Uh which
blows up in a finite time Th

b
and we have the following relation

lim
h→ 0

Thb = Tb. (5.17)

Proof. Let ε > 0. There exists a positive constant N such that

1
A

∫+∞

x

ds

g(s)
≤ ε

2
for x ∈ [N,+∞). (5.18)

Since the solution u blows up at the time Tb, then there exists T1 ∈ (Tb − ε/2, Tb) such that
‖u(·, t)‖∞ ≥ 2N for t ∈ [T1, Tb). Setting T2 = (T1 + Tb)/2, then we have supt∈[0,T2]|u(x, t)| < ∞.
It follows from Theorem 5.1 that

sup
t∈[0,T2]

∣∣Uh(t) − uh(t)
∣∣
∞ ≤N. (5.19)

Applying the triangle inequality, we get

∥∥Uh

(
T2
)∥∥
∞ ≥

∥∥uh
(
T2
)∥∥
∞ −

∥∥Uh

(
T2
)
− uh

(
T2
)∥∥
∞, (5.20)

which leads to ‖Uh(T2)‖∞ ≥N. From Theorem 4.3, Uh(t) blows up at the time Th
b

. We deduce
from Remark 4.4 and (5.18) that

∣∣Tb − Thb
∣∣ ≤

∣∣Tb − T2
∣∣ +

∣∣Thb − T2
∣∣ ≤ ε

2
+

1
A

∫+∞

‖Uh(T2)‖∞

ds

g(s)
≤ ε, (5.21)

and the proof is complete.

6. Numerical blow-up rate

In this section, we determine the blow-up rate of the solution Uh of (2.1)–(2.3) in the case
where b(t) = 1. Our result is the following.

Theorem 6.1. LetUh(t) be the solution of (2.1)–(2.3). Under the assumptions of Theorem 4.3,Uh(t)
blows up in a finite time Th

b
and there exist two positive constants C1, C2 such that

H
(
C1

(
Thb − t

))
≤ UI(t) ≤ H

(
C2

(
Thb − t

))
, for t ∈

(
0, Thb

)
, (6.1)

whereH(s) is the inverse of the function G(s) =
∫+∞
s (dσ/g(σ)).

Proof. From Theorem 4.3 and Remark 4.4, Uh(t) blows up in a finite time Thb and there exists
a constant C2 > 0 such that

UI(t) ≤ H
(
C2

(
Thb − t

))
for t ∈

(
0, Thb

)
. (6.2)
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From Lemma 4.2, UI−1 < UI . Then using (2.2), we deduce that dUI/dt ≤ (2/h)b(t)g(UI) −
aI(t)f(UI), which implies that dUI/dt ≤ (2b(t)/h)g(UI). Integration this inequality over
(t, Th

b
), there exists a positive constant C1 such that

UI(t) ≥ H
(
C1

(
Thb − t

))
for t ∈

(
0, Thb

)
, (6.3)

which leads us to the result.

7. Numerical blow-up set

In this section, we determine the numerical blow-up set of the semidiscrete solution. This is
stated in the theorem below.

Theorem 7.1. Suppose that there exists a positive constant C0 such that sF ′(s) ≤ C0 and

d

dt
Ui − δ2Ui ≤ 0, 0 ≤ i ≤ I − 1. (7.1)

Assume that there exists a positive constant C such

Ui ≤ H
(
C(T − t)

)
, 0 ≤ i ≤ I. (7.2)

Then the numerical blow-up set is B = {1}.

Proof. Let v(x) = 1 − x2 and define

W(x, t) = H
(
δv(x) + δB(T − t)

)
for 0 ≤ x ≤ 1, t ≥ t0, (7.3)

where δ is small enough. We have

Wx(0, t) = 0, W(1, t) = H
(
δB(T − t)

)
≥ u(1, t), (7.4)

and for t ≥ t0, we get

W(x, t0) = H
(
δv(x) + δ

)
≥ H(2δ) = H

(
2δB

(
T − t0

))

≥ H
(
C
(
T − t0

))
≥ u

(
x, t0

)
.

(7.5)

A straightforward computation yields

Wt(x, t) −Wxx(x, t) = δF
(
H(τ)

)(
B − 2 − 4xF ′

(
H(τ)

))

≥ δF
(
H(τ)

)(
B − 2 − 4δC0

)
.

(7.6)

This implies that there exists α > 0 such that

Wt(x, t) −Wxx(x, t) ≥ αF
(
H(δ + δBT)

)
. (7.7)
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Using Taylor’s expansion, there exists a constant K > 0 such that

d

dt
W

(
xi, t

)
− δ2W

(
xi, t

)
≥ αF

(
H(δ + δBT)

)
−Kh2, 0 ≤ i ≤ I, (7.8)

which implies that

dW
(
xi, t

)

dt
− δ2W

(
xi, t

)
≥ 0. (7.9)

The maximum principle implies that

Ui(t) ≤ H
(
δv(x) + δB

(
T − t0

))
for t ≥ t0, 0 ≤ i ≤ I. (7.10)

Hence, we get

Ui(t) ≤ H
(
δv(x)

)
, 0 ≤ i ≤ I. (7.11)

Therefore Ui(T) < +∞, 0 ≤ i ≤ I − 1, and we have the desired result.

8. Full discretization

In this section, we consider the problem (1.1) in the case where a(x, t) = 1, b(t) = 1, f(u) = up,
g(u) = up with p = const > 1. Thus our problem is equivalent to

ut(x, t) = uxx(x, t) − up(x, t), 0 < x < 1, t ∈ (0, T),

ux(0, t) = 0, ux(1, t) = up(1, t), t ∈ (0, T),

u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,

(8.1)

where p > 1, u0 ∈ C1([0, 1]), u′0(0) = 0 and u′0(1) = u
p

0(1).
We start this section by the construction of an adaptive scheme as follows. Let I be a

positive integer and let h = 1/I. Define the grid xi = ih, 0 ≤ i ≤ I and approximate the solution
u(x, t) of the problem (8.1) by the solution U

(n)
h = (U(n)

0 , U
(n)
1 , . . . , U

(n)
I )T of the following

discrete equations

δtU
(n)
i = δ2U

(n)
i −

(
U

(n)
i

)p
, 0 ≤ i ≤ I − 1, (8.2)

δtU
(n)
I = δ2U

(n)
I −

(
U

(n)
I

)p
+

2
h

(
U

(n)
I

)p
, (8.3)

U
(0)
i = ϕi, 0 ≤ i ≤ I, (8.4)
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where n ≥ 0, ϕi+1 ≥ ϕi, 0 ≤ i ≤ I − 1,

δtU
(n)
i =

U
(n+1)
i −U(n)

i

Δtn
,

δ2U
(n)
i =

U
(n)
i+1 − 2U(n)

i +U(n)
i−1

h2
, 1 ≤ i ≤ I − 1,

δ2U
(n)
0 =

2U(n)
1 − 2U(n)

0

h2
, δ2U

(n)
I =

2U(n)
I−1 − 2U(n)

I

h2
.

(8.5)

In order to permit the discrete solution to reproduce the property of the continuous one when
the time t approaches the blow-up time, we need to adapt the size of the time step so that we
take Δtn = min{(1 − pτ)h2/3, τ/‖U(n)

h ‖
p−1
∞ }, 0 < τ < 1/p.

Let us notice that the restriction on the time step ensures the nonnegativity of the
discrete solution. The lemma below shows that the discrete solution is increasing in space.

Lemma 8.1. LetU(n)
h

be the solution of (8.2)–(8.4). Then we have

U
(n)
i+1 ≥ U

(n)
i , 0 ≤ i ≤ I − 1. (8.6)

Proof. Let Z(n)
i = U(n)

i+1 −U
(n)
i , 0 ≤ i ≤ I − 1. We observe that

Z
(n+1)
0 − Z(n)

0

Δtn
=
Z

(n)
1 − 3Z(n)

0

h2
−
((
U

(n)
1

)p −
(
U

(n)
0

)p)
,

Z
(n+1)
i − Z(n)

i

Δtn
=
Z

(n)
i+1 − 2Z(n)

i + Z(n)
i−1

h2
−
((
U

(n)
i+1

)p −
(
U

(n)
i

)p)
, 1 ≤ i ≤ I − 2,

Z
(n+1)
I−1 − Z(n)

I−1

Δtn
=
Z

(n)
I−2 − 3Z(n)

I−1

h2
−
((
U

(n)
I

)p −
(
U

(n)
I−1

)p)
+

2
h

(
U

(n)
I

)p
.

(8.7)

Using the Taylor’s expansion, we find that

Z
(n+1)
0 =

Δtn
h2

Z
(n)
1 +

(
1 − 3

Δtn
h2

)
Z

(n)
0 −Δtnp

(
ξ
(n)
0

)p−1
Z

(n)
0 ,

Z
(n+1)
i =

Δtn
h2

Z
(n)
i+1 +

(
1 − 2

Δtn
h2

)
Z

(n)
i +

Δtn
h2

Z
(n)
i−1

−Δtnp
(
ξ
(n)
i

)p−1
Z

(n)
i , 1 ≤ i ≤ I − 2,

Z
(n+1)
I−1 ≥ Δtn

h2
Z

(n)
I−2 +

(
1 − 3

Δtn
h2

)
Z

(n)
I−1 −Δtnp

(
ξ
(n)
I−1

)p−1
Z

(n)
I−1,

(8.8)
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where ξ(n)i is an intermediate value between U(n)
i and U(n)

i+1. If Z(n)
i ≤ 0, 0 ≤ i ≤ I −1, we deduce

that

Z
(n+1)
0 ≥ Δtn

h2
Z

(n)
1 +

(
1 − 3

Δtn
h2
−Δtnp

∥
∥U(n)

h

∥
∥p−1
∞

)
Z

(n)
0 ,

Z
(n+1)
i ≥ Δtn

h2
Z

(n)
i+1 +

(
1 − 2

Δtn
h2
−Δtnp

∥
∥U(n)

h

∥
∥p−1
∞

)
Z

(n)
i

+
Δtn
h2

Z
(n)
i−1, 1 ≤ i ≤ I − 2,

Z
(n+1)
I−1 ≥ Δtn

h2
Z

(n)
I−2 +

(
1 − 3

Δtn
h2
−Δtnp

∥
∥U(n)

h

∥
∥p−1
∞

)
Z

(n)
I−1.

(8.9)

Using the restriction Δtn ≤ τ/‖U(n)
h
‖p−1
∞ , we find that

Z
(n+1)
0 ≥ Δtn

h2
Z

(n)
1 +

(
1 − 3

Δtn
h2
− pτ

)
Z

(n)
0 ,

Z
(n+1)
i ≥ Δtn

h2
Z

(n)
i+1 +

(
1 − 2

Δtn
h2
− pτ

)
Z

(n)
i

+
Δtn
h2

Z
(n)
i−1, 1 ≤ i ≤ I − 2,

Z
(n+1)
I−1 ≥ Δtn

h2
Z

(n)
I−2 +

(
1 − 3

Δtn
h2
− pτ

)
Z

(n)
I−1.

(8.10)

We observe that 1− 3(Δtn/h2)−pτ is nonnegative and by induction, we deduce that Z(n)
i ≤ 0,

0 ≤ i ≤ I − 1. This ends the proof.

The following lemma is a discrete form of the maximum principle.

Lemma 8.2. Let a(n)
h

be a bounded vector and let V (n)
h

a sequence such that

δtV
(n)
i − δ2V

(n)
i + a(n)i V

(n)
i ≥ 0, 0 ≤ i ≤ I, n ≥ 0, (8.11)

V
(0)
i ≥ 0, 0 ≤ i ≤ I. (8.12)

Then V (n)
i ≥ 0 for n ≥ 0, 0 ≤ i ≤ I if Δtn ≤ h2/(2 + ‖a(n)h ‖∞h

2).

Proof. If V (n)
h
≥ 0 then a routine computation yields

V
(n+1)
0 ≥ 2Δtn

h2
V

(n)
1 +

(
1 − 2

Δtn
h2
−Δtn

∥∥a(n)
h

∥∥
∞

)
V

(n)
0 ,

V
(n+1)
i ≥ Δtn

h2
V

(n)
i+1 +

(
1 − 2

Δtn
h2
−Δtn

∥∥a(n)
h

∥∥
∞

)
V

(n)
i

+
Δtn
h2

V
(n)
i−1 , 1 ≤ i ≤ I − 1,

V
(n+1)
I ≥ 2Δtn

h2
V

(n)
I−1 +

(
1 − 2

Δtn
h2
−Δtn

∥∥a(n)h

∥∥
∞

)
V

(n)
I .

(8.13)
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Since Δtn ≤ h2/(2 + ‖a(n)h ‖∞h
2), we see that 1 − 2(Δtn/h2) −Δtn‖a(n)h ‖∞ is nonnegative. From

(8.12), we deduce by induction that V (n)
h
≥ 0 which ends the proof.

A direct consequence of the above result is the following comparison lemma. Its proof
is straightforward.

Lemma 8.3. Suppose that a(n)
h

and b(n)
h

two vectors such that a(n)
h

is bounded. Let V (n)
h

andW (n)
h

two
sequences such that

δtV
(n)
i − δ2V

(n)
i + a(n)i V

(n)
i + b(n)i ≤ δtW (n)

i − δ2W
(n)
i + a(n)i W

(n)
i + b(n)i , 0 ≤ i ≤ I, n ≥ 0,

V
(0)
i ≤W (0)

i , 0 ≤ i ≤ I.
(8.14)

Then V (n)
i ≤W (n)

i for n ≥ 0, 0 ≤ i ≤ I if Δtn ≤ h2/(2 + ‖a(n)
h
‖∞h2).

Now, let us give a property of the operator δt.

Lemma 8.4. LetU(n) ∈ R be such thatU(n) ≥ 0 for n ≥ 0. Then we have

δt
(
U(n))p ≥ p

(
U(n))p−1

δtU
(n), n ≥ 0. (8.15)

Proof. From Taylor’s expansion, we find that

δt
(
U(n))p = p

(
U(n))p−1

δtU
(n) +

p(p − 1)
2

Δtn
(
δtU

(n))2(
θ(n)

)p−2
, (8.16)

where θ(n) is an intermediate value between U(n) and U(n+1). Use the fact that U(n) ≥ 0 for
n ≥ 0 to complete the rest of the proof.

To handle the phenomenon of blow-up for discrete equations, we need the following
definition.

Definition 8.5. We say that the solution U(n)
h of (8.2)–(8.4) blows up in a finite time if

lim
n→+∞

∥∥U(n)
h

∥∥
∞ = +∞, TΔt

h = lim
n→∞

n−1∑

i=0

Δti < +∞. (8.17)

The number TΔt
h is called the numerical blow-up time of U(n)

h .

The following theorem reveals that the discrete solution U
(n)
h of (8.2)–(8.4) blows up

in a finite time under some hypotheses.
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Theorem 8.6. LetU(n)
h be the solution of (8.2)–(8.4). Suppose that there exists a constantA ∈ (0, 1]

such that the initial data at (8.4) satisfies

δ2ϕi − ϕ
p

i ≥ 0, 0 ≤ i ≤ I − 1.

δ2ϕI − ϕ
p

I +
2
h
ϕ
p

I ≥ Aϕ
p

I .
(8.18)

ThenU(n)
h

blows up in a finite time TΔt
h

which satisfies the following estimate

TΔt
h ≤

τ(1 + τ ′)p−1

(
(1 + τ ′)p−1 − 1

)∥∥ϕh
∥
∥p−1
∞

, (8.19)

where τ ′ = A min{(1 − pτ)h2‖ϕh‖
−p−1
inf /3, τ}.

Proof. Introduce the vector J(n)
h

defined as follows

J
(n)
i = δtU

(n)
i , 0 ≤ i ≤ I − 1, n ≥ 0,

J
(n)
I = δtU

(n)
I −A

(
U

(n)
I

)−p
, n ≥ 0.

(8.20)

A straightforward computation yields

δtJ
(n)
i − δ2J

(n)
i = δt

(
δtU

(n)
i − δ2U

(n)
i

)
, 0 ≤ i ≤ I − 1,

δtJ
(n)
I − δ2J

(n)
I = δt

(
δtU

(n)
I − δ2U

(n)
I

)
−Aδt

(
U

(n)
I

)p
+Aδ2(U(n)

I

)p
.

(8.21)

Using (8.2), we arrive at

δtJ
(n)
i − δ2J

(n)
i = −δt

(
U

(n)
i

)p
, 0 ≤ i ≤ I − 1,

δtJ
(n)
I − δ2J

(n)
I =

(
2
h
− 1 −A

)
δt
(
U

(n)
I

)p
+Aδ2(U(n)

I

)p
.

(8.22)

Due to the mean value theorem, we get

δt
(
U

(n)
i

)p
= p

(
ξ
(n)
i

)p−1
δt
(
U

(n)
i

)
= p

(
ξ
(n)
i

)p−1
J
(n)
i , (8.23)

where ξ(n)i is an intermediate value between U(n)
i and U

(n)
i+1. On the other hand, from Lemmas

2.4 and 2.5, we deduce that

δtJ
(n)
i − δ2J

(n)
i = −p

(
ξ
(n)
i

)p−1
J
(n)
i , 0 ≤ i ≤ I − 1,

δtJ
(n)
I − δ2J

(n)
I =

(
2
h
− 1 −A

)
p
(
U

(n)
I

)p−1
δtU

(n)
I +Apδt

(
U

(n)
I

)p−1
δ2U

(n)
I .

(8.24)
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It follows from (8.3) that

δtJ
(n)
I − δ2J

(n)
I =

(
2
h
− 1

)
p
(
U

(n)
I

)p−1
δtU

(n)
I −Apδt

(
U

(n)
I

)p−1
((

2
h
− 1

)
(
U

(n)
I

)p
)
, (8.25)

which implies that

δtJ
(n)
i − δ2J

(n)
i = −p

(
ξ
(n)
i

)p−1
J
(n)
i , 0 ≤ i ≤ I − 1,

δtJ
(n)
I − δ2J

(n)
I =

(
2
h
− 1

)
p
(
U

(n)
I

)p−1
J
(n)
I .

(8.26)

From (8.18), we observe that J(0)
h
≥ 0. It follows from Lemma 8.2 that J(n)

h
≥ 0 which implies

that

U
(n+1)
I ≥ U(n)

I

(
1 +AΔtn

(
U

(n)
I

)p−1)
. (8.27)

From Lemma 8.1, we see that U(n)
I = ‖U(n)

h
‖∞ which implies that

∥∥U(n+1)
h

∥∥
∞ ≥

∥∥U(n)
h

∥∥
∞
(
1 +AΔtn

∥∥U(n)
h

∥∥p−1
∞

)
. (8.28)

It is not hard to see that

AΔtn
∥∥U(n)

h

∥∥p−1
∞ = A min

{(1 − pτ)h2
∥∥U(n)

h

∥∥p−1
∞

3
, τ

}
. (8.29)

From (8.28), we get ‖U(n+1)
h
‖∞ ≥ ‖U(n)

h
‖∞. By induction, we arrive at ‖U(n+1)

h
‖∞ ≥ ‖U(0)

h
‖∞ =

‖ϕh‖∞, which implies that ‖U(n)
h
‖p−1
∞ ≥ ‖ϕh‖

p−1
∞ . Therefore, we find that

AΔtn
∥∥U(n)

h

∥∥p−1
∞ ≥ A min

{(1 − pτ)h2
∥
∥ϕh

∥
∥p−1
∞

3
, τ

}
= τ ′. (8.30)

Consequently, we arrive at

∥∥U(n+1)
h

∥∥
∞ ≥

∥∥U(n)
h

∥∥
∞(1 + τ ′) (8.31)

and by induction, we get

∥∥U(n)
h

∥∥
∞ ≥

∥∥U(0)
h

∥∥
∞(1 + τ ′)n =

∥∥ϕh
∥∥
∞(1 + τ ′)n, n ≥ 0. (8.32)

Since the term on the right hand side of the above equality tends to infinity as n approaches
infinity, we conclude that ‖U(n)

h
‖∞ tends to infinity as n approaches infinity. Now, let us
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estimate the numerical blow-up time. Due to (8.32), the restriction on the time step ensures
that

Σ+∞
n=0 Δtn ≤ Σ+∞

n=0
τ

∥
∥U(n)

h

∥
∥p−1
∞

≤ τ
∥
∥ϕh

∥
∥p−1
∞

Σ+∞
n=0

(
1

(1 + τ ′)p−1

)n

. (8.33)

Using the fact that the series on the right hand side of the above inequality converges
towards τ(1 + τ ′)p−1/((1 + τ ′)p−1−1), we deduce that Σ+∞

n=0Δtn ≤ Σ+∞
n=0(τ(1 + τ ′)p−1/((1+τ ′)p−1−

1)‖ϕh‖
p−1
∞ ) and the proof is complete.

Remark 8.7. Apply Taylor’s expansion to obtain (1 + τ ′)p−1 = 1−(p−1)τ ′+o(τ ′), which implies
that

τ

(1 + τ ′)p−1 − 1
=
τ

τ ′

(
1

p − 1 + o(1)

)
≤ 2τ
τ ′(p − 1)

. (8.34)

If we take τ = h2, we see that

τ

τ ′
= A min

{(
1 − ph2)

3
∥∥ϕh

∥∥p−1
∞ , 1

}
≥ A min

{
1
4
∥∥ϕh

∥∥p−1
∞ , 1

}
. (8.35)

We deduce that τ/τ ′ is bounded from above. We conclude that τ/((1 + τ ′)p−1 − 1) is bounded
from above.

Remark 8.8. From (8.31), we get

∥∥U(n)
h

∥∥
∞ ≥

∥∥U
(q)
h

∥∥
∞(1 + τ ′)n−q for n ≥ q (8.36)

which implies that

Σ+∞
n=qΔtn ≤

τ
∥∥U

(q)
h

∥∥p−1
∞

Σ+∞
n=q

[
1

(1 + τ ′)p−1

]n−q
. (8.37)

We deduce that

TΔt
h − tq ≤

τ
∥∥U

(q)
h

∥∥p−1
∞

(1 + τ ′)p−1

(1 + τ ′)p−1 − 1
. (8.38)

In the sequel, we take τ = h2.

9. Convergence of the blow-up time

In this section, under some conditions, we show that the discrete solution blows up in a finite
time and its numerical blow-up time goes to the real one when the mesh size goes to zero. To
start, let us prove a result about the convergence of our scheme.
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Theorem 9.1. Suppose that the problem (1.1) has a solution u ∈ C4,2([0, 1] × [0, T]). Assume that
the initial data at (8.4) satisfies

∥
∥ϕh − uh(0)

∥
∥
∞ = o(1) as h −→ 0. (9.1)

Then the problem (8.2)–(8.4) has a solution U(n)
h

for h sufficiently small, 0 ≤ n ≤ J and we have the
following relation

max
0≤n≤J

∥
∥U(n)

h − uh(tn)
∥
∥
∞ = O

(∥∥ϕh − uh(0)
∥
∥
∞ + h2 + Δtn

)
as h −→ 0, (9.2)

where J is such that
∑J−1

n=0Δtn ≤ T and tn =
∑n−1

j=0 Δtj .

Proof. For each h, the problem (8.2)–(8.4) has a solution U(n)
h . Let N ≤ J be the greatest value

of n such that

∥∥U(n)
h − uh(tn)

∥∥
∞ < 1 for n < N. (9.3)

We know that N ≥ 1 because of (9.1). Due to the fact that u ∈ C4,2, there exists a positive
constant K such that ‖u‖∞ ≤ K. Applying the triangle inequality, we have

∥∥U(n)
h

∥∥
∞ ≤

∥∥uh
(
tn
)∥∥
∞ +

∥∥U(n)
h
− uh

(
tn
)∥∥
∞ ≤ 1 +K for n < N. (9.4)

Since u ∈ C4,2, using Taylor’s expansion, we find that

δtu
(
xi, tn

)
− δ2u

(
xi, tn

)
= −up

(
xi, tn

)
+O

(
h2) +O

(
Δtn

)
, 0 ≤ i ≤ I − 1,

δtu
(
xI, tn

)
− δ2u

(
xI, tn

)
= −up

(
xI, tn

)
+

2
h
up

(
xI, tn

)
+O

(
h2) +O

(
Δtn

)
.

(9.5)

Let e(n)h = U(n)
h − uh(tn) be the error of discretization. From the mean value theorem, we get

δte
(n)
i − δ

2e
(n)
i = −p

(
ξ
(n)
i

)p−1
e
(n)
i +O

(
h2) +O

(
Δtn

)
, 0 ≤ i ≤ I − 1,

δte
(n)
I − δ

2e
(n)
I = p

(
2
h
− 1

)
(
ξ
(n)
I

)p−1
e
(n)
I +O

(
h2) +O

(
Δtn

)
,

(9.6)

where ξ
(n)
i is an intermediate value between u(xi, tn) and U

(n)
i . Hence, there exist positive

constants L and K such that

δte
(n)
i − δ

2e
(n)
i ≤ −p

(
ξ
(n)
i

)p−1
e
(n)
i + Lh2 + LΔtn, 0 ≤ i ≤ I − 1, n < N,

δte
(n)
I − δ

2e
(n)
I ≤ p

(
2
h
− 1

)
(
ξ
(n)
I

)p−1
e
(n)
I + Lh2 + LΔtn, n < N.

(9.7)
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Consider the function Z(x, t) = e((M+1)t+Cx2)(‖ϕh − uh(0)‖∞ +Qh2 +QΔtn) where M, C, Q are
positive constants which will be determined later. We get

Zt(x, t) − Zxx(x, t) =
(
M + 1 − 2C − 4C2x2)Z(x, t),

Zx(0, t) = 0, Zx(1, t) = 2CZ(1, t),

Z(x, 0) = e(Cx
2)(∥∥ϕh − uh(0)

∥
∥
∞ +Qh2 +QΔtn

)
.

(9.8)

By a discretization of the above problem, we obtain

δtZ
(
xi, tn

)
− δ2Z

(
xi, tn

)
=
(
M + 1 − 2C − 4C2x2

i

)
Z
(
xi, tn

)
+
h2

12
Zxxxx

(
x̃i, tn

)

− Δtn
2
Ztt

(
xi, t̃n

)
,

δtZ
(
xI, tn

)
− δ2Z

(
xI, tn

)
=
(
M + 1 − 2C − 4C2x2

I

)
Z
(
xI, tn

)
+

4C
h
Z
(
xI, tn

)

+
h2

12
Zxxxx

(
x̃I , tn

)
− Δtn

2
Ztt

(
xI, t̃n

)
.

(9.9)

We may choose M, C, Q large enough that

δtZ
(
xi, tn

)
− δ2Z

(
xi, tn

)
> −p

(
ξ
(n)
i

)p−1
Z
(
xi, tn

)
+ Lh2 + LΔtn, 0 ≤ i ≤ I − 1,

δtZ
(
xI, tn

)
− δ2Z

(
xI, tn

)
> p

(
2
h
− 1

)
(
ξ
(n)
I

)p−1
Z
(
xI, tn

)
+ Lh2 + LΔtn,

Z
(0)
i > e

(0)
i , 0 ≤ i ≤ I.

(9.10)

It follows from Comparison Lemma 8.3 that

Z
(
xi, tn

)
> e

(n)
i , 0 ≤ i ≤ I, n < N. (9.11)

By the same way, we also prove that

Z
(
xi, tn

)
> −e(n)i , 0 ≤ i ≤ I, n < N, (9.12)

which implies that

∥∥U(n)
h − uh(t)

∥∥
∞ ≤ e

(Mtn+C)
(∥∥ϕh − uh(0)

∥∥
∞ +Qh2 +QΔtn

)
, n < N. (9.13)

Let us show that N = J . Suppose that N < J . From (9.3), we obtain

1 ≤
∥∥U(N)

h
− uh

(
tN

)∥∥
∞ ≤ e

(MT+C)(∥∥ϕh − uh(0)
∥∥
∞ +Qh2 +QΔtn

)
. (9.14)

Since the term on the right hand side of the second inequality goes to zero as h goes to zero,
we deduce that 1 ≤ 0, which is a contradiction and the proof is complete.



22 Journal of Applied Mathematics

Now, we are in a position to state the main theorem of this section.

Theorem 9.2. Suppose that the problem (1.1) has a solution u which blows up in a finite time T0 and
u ∈ C4,2([0, 1] × [0, T0)). Assume that the initial data at (2.3) satisfies

∥
∥ϕh − uh(0)

∥
∥
∞ = o(1) as h −→ 0. (9.15)

Under the assumption of Theorem 8.6, the problem (8.2)–(8.4) has a solutionU(n)
h

which blows up in
a finite time TΔt

h and the following relation holds

lim
h→ 0

TΔt
h = T0. (9.16)

Proof. We know from Remark 8.7 that τ(1 + τ ′)/((1 + τ ′)p−1 − 1) is bounded. Letting ε > 0,
there exists a constant R > 0 such that

τ(1 + τ ′)p−1

xp−1
(
(1 + τ ′)p−1 − 1

) <
ε

2
for x ∈ [R,∞). (9.17)

Since u blows up at the time T0, there exists T1 ∈ (T0 − ε/2, T0) such that ‖u(·, t)‖∞ ≥ 2R for
t ∈ [T1, T0). Let T2 = (T1+T0)/2 and let q be a positive integer such that tq =

∑q−1
n=0Δtn ∈ [T1, T2]

for h small enough. We have 0 < ‖uh(tn)‖∞ < ∞ for n ≤ q. It follows from Theorem 4.3 that
the problem (2.1)–(2.3) has a solution U(n)

h
which obeys ‖U(n)

h
−uh(tn)‖∞ < R for n ≤ q, which

implies that

∥∥U
(q)
h

∥∥
∞ ≥

∥∥uh
(
tq
)∥∥
∞ −

∥∥U
(q)
h − uh

(
tq
)∥∥
∞ ≥ R. (9.18)

From Theorem 8.6, U(n)
h blows up at the time TΔt

h . It follows from Remark 8.8 and (9.17) that

|TΔt
h
− tq| ≤ τ(1 + τ ′)p−1‖U(q)

h
‖1−p
∞ /((1 + τ ′)p−1 − 1) < ε/2 because ‖U(q)

h
‖∞ ≥ R. We deduce that

|T0 − TΔt
h
| ≤ |T0 − tq| + |tq − TΔt

h
| ≤ ε/2 + ε/2 ≤ ε, which leads us to the result.

10. Numerical experiments

In this section, we present some numerical approximations to the blow-up time of (1.1) in the
case where a(x, t) = λ > 0, f(u) = up, g(u) = uq, b(t) = 1 with p = const > 1, q = const > 1. We
approximate the solution u of (1.1) by the solution U(n)

h of the following explicit scheme

δtU
(n)
i = δ2U

(n)
i − λ

(
U

(n)
i

)p−1
U

(n+1)
i , 0 ≤ i ≤ I − 1,

δtU
(n)
I = δ2U

(n)
I +

2
h

(
U

(n)
I

)q
− λ

(
U

(n)
I

)p−1
U

(n+1)
I ,

U
(0)
i = ϕi ≥ 0, 0 ≤ i ≤ I,

(10.1)
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We also approximate the solution u of (1.1) by the solution U(n)
h of the implicit scheme below

δtU
(n)
i = δ2U

(n+1)
i − λ

(
U

(n)
i

)p−1
U

(n+1)
i , 0 ≤ i ≤ I − 1,

δtU
(n)
I = δ2U

(n+1)
I +

2
h

(
U

(n)
I

)q
− λ

(
U

(n)
I

)p−1
U

(n+1)
I ,

U
(0)
i = ϕi ≥ 0, 0 ≤ i ≤ I.

(10.2)

For the time step, we take n ≥ 0, Δtn = min(h2/2, τ‖U(n)
h ‖

1−p
∞ ) for the explicit scheme and

Δtn = τ‖U(n)
h
‖1−p
∞ for the implicit scheme.

The problem described in (10.1) may be rewritten as follows

U
(n+1)
0 =

2
(
Δtn/h2)U(n)

1 +
(
1 − 2

(
Δtn/h2))U(n)

0

1 + λΔtn
(
U

(n)
0

)p−1
,

U
(n+1)
i =

2
(
Δtn/h2)U(n)

i+1 +
(
1 − 2

(
Δtn/h2))U(n)

i + 2
(
Δtn/h2)U(n)

i−1

1 + λΔtn
(
U

(n)
i

)p−1
,

U
(n+1)
I =

2
(
Δtn/h2)U(n)

I−1 +
(
1 − 2

(
Δtn/h2))U(n)

I + 2
(
Δtn/h2)(U(n)

I

)q

1 + λΔtn
(
U

(n)
I

)p−1
.

(10.3)

Let us notice that the restriction on the time step Δtn ≤ h2/2 ensures the nonnegativity of the
discrete solution.

The implicit scheme may be rewritten in the following form

An
hU

(n+1)
h

= Fn, (10.4)

where

A
(n)
h

=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

a0 b0 0 · · · 0
c1 a1 b1 0 · · ·

0
. . . . . . . . .

...
. . . . . . . . . bI−1

0 · · · 0 cI aI

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

ai = 1 + 2
Δtn
h2

+ λΔtn
(
U

(n)
i

)p−1
, 0 ≤ i ≤ I,

bi = −2
Δtn
h2

, i = 0, . . . , I − 1,

ci = −2
Δtn
h2

, i = 1, . . . , I,

(Fn)i = U
(n)
i , i = 0, . . . , I − 1,

(Fn)I = U
(n)
I +

2
h
Δtn

(
U

(n)
I

)q
.

(10.5)



24 Journal of Applied Mathematics

Table 1: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the
approximations obtained with the explicit Euler method defined in (10.1).

I Tn n CPU time s
16 0.047927 451 — —
32 0.044695 1260 0.5 —
64 0.043583 4075 5 1.54
128 0.043225 14555 60 1.64
256 0.043115 55061 1816 1.71

The matrix A(n)
h satisfies the following properties

(
A

(n)
h

)
ii
> 0,

(
A

(n)
h

)
ij
< 0, if i /= j,

∣∣(A(n)
h

)
ii

∣∣ >
∑

j /= i

∣∣(A(n)
h

)
ij

∣∣.
(10.6)

It follows that U(n)
h exists for n ≥ 0. In addition, since U

(0)
h is nonnegative, U(n)

h is also
nonnegative for n ≥ 0. We need the following definition.

Definition 10.1. We say that the discrete solution U
(n)
h

of the explicit scheme or the implicit
scheme blows up in a finite time if limn→+∞‖U(n)

h
‖∞ = +∞ and the series

∑+∞
n=0Δtn converges.

The quantity
∑+∞

n=0Δtn is called the numerical blow-up time of the solution U(n)
h .

In Tables 1, 2, 3, 4, 5, 6, 7, and 8, in rows, we present the numerical blow-up times,
values of n, the CPU times and the orders of the approximations corresponding to meshes of
16, 32, 64, 128, 256. For the numerical blow-up time we take Tn =

∑n−1
j=0 Δtj which is computed

at the first time when

Δtn =
∣∣Tn+1 − Tn

∣∣ ≤ 10−16. (10.7)

The order (s) of the method is computed from

s =
log

((
T4h − T2h

)
/
(
T2h − Th

))

log(2)
. (10.8)

Case 1. p = 0, q = 2, ϕi = 10 + 10 ∗ cos(πih), λ = 1.

Case 2. p = 2, q = 4, ϕi = 10 + 10 ∗ cos(πih), λ = 1.

Case 3. p = 2, q = 3, ϕi = 10 + 10 ∗ cos(πih), λ = 1.

Case 4. p = 2, q = 2, ϕi = 10 + 10 ∗ cos(πih), λ = 1.

Remark 10.2. The different cases of our numerical results show that there is a relationship
between the flow on the boundary and the absorption in the interior of the domain. Indeed,
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Table 2: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the
approximations obtained with the implicit Euler method defined in (10.2).

I Tn n CPU time s
16 0.047631 423 — —
32 0.044645 1234 1 —
64 0.043576 4050 5 1.49
128 0.043224 14533 99 1.61
256 0.043113 55035 2000 1.67

Table 3: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the
approximations obtained with the explicit Euler method defined in (10.1).

I Tn n CPU time s
16 0.018286 21750 3 —
32 0.017181 83838 17 —
64 0.016729 329960 108 1.30
128 0.016412 1298750 1570 0.51
256 0.016324 6447649 27049 1.85

Table 4: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the
approximations obtained with the implicit Euler method defined in (10.2).

I Tn n CPU time s
16 0.018283 21741 6 —
32 0.017181 83831 37 —
64 0.016729 3299953 347 1.30
128 0.016617 1208495 4640 2.01
256 0.016526 6348765 29957 0.30

Table 5: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the
approximations obtained with the explicit Euler method defined in (10.1).

I Tn n CPU time s
16 0.024197 1649 — —
32 0.022570 6103 2 —
64 0.021950 23583 8 1.40
128 0.021734 92985 200 1.52
256 0.021712 369250 3243 3.30

Table 6: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the
approximations obtained with the implicit Euler method defined in (10.2).

I Tn n CPU time s
16 0.024169 1602 — —
32 0.022566 6066 5 —
64 0.021950 23551 65 1.38
128 0.021734 92985 1140 1.52
256 0.021713 370240 6709 3.37
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Figure 1: Evolution of the discrete solution, q = 2, p = 2 (explicit scheme).

Table 7: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the
approximations obtained with the explicit Euler method defined in (8.2)–(8.4).

I Tn n CPU time s
16 0.054342 422 — —
32 0.050346 1130 — —
64 0.049027 3539 4 1.60
128 0.048615 12020 28 1.68
256 0.048491 46439 937 1.74

Table 8: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the
approximations obtained with the implicit Euler method defined in (10.2).

I Tn n CPU time s
16 0.054158 364 — —
32 0.050332 1077 0.6 —
64 0.049030 3491 7 1.56
128 0.048616 12358 79 1.66
256 0.048519 36919 1123 2.10

when there is not an absorption on the interior of the domain, we see that the blow-up time is
slightly equal to 0.043 for q = 2 whereas if there is an absorption in the interior of the domain,
we observe that the blow-up time is slightly equal to 0.048 for q = 2 and p = 2. We see that
there is a diminution of the blow-up time. We also remark that if the power of flow on the
boundary increases then the blow-up time diminishes. Thus the flow on the boundary make
blow-up occurs whereas the absorption in the interior of domain prevents the blow-up. This
phenomenon is well known in a theoretical point of view.

For other illustrations, in what follows, we give some plots to illustrate our analysis.
In Figures 1, 2, 3, 4, 5, and, 6, we can appreciate that the discrete solution blows up in a finite
time at the last node.
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U
(i
,n

)

0

0.5

1

1.5

2
×1013

i

20
15

10
5

0
n

0
100

200
300

400
500

Figure 2: Evolution of the discrete solution, q = 2, p = 2 (implicit scheme).
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Figure 3: Evolution of the discrete solution, q = 3, p = 2 (explicit scheme).
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Figure 4: Evolution of the discrete solution, q = 3, p = 2 (implicit scheme).
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Figure 5: Evolution of the discrete solution, q = 4, p = 2 (explicit scheme).
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Figure 6: Evolution of the discrete solution, q = 4, p = 2 (implicit scheme).
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