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1. Introduction and main result

The Lotka-Volterra competition model with diffusion and time delays has been the object of
analysis by numerous authors under different approaches. For the case of two species, Ruan
and Zhao [1] considered uniform persistence and global extinction; Lu [2] studied global at-
tractivity, and Gourley and Ruan [3] analyzed stability and traveling fronts. The periodic case
has also been considered, Feng and Wang [4] studied asymptotic stability and Zhou et al. [5]
investigated the Hopf bifurcation. The cases of three and N-species have also been analyzed
in [6-8].

In this paper, we consider the asymptotic behavior of solutions for the competition-
diffusion system with time delays of the following two species:
ou

a_tl =AAu(t, x)+ui(t, x) [ai(t, x)=b1 (t, x)ui(t, x)—c1(t, x) f w1 (t—7, x)dpy (T) —drup (E-12, x)
| 0 )

~

t>0, xeQ,

%=AAuz(t,x)+u2(t,x) az(t,x)—bz(t,x)uz(t,x)—cz(t,x)f Uy (b=, x)dpo (T) —dour (E-11, x)
! 0 ]

~

t>0, xeQ,
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o % _ 440 xeon,
o on 1.1)

ui(t,x) = i(t,x) (i=1,2)t<0, x€Q,

where Q C RN (N > 1) is a bounded domain with smooth boundary 9Q, 8/97 denotes the
differentiation outward normal on 0Q, A > 0, d; > 0,7, > 0,0 < a; < a;(t,x) < A;, 0 <
b; < bi(t,x) < B;, 0 < ¢; < ci(t,x) < Cj, pi(+) is of bounded variation with 4;(0) = 0, ¢; €
C'((~o0,0]) x Q is bounded and nonnegative and 0 % ¢;(0,-) € C'(Q) (i = 1,2), and u; and u,
are the density functions of two species competing for a shared limited resource.

The functions a; (x,t) and a,(x,t) denote the intrinsic growth rate of the species, b; (x, t)
and by(x, t) represent self-limitation rates, and ¢ (x, t) and c;(x, t) represent the coefficients of
the infinite continuous delay. The constants d;, d, represent the competition rates. The dis-
tributed time delay should be viewed as the effects of past history.

Let M;(t) denote the total variation of y;(-) on [0,¢] and let M7 (t) = (M;(t) + pi(t))/2,
for all t € R*. Then, M;(t) and M (t) are nonnegative and nondecreasing on R*. It easy to see
that

M (t) + M;(t) = M;(t), — M/ (t) - M;(t) = pi(t). (1.2)
Denote Mo; = limy; o, M;(t), M, = limy_o M3 (t), and po; = limy_.o,p4;(t). Then,
Mai + M61 = My, Mal - M(;z = Hoi- (13)
Our result can be stated as follows.
Theorem 1.1. Assume that b; > ciMy,; , a; = (CiM;;A;)/ (bi — ciM;) > 0, and

daAs (bz — 2My) A (b2 oMy)[a (b - aMy) - CMG Al
(b1 - e1Mg;) [a2 (b2 - 2 M) = oM Aol A di A1 (br - a1 M,)

(14)
Then, for any ¢; € C*((~o0,0]) x Q with ¢(0,x) #0, the solution of (1.1) satisfies

0 < < liminf minu; (¢, x) < limsup max u; (¢, x) < f1,
t—oo  xeQ t—oo xeQ

(1.5)
0 < ap < liminf min uy (¢, x) < limsup max u,(t, x) < f,
t—oo  x€Q t—oo  X€EQ
where a1, ay, P1, Po are constants given by the linear system
ar — CyM§p1 — difo — a1 (Bi —c1My;) =0,
ar — CoMpo — dofy — a2 (By — c2Mp,) =0, w6)

0
0
A1 - Cle}lm - dlaz - ﬁ] (bl - ClMal O,
0

)
)
)
)

Ay — oM — doaty — ﬂz(bz —-Mg,) = 0.
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Remark 1.2. If pi(T) = fg fi(t)dt with f; € CR*) NLY(R"), A =1,and 0 < a; = a;(t,x) = A,
0 <b; =bi(t,x) = B, ¢i = ¢i(t,x) = C; = 1, then by Theorem 1.1, we get

0 < a; < liminf min (¢, x) < limsup max u;(t,x) < p,

t—oo  x€Q t—oo xeQ
(1.7)
0 < ap < liminf min uy (¢, x) < limsup max u,(t, x) < fo,
t—oo  x€Q t—oo xeQ
where ay, a,, 1, P> are constants given by the linear system
a1 - Mg 1 — difp — o (bi - M) =0,
ar = Mppa — dofr — a2 (b2 = M,) =0, 18)
ay —Mglcxl —d1a2—ﬁ1(b1 —M(;l) ZO, .
ap — M(J;Zdz —dyay — ﬂz (b2 - Maz) =0.
Solving this system, we have the following result:
a p ay (b2 + ME)—Z - M62) - ard;
1=p1= - - p
(by + Mg, = My,) (b2 + Mg, = M,) — dhda (19)
a2(b1 + Mz)—l - M(;l) - a1dy
ay =P =

(b1 + Mg, = My,) (by + Mg, = My,) = chdy’

which coincides with the result of [9], where the authors considered a system like (1.1) with
constant coefficients.

Reaction-diffusion systems with delay have been treated by many authors. There are two
ways to approach them. The first one is in the framework of semigroup theory of dynamical
systems [1, 10]. The second one is a method of upper and lower solutions, using associated
monotone iterations; several authors have studied their dynamic properties [2, 9, 11]. Some-
times the birth and death rates depend on both space and time, so when we consider instan-
taneous and delayed interference within the species and the diffusive effects of the species,
system (1.1) will be the appropriate model.

The way we organize the paper is as follows: we first introduce several results which
play an important role in the proof of Theorem 1.1 which we will prove in Section 2. We will
provide some numerical simulations in Section 3 in order to illustrate our theory.

The following results are developed in [11]. They considered the Volterra reaction-
diffusion equations with variable coefficients:

ou

i AAu(t,x) +u(t,x) |a(t,x) —b(t, x)u(t,x) — c(t, x) Jm u(t—7,x)du(t)[, t>0, x€Q,
0

ou _
on -
u(t,x) = §(t,x), t<0, x€Q,

0, t>0, x€0Q,

(1.10)

where 0 < a; < a(t,x) < Ay;,0<b; <b(t,x) < By, 0<ea < c(t,x) <Cj,and ¢ € C'((=o0,0]) x Q
is bounded and nonnegative and 0 # ¢ (0, ) € C'(Q). Let M(t) denote the total variation of ()

and define M*, M of the same form as that of M, Mg, respectively.
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Lemma 1.3. Assume that by > ¢y M and a; — (CiMjA1)/(by — c1M) > O, then the solution of
(1.10) satisfies

a < liminf min u(t, x) < limsup max u(t,x) <, (1.11)
t—oo  xeQ t—oo xeQ

where
B (b1 —a1My)ar - CrM{ Aq
(b - M) (By - M) - G (M)
(B1 —c1My) Ay - C1Maq
(b - c1My) (Br - e1My) - C2(Mg)*
If M* () = 0, then u(t) = ~M~(t). Thus,

a_u = AAu(t,x) + u(t,x) |a(t,x) = b(t, x)u(t, x) + c(t, x) Jm u(t—-t,x)dM (1)|, t>0, x€Q,
0

(1.12)

p=

ot

a—u:O, t>0, x €09,
on
u(t,x) =¢(t,x), t<0, xe Q.
(1.13)
Lemma 1.4. Assume that by > ¢ M, and a; > 0, then the solution of (1.13) satisfies
0 < a <liminf min u(t, x) <limsup max u(t,x) < f, (1.14)
t—oo  xeQ t—oo xeQ
where
a= @ = L (1.15)

By —C1M6, 'B by —ClMa.
Lemma 1.5. If u(t, x) is the solution of (1.10), then 0 < u(t, x).

Now, we introduce the existence-comparison result for the competition-diffusion system
(1.1) which is a particular case of Theorem 2.2 in[12].

Definition 1.6. A pair of smooth functions 2 = (U1, ) and # = (U3, 1) are called upper-lower
solutions of (1.1) if &; > #; (i = 1,2) in R x Q and the following differential inequalities hold:

s A2 () [ai(t, %) = by(t, )Tt ) - ci(t, %) f Lt — 7, %) dp(r) — iy (¢~ r,~,x>],
0

j#i, t>0, x€Q,

S~ A <06t ) = bt 0 2) = it 2) [ - w0 (o) - iy (- ),
0

j#i, t>0, x€Q,

ou; ol;
— <0< —, t Q
611_0_611' >0, x € 0Q,
u;(t, x) < ¢i(t, x) < u;(t,x), t<0, xeQ (i=1,2).
(1.16)
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Lemma 1.7. If there exists a pair of upper-lower solutions u = (i1, Up) and 1 = (i, Up) of (1.1), then
the problem (1.1) has a unique solution u* = (uj, uy) and u; <u; <iu;,i=1,2.

2. Proof of the main result

The method of proof is via successive improvements of upper-lower solutions of suitable sys-
tems.

For given ¢ = (¢, ¢,) as initial conditions for the system (1.1), let K;, K, be constants
such that

Aq

K > max {||¢1||, b M
01

A
}, KZZmaX{H(i)zH,m}, (2.1)
0

where ||¢;|| = sup{|pi(t, x)| : (t,x) € (-o0,0] xQ},i=1,2.
Then, (0,0) and (K3, K) are a pair of lower-upper solutions of (1.1). By Lemma 1.7, there

exists a unique global nonnegative solution (u1,u,) of (1.1) and it satisfies 0 < u (¢, x) < Kj,
0<u(t,x) <Kj.

Define u , o (x,t)and u, (1) (x,t) by

ou ') *

6_t1 = AAz +mlV [al(t, x) = by(t, )7 + i (t, %) f 7 - T,x)dM;(T)] t>0, x€Q,
0

o, M, O 1) 7t

5t =AAu,’ +u, [ag(t,x) —by(t, x)uy’ +cat, x) f (t-7,x)dM; (T)] t>0, xeQ,
0

oul o’
= =0, t>0, xe€0Q,
on on

u(t,x)=K;, t<0, xeQ (i=1,2).

(2.2)
Then, (0,0) and (7 1 ,u (1)) are lower and upper solutions, and by Lemma 1.7,
O<w<u, o<w<al. (2.3)
By Lemma 1.4, we can get
0 < lim sup max ﬂgl)(t,x) < [51.(0), (2.4)
tooo  x€Q
where
pY = h%:M&, i=1,2. (2.5)
Then from (2.3) and (2.4), we get
0 < lim sup max u;(t, x) < [j’i(o). (2.6)

t—oo xeQ
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From (2.6) and the definition of M, = lim;_.,,M; (t), we have that for any sufficiently small
e > 0, there exist t’ >0 and t; > t such that

max ﬁgl)(t,x) < ﬂl.(o) +e, fort>t),

xeQ

ﬁfl) (t-r,x) < ﬁi(o) +e, fort>t, (2.7)
Ci(My; - M (t-t))) <g, fort>t.

Define u\" (¢, x) and u{" (£, x) by

d 1)
%l} = Adul +u Y [al(t x) = bi(t,x)u'” + e (t, x)j Wt -7, x)dM; (1)
—c1(t, x)j (1) (t—7,x)dM; (1) - dlu (t - rz,x)] t>t, xEQ,
ou 'l 1
731% = AAE§)+u2 [az(t x) = by(t, x)u( ) oot x)f 't -7, x)dM; (7)

-oft, x) (1) -T,x)dM; (1) — dzﬁ(l) t—-r,x)|, t>t, xeQ,
2 1

agf agél)
= =0, t>t1,x€6§2,
on on

uM(t,x) = —u,(t x), (tx)e(—oo,h]xQ.
(2.8)

Then, (u 51), u (1)) and (u il), ul )) are a pair of lower-upper solutions of (1.1), and by Lemma 1.7,
ggl) <up < ﬁgl), yél) <up < ﬁél). (2.9)

From u u (t x) < Kj, forallt € R, and (2.8), for t > t;, we get

ailt, x)f u (-7, x)dM; (1) + diit | (- 1), %)
0
e . e : 7!
=ci(t, x) . u;’ (t—7,x)dM; (1) + ci(t, x) t t,ui (t=7,x)dM; (1) + diui; (t-rj,x)

< ci(t,x)’[t_ta (B +£)dM} () + cilt, x) " KdM(7) + d, (B +e)
0

1)

< Ci(M; (E=t) = M(0)) (B + &) + KiCi(Moi* = M} (=) +di (B +¢)

<CM+<ﬂ +g>+d(ﬂ( +£>+K£
(2.10)
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It follows from (2.9) that, fort > t;, x € Q,

ou (1) o
_a—; > AAu il) + ggl) [al (t,x) —by(t,x)u gl) +c1(t, x) f Egl)(t - 7,x)dM; (1)
0
-y (B +) - (B +€) - Kae,
(2.11)
oy %
B—tz > AAES) + gél) [az(t,x) - bz(t,x)gél) +ca(t, x) f gél)(t - 7,x)dM, (T)
0
- C2M82< éo) + €> - dz <ﬂ§0) + 8) - K2€] .
By the comparison principle, we get, for t > t;, x € Q,
gf) > vil), yél) > vél), (2.12)
where vil) and vél) are the solutions of the following problem, respectively:
o0y M, M * oW
5 = Alv;’ + o, [a1 (t,x) = bi(t,x)v; " +c1(t, x) J v, (t-T,x)dM; (T)
0
—ClMgl( iO) +£> - d1< §0) +£) - Kle],
60?)
=0, t>t, x €08,
on
M 1 a
Ul (tr x) = Eul (tr x)/ (t/ x) € ( -0, tl] X Q/
o (2.13)
0v, W, o M 0 >
Tl Alvy’ + v, |aa(t, x) —ba(t, x)v, " +ca(t,x) | 0y (t—T,x)dM,(T)
0
- CzMaz( ;O) + S) — dz( iO) + S) — Kzé‘] ,
6051)
=0, t>t, x €08,
on
Q 1 a
v, (t,x) = Euz(t,x), (t,x) € (—oo, 1] x Q.
Using the three initial conditions and ¢ sufficiently small, we have
ay — C1M51< iO) +£> —d1< EO) + €> —K18 > O,
(2.14)

a - C; Mg, (ﬂ;o) + g> —dp <ﬂ§0) + g) - Kye > 0.
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By Lemma 1.4, we get

a - MY —dipY  CiMy, +di+ K
1= CMG Y - dif o T 1<1iminfminvil)(i‘,x),

0< —€ - > gl
By — a1 M, Bi - My, s xeQ

(2.15)
a - MY — 0 CoME +dy + K
227w 2 - 2y e — 2 < liminf minvg)(t,x).
B, - CZMOZ B, - C2M02 t—oo  xeQ

Then from (2.12), (2.14), and ¢ sufficiently small, we can conclude that

(0

0 <a;’ <liminf min u;(t,x) <limsup max u;(t, x <,61 ,

t—oo  x€Q t—oo xeQ

(2.16)

0< cxéo) < liminf min u,(f, x) < lim sup max uy(f, x) < ﬁéO),
t—oo x€Q t—oo xeﬁ

where

0 0 0
o _ 3=~ CMg Y - dipy 20 = - My, dZﬂ( ) (2.17)
1 By - ClM(;l ! 2 B, - C2]VI02

For any sufficiently small € > 0, there exist t, > t; and t, > t, such that

min EED(t,x) > “50) -¢, fort>t),

xeQ

glgl) (t—ri,x) > ocl@ +¢, fort>t, (2.18)

M, —e< M (t-t,), fort>t,

Define u( ) and U, @ by

ou (2) ©
gtl = AAT? + [al(t x) = bt )i + ¢ (8, %) f 72 (t - 7, x)dM: (1)
-t x)j (1) (t—1,x)dM; (1) - d1u2 (t rz,x)], t>t, x€Q,
6ﬂ§2) —2 =@ —(2) * —(2)
T Adu,’ +u, [az(t,x) —by(t, x)u,” + cz(t,x)f u, (t—7,x)dM,(T)
0

- o(t, x)j (1) - 7,x)dM; (1) - dzg?) (t- rl,x)] , t>t, x€Q,

— (2) — (2)
ou, ~ ou,

—_1 _ = t>t @)
aTl 611 0, >1t, x €08,

ﬁl@(t,x) =K;, (t,x) € (—oo, ] x Q(i=1,2).
(2.19)
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Then (u il), u S)) and (u gz)jgz)) are a pair of lower-upper solutions of (1.1). By Lemma 1.7,

u® < < ®

(1) —(2)
17 22 Suy<u, .

U,

From (2.19) and (2.20), for t > t;, x € Q, we get

ou - @ 7@
a5 < AAu +u1 ai(t,x) = bi(t, x)u," +ci(t, x) (t—7,x)dMj (T)
- Mgy, <a§0) - e) —dq <a§0) ) +ec ag )] ,
ou éz

= <ANuY + 7l [az(t x) = ba(t, )i ¢ +c2tx)f ' (t -7, x)dM; (1)
0

- caMy, <a2 g) - d <a§0) - 5) +ec ag )] .

By the comparison principle, for t > t;, x € Q, we get

7@ <ol 7@ <ol
where wil) and wél) are the solutions of the following problem, respectively:
aw<1)
(1 ) _ ) @y _ -
T = AAw,” +w, " |ai(t,x) = bi(t, x)w;”’ +c1(t, x) w, ' (t—7,x)dM; (1)
- c1M01 <a1 ) —d (zxéo) - s) + eclago)] , t>th, xeQ,
awil)
=0, t>f, x€0Q,
on
D) =Ky, (tx)€(-oo,h] xQ,
aw(l)
M, M W — >
T = Adw,’ +w, [az(t x) —ba(t, x)w2 +cot, x)f w, ' (t —7,x)dM, (T)

- oM, <0‘20) s) —-d, (ago) - 5) + eczaéo)] , t>th, xeEQ,

=0, t>t, x €08,

O(t,x)=Ka,  (t,x) € (~o0,] x Q.
From (2.16), (2.18), and sufficiently small ¢, we get

a; - 1M <a§0) £> - dq <a§0) - 8) >0,

a - Mg, (aéo) —e)—-d; <a§0) - 5) > 0.

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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By Lemma 1.4, we get

(0) +
Ay - cleoc1 - dya, MG, + di — c1ay

(0)

0 <limsup max w, )(t x) < -

t—oo xeQ bl - C1M01 bl - ClMal

(0)

0
- oM, dzoci ) oMy, +dy - ca,

(0)

0 < lim sup max ’wél)(t,x) 5

t—co xeQ bZ - C2M02 bZ - CZMEZ

Then from (2.22), (2.24), and sufficiently small ¢,

0 < a” < liminf min uy (¢, x) < lim sup max uy (£, x) < B,

t—oo  xeQ ) xeQ

0 < ay” < liminf min us(t, x) < lim sup max us(t, x) < B,

t—oo  xeQ t—o0 xeQ
where
a _ A= ClMo1“1O) - dl“é()) ) _ A2- CZMozago)
= b1 - a1 My, ! 2 by — oMy,
Then,

0< “50) < ﬂil) < pi())'

0<af <p” < p
For any sufficiently small € > 0, there exist t; > t, and t3 > #; such that

—(2) 1)
max u;”(t,x) < B, +¢, fort>t;,
xeQ

ﬁlw (t-ri,x) < ,Bi(l) +¢, fort>ts,
Ci(Mg, - M (t-t))) <e, fort>ts.
Define u §2) (t,x) and u ;2) (t,x) by

7

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

aﬂgz) (2)
T =AAu al(t x) —by(t, x)u +cl(t x) t—T,x)dM (1)
—ci(t, x)f (2) (t—7,x)dM; (1) - dlu( )(t —rz,x)], t>t;, x€Q,
ou (2) 0o
Ou, ) _ @ _ —
T = Alu, +u2 [az(t x) —by(t, x)u +cz(t,x)f u, (t-7,x)dM; (1)
—ooft, x)f t— T, x)dM; (1) - dzu1 (t- rl,x)] t>t;, x €Q,
621 f)ué2
= — =0, t>1t3, x €08,
on or

u®(t,x) = —ul(t x), (tx) € (-0, k] xQ.

(2.30)



Miguel Uh Zapata et al. 11

Then, (u 52), u f)) and (u gz)jéz)) are a pair of lower-upper solutions of (1.1). By Lemma 1.7,

uP<u <u®?,  ul<u<ud. (2.31)

From (2.30) and (2.31), for t > t3, x € Q, we get

ou®

u [e'e]
2 Aduy +ut? [al(t,x) ~bi(t,x)u® + it x) f u? (t - 7,x)dM; (1)
0

— My (B +e) —di (B +e) - Kls],

(2.32)
ouy” @, ,0 @ z 0
B_t >AAu, +u, [az(t,x) =ba(t, x)u,’ +cat, x) f u, (t—1,x)dM, (1)
0
- My (B +2) —do (B +) - Kzs] .
By the comparison principle, for t > t3, x € Q, we get
u gz) > viz), géz) > vf), (2.33)

where viz) and véz) are the solutions of the following problem, respectively:

av(z) ®
a; = AAZ)?) + viz) [al(t,x) - bi(t, x)viz) + cl(t,x)f viz)(t -7, x)dM; ()
0
- C1M31<ﬂ§1) + 8) - dl( ;1) + g) - Klg], t>t3, x€Q,
6v§2)
=0, t>1t3, x €08,
on
@) 1 o)
vl (t/x) = Eul(t/x)r (trx) € (_ OO/tS] X Q/
o0y” @, @ @ G
5 AlAv,” + v, [az(t,x) = by(t, x)v, +cz(t,x)j vy (t—1,x)dM; (1)
0

—C2M32< ;1)+s>—d2( §1)+s> —Kzs], t>t3, x€Q,

(2)
0v,

=0, t>1t3, x €08,
o7

o2 (t,x) = %uz(t,x), (t,x) € (- o0, 13] x Q.
(2.34)
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From (2.29), (2.30), and ¢ sufficiently small, we get
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- C1M; < My 5> d1<ﬂ§1) +s> - Kie>0,

apy — CzM < o + £> dz <ﬂ§1) + €> - Kzé' > 0.

By Lemma 1.4 we get

—CMy Y —dip)  CiMy +di+ K

B1 - ClMal N Bl - ClMal

C2M02 2 - dzﬂil) 3 CQMSZ + dz + K2

I3
B, - CzMa2 B, - CzMaz

From (2.33), (2.35), and for ¢, we conclude that

t—oo  xeQ

t—oo  xeQ

< liminf min U;l)(t, x),

< liminf min v, )(t x).

0< “il) <liminf min u; (¢, x) < limsup max u; (t x) < ﬁil)'

t—oo  xeQ t—o0

xeQ

0< aél) < liminf min u,(f, x) < limsup max uy(t, x) < ﬁél),

t—oo  xeQ t—o0
where
o (1)
aV = C1M01 )\ —dip, ah =
1 Bi— M61 ! 2
Then,

xeQ

C2M02 2

'~ dp)

B, — C2M62

0< ago) < ail) ﬂ(l) < ﬂ(O)

(0) 1) 1) (0)
O<a, <ay’ <P <Py

Define the sequences a(k) lX;k), ® and ﬁ(k) as follows:

(k) (k)
(k) _ C1M01 1 —dipy (k) _
oy a, =
B1 - C1M
(k) _ (k)
1 b - 01M61 ! 2
(0) Ai 0)
ﬂl = =

T aa— )
bl - C1M01

k k
a, - C: Mg, é = dZﬂi :

B, — Cz]\/Ia2

Az

k
CZMOZ[X; :

-~ dpa®

A;

bz - CzM02

B b, — CzMaz.

7

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)
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Lemma 2.1. For the above-defined sequences, one has
(k+1) 4(k+1) k) (k) (k+1) o(k+1) (k)
[0, 0] [, 0], [, B8 ] 28, 50], k0. (2.41)

Proof. For k = 0, it has been shown that [agl), ﬂil)] C (0) ﬂ ] and [aél), ;1)] C [aéo), ﬂé_l)]
Using induction, we can complete the proof.
Lemma 2.1 implies that
hma(k) hma2k), I}im ﬂik), I}imﬂék) (2.42)
exist, denoted as ay, ap, f1, and B, respectively. From (2.41), we have the following linear
system by which we can obtain the numbers a;, ay, f1, and f»:

o= ar - CiMy,pr — difp> o = a = CoMy,po — dafpr
e B - ClMal ! 2" B, — C2M62 ! (2 43)
_ A1 - clMglal - d1a2 _ Az - CzMa'zaz - dzal ’
ﬂl - b - ClM(;l ! 2" b, — CQMaZ
O
Lemma 2.2. For the solutions of (1.1), one has
0< a§k) < liminf min u; (¢, x) < limsup max u (t, x) < ﬂik), k>0, (2.44)
t—oo  xeQ t—o0 xeQ
0< océk) < liminf min u,(t, x) < limsup max uy(t, x) < ﬂ;k), k>0. (2.45)
t—oo  xeQ t—oo x€Q

Proof. We have shown that (2.45) and (3.1) are valid for k = 0, 1. Using induction and repeating
the above process, we can complete the proof. O

Combining the above lemmas, we can complete the proof of Theorem 1.1

Remark 2.3. Following the same kind of proof for Theorem 1.1, it can be shown that the same
conclusions hold if instead of system (1.1) we work with solutions of

S = A1, 010, [ a1 2)-br 1, D011, 1)1 (62) [ om0t (1) -dvon (e, )
0
t>0, xeQ,
2 =BAva(t, ) +02(t3) [t 1)~ balt, )02t )=t ) [ ot x)epa(r) o (411, )|,
0
t>0, xeQ,
al)l (3’02
= t Q
611 611 =0, >0, x € 0Q,
’()i(t,X) =¢i(t1x) (12112) t<0, xE§I
(2.46)

as expected since they do not include the coefficients of diffusion. We thank one of the referees
for his comments regarding this matter.
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3. Numerical simulations

In this section, we present some numerical results that agree with Theorem 1.1 proved

above. We used the method of upper and lower solutions as developed by Pao [12, 13] dis-

cretizing the systems into finite difference systems. On both examples, the domain used is
=(0,12).

Example 3.1. In this example, we work with coefficients that depend on t and initial values that
depend on (¢, x).
Consider the system

duy _ 0%y
ot  ox?

1
2 + 10) u

+1y [( sin(t)+2) - ( o

u1(t—T, x)dT—%uz(t—Z, x)] , te[0,T], x€[0,12],

+75>

(sm(t2)+1.01)f 1+17 uy (t—7,x )dT—lul(t 1.5, x)] €1[0,T], x€[0,12],
0

—(cos(t)+1. Ol)j
(=

auz _62u2
o +u K sin (t)+1>

a”‘(o £ = L;"(lz,t)=o (i=1,2), t>0,

u(t,x) = <;>+101 £<0, x€[0,12],

1
2
1
u(t,x) = = <sm<§>+sm< >>+1.01, t<0, x€[0,12].

It is easy to see that this system satisfies the conditions of the main theorem (Theorem 1.1),
therefore the global attractors are defined by the solutions of the linear system

(3.1)

1
a(11-0)=1-2.01= p1 P

0(15-0)=1- 2.01%[32 - b,
(3.2)
ar 1
ﬁ1(10 - 0) =3- 0.015[11 - 1—0012/

2(0.5-0) =2 - 0.01§a2 p
that is, the global attractors for u; and u, are given by [0.002245,0.299884] and
[0.011192,0.285680], respectively. Figure 1 shows the numerical simulation of the solution of
this system and on it we can notice the global attractors obtained before.
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U1 0.8

u

Figure 1: Numerical simulation of Example 3.1.

Example 3.2. According to the main theorem (Theorem 1.1), the global attractors depend only
on the coefficients and not on the initial values. In this example, we only change the initial
functions of the above example:

ui(t,x) =sin(x) + 1.01, ¢<0, x€[0,12],

1 (3.3)

uZ(t/ x) = 200

(1+£2) sin (%) +0.01, £<0, x€[0,12],
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(b)

Figure 2: Numerical simulation of Example 3.2.

to obtain the same attractors as in Example 3.1. Figure 2 shows the numerical simulation of the
solution of this system and we observe that they have the attractors expected.
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