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1. Introduction

Most works on analysis or synthesis of nonlinear systems are devoted to studying stability-
like behavior. Their typical results show that the motions of a system are close to a cer-
tain limit motion (limit mode) either existing in the system or created by a controller.
Evaluation of the system trajectory deflection from a limit mode provides quantitative
information about system behavior [1, 2].

During recent years, an interest in studying more complex behavior of the systems re-
lated to oscillatory and chaotic modes has grown significantly [3–7]. An important and
useful concept for studying irregular oscillations is that of “oscillatority” introduced by
Yakubovich [8]. Frequency domain conditions for oscillatority were obtained for Lurie
systems, composed of linear and nonlinear parts [6, 8, 9]. However, when studying physi-
cal systems in many cases, it is more natural to decompose the system description into two
nonlinear parts. Oscillation analysis and design methods for nonlinear systems without
delays were proposed in [3]. The results of [3] are formulated in terms of two Lyapunov
functions.

In this paper, the conditions of oscillatority proposed in [3] are extended to nonlin-
ear systems with time delay. The sufficient conditions of periodic solutions existence for
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time delay systems can be found in [10, 11]. Section 2 contains some useful auxiliary
statements and definitions. Main definitions and oscillations existence conditions are pre-
sented in Section 3. Section 4 deals with examples of analytical calculations and computer
simulations for the proposed solutions.

2. Preliminaries

As usual, continuous function σ : R+ → R+ (R+ = {τ ∈ R : τ ≥ 0}) is said to belong to
class � if it is strictly increasing and σ(0)= 0. It is said to belong to class �∞ if it is also
radially unbounded.

We will denote by Cn[a,b], 0≤ a < b ≤ +∞, the Banach space of continuous functions
ϕ : [a,b]→Rn with the norm ‖ϕ‖ = supa≤σ≤b |ϕ(σ)|, where | · | is the standard Euclidean
norm. It is said that property P(ϕ), ϕ ∈ � ⊂ Cn[−τ,0], holds for almost all ϕ ∈ � if
it holds for all ϕ ∈� with the exception of some countable subset of �. The set of all
Lebesgue measurable functions u :R+ →Rm with property ‖u‖ < +∞, where

‖u‖ = ‖u‖[0+∞), ‖u‖[t0,T) = esssup
{∣∣u(t)

∣
∣, t ∈ [t0,T)

}
, (2.1)

is denoted by �Rm .
Let the model of a system be described by functional differential equation

dx(t)
dt

= f
(
t,xτ(t),u(t)

)
, t ≥ 0, (2.2)

where x ∈ Rn is state vector, xτ(t) = x(t + s), −τ ≤ s≤ 0∈ Cn[−τ,0] is extended (lifted)
state vector; u ∈�Rm is input vector function; f : R+ ×Cn[−τ,0]×Rm → Rn is contin-
uous with respect to the first argument and locally Lipschitz continuous function with
respect to the rest ones, f(·,0,0)= 0. We will assume that all solutions of the system sat-
isfy initial conditions

xτ(0)= x0 ∈ Cn[−τ,0]. (2.3)

It is known from the theory of functional differential equations [10–12] that under above
assumptions the system (2.2) has a unique solution x(x0,u, t) satisfying initial condition
x0, which is defined on some finite interval [0,T). If T = +∞ for every initial state x0 and
all u ∈�Rm , then system is called forward complete. It is said that set � ⊂ Cn[−τ,0] is
a zero input repulsion set for the system (2.2) if for almost all initial conditions x0 ∈ R
trajectories x(x0,0, t) of the system are well defined for all t ≥ 0 and there exists Tx0 > 0
such that xτ(t) /∈� for t ≥ Tx0 . Finally, let V :R+×Cn[−τ,0]→R+ be a locally Lipschitz
continuous functional, then the time derivative of the functional V along solutions of the
system (2.2) is defined as follows (V(t)=V(t,x(x0,u, t))):

V̇(t)= limsup
Δt→0+

1
Δt

[
V(t+Δt)−V(t)

]
. (2.4)
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Lemma 2.1 [12]. Let there exist locally Lipschitz continuous functionalV :R+×Cn[−τ,0]→
R+ and functions αi ∈�∞, i= 1,4, such that

α1
(∣∣x(t)

∣
∣)≤V(t,xτ(t)

)≤ α2
(∣∣x(t)

∣
∣)+α3

(∫ t

t−τ
α4
(∣∣x(σ)

∣
∣)dσ

)

,

V̇(t)≤−α4
(∣∣x(t)

∣
∣)+M

(2.5)

for all t ≥ 0 and x0 ∈ Cn[−τ,0], M > 0. Then all solutions x(x0,0, t) of system (2.2) are
uniformly bounded, and

∣
∣x
(

x0,0, t
)∣∣≤ α−1

1

(
α2(B) +α3

(
τα4(B)

))
, t ≥ 0, (2.6)

where B =max{|x0|,α−1
4 (M)}. Besides, they are uniformly asymptotically bounded

lim
t→+∞

∣
∣x
(

x0,0, t
)∣∣≤ R, (2.7)

where R= α−1
1 (α2(α−1

4 (M)) +α3(τM)).

Lemma 2.2 [19]. Let f(t,xτ ,0)= F(t,x,x(t− τ)) and there exist continuously differentiable
Lyapunov function V : Rn → R+, continuous function ε : R2n → (0,1), functions α1,α2 ∈
�∞, χ ∈�, and X ∈R+ such that the following inequalities hold:

α1
(|x|)≤V(x)≤ α2

(|x|),

∂V(x)F
(
t,x,x(t− τ)

)

∂(x)
≤−χ(V(x)

)
+ ε
(

x,x(t− τ)
)
χ
[
V
(

x(t− τ)
)] (2.8)

for all t ≥ 0, x ∈Rn, |x| ≥ X , and x(t− τ)∈Rn, |x(t− τ)| ≥ X . Then all solutions x(t,x0,0)
of the system (2.2) with f(t,xτ ,0)= F(t,x,x(t− τ)) are uniformly bounded:

∣
∣x
(
t,x0,0

)∣∣≤ R, R= α−1
1 ◦α2

(
max

{∥∥x0
∥
∥,X

})
, t ≥ 0. (2.9)

In contrast to Lemma 2.1, Lemma 2.2 provides delay-independent conditions for
boundedness of trajectories of the system (2.2).

3. Oscillatority conditions

At first, extending the result of [3] we give a precise definition of the term “oscillatority”
for time delay systems.

Definition 3.1. Solution x(x0,0, t) with x0 ∈ Cn[−τ,0] of system (2.2) is called [π−,π+]-
oscillation with respect to output ψ = η(x) (where η : Rn → R is a continuous monoto-
nous function with respect to all arguments) if the solution is well defined for all t ≥ 0
and

lim
t→+∞

ψ(t)= π−, lim
t→+∞ψ(t)= π+, −∞ < π− < π+ < +∞. (3.1)
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Solution x(x0,0, t) is called oscillating if there exist some output ψ and constants π−, π+

such that x(x0,0, t) is [π−,π+]-oscillation with respect to the output ψ. System (2.2) with
u(t) ≡ 0, t ≥ 0, is called oscillatory if for almost all x0 ∈ Cn[−τ,0] the solutions of the
system x(x0,0, t) are oscillating. Oscillatory system (2.2) is called uniformly oscillatory if
for almost all x0 ∈ Cn[−τ,0] for corresponding solutions x(x0,0, t) there exist common
output ψ and constants π−, π+ not depending on initial conditions.

Note that term “almost all solutions” is used to emphasize that generally system (2.2)
has a nonempty set of equilibrium points, thus, there exists a set of initial conditions, that
corresponding solutions are not oscillating.

The oscillatority property introduced in Definition 3.1 is defined for zero input and
any initial conditions of system (2.2). The following property is a closely related charac-
terization of the system behavior, extending the proposed-above property to the case of
nonzero input and specific initial conditions [3, 5].

Definition 3.2. Let u ∈�Rm and x0 ∈ Cn[−τ,0] be given such that x(x0,u, t) is well de-
fined for all t ≥ 0. The functions χ−ψ,x0

(γ), χ+
ψ,x0

(γ) defined for 0≤ γ < +∞ are called lower
and upper excitability indices of system (2.2) at x0 with respect to output ψ = η(x) (where
η :Rn→R is a continuous monotonous function with respect to all arguments), if

(
χ−ψ,x0

(γ),χ+
ψ,x0

(γ)
)= argsup

(a,b)∈�(γ)
{b− a},

�(γ)=
⎧
⎪⎨

⎪⎩
(a,b) :

⎛

⎜
⎝

a= lim
t→+∞

η
(

x(x0,u, t
))

,

b = lim
t→+∞η

(
x
(

x0,u, t
))

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
‖u‖≤γ

.

(3.2)

Lower and upper excitation indices of forward complete system (2.2) with respect to
output ψ are

χ−ψ (γ)= inf
x0∈Cn[−τ,0]

χ−ψ,x0
(γ), χ+

ψ(γ)= sup
x0∈Cn[−τ,0]

χ+
ψ,x0

(γ). (3.3)

Excitation indices characterize ability of the system (2.2) to perform forced or con-
trollable oscillations caused by bounded inputs. It is clear that properties π− = χ−ψ (0)
and π+ = χ+

ψ(0) are satisfied. For nonzero inputs the indices characterize maximum (over
specified set of inputs ‖u‖ ≤ γ) asymptotic amplitudes χ+

ψ(γ)− χ−ψ (γ) of the output ψ.
Sufficient conditions for oscillatority of system (2.2) are formulated in the following

theorem.

Theorem 3.3. Let system (2.2) have Lyapunov functional V : R+ ×Cn[−τ,0]→ R+ sat-
isfying conditions of Lemma 2.1 or Lyapunov function V : Rn → R+ satisfying conditions
of Lemma 2.2. Let the origin of the system be locally unstable with repulsion set � = {ϕ ∈
Cn[−τ,0] : 0 < |ϕ(0)| ≤ r}, 0 < r < R. Then system (2.2) is oscillatory, provided that set
Ω= {x : r ≤ |x| ≤ R} ⊂Rn does not contain equilibrium points of system (2.2) for u(t)≡ 0,
t ≥ 0.
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Proof. By Lemmas 2.1 or 2.2 all solutions of system (2.2) with u(t)≡ 0, t ≥ 0, are bounded
and asymptotically converge to region where |x| ≤ R. Since there exists repulsive set �
containing the origin, the set Ω is the global attractor for the system (2.2).

As it was supposed, Ω does not contain equilibrium points of the system. Then for
almost all x0 ∈ Cn[−τ,0] there exists a number i, 1 ≤ i ≤ n, such that the solution is
[π−,π+]-oscillation with respect to output |xi| with 0≤ π− < π+ < R. Suppose that there
is no such an output. It means that for all 1≤ i≤ n and for every output |xi| the equal-
ity π− = π+ holds. However, the latter can be true only at equilibrium points, which are
excluded from the set Ω by the theorem conditions. Therefore, for almost all initial condi-
tions there exist such oscillating outputs and system (2.2) is oscillatory by Definition 3.1.
Note that for different x0 ∈ Cn[−τ,0] oscillations of the outputs |xi| are possible for dif-
ferent i, 1≤ i≤ n. �

Conditions of the above theorem define a class of systems, which oscillatory behavior
can be investigated by the proposed approach. The systems should have attracting com-
pact set in state space, which contains oscillatory movements of the systems. For such
systems, Theorem 3.3 provides a useful tool for testing their oscillating behavior and ob-
taining estimates of oscillations amplitude.

The Poincaré-Bendixson theorem [13] provides another method to detect more stron-
ger oscillating behavior in the system, like limit cycles presence. But as a price, Poincaré-
Bendixson theorem imposes additional restrictions on structure properties of system
(2.2) and does not allow to investigate behavior of chaotic systems. Another conditions
on periodic solutions existence can be found in [10, 11].

Remark 3.4. Note that set Ω determines lower bound for value of π− and upper bound
for values of π+.

Remark 3.5. Like in [9] one can use linearization near the origin of system (2.2) to prove
local instability of the system solutions. Instead of existence of Lyapunov functional V
one can require just boundedness of the system solution x(t) with known upper bound
obtained using another approach not dealing with time derivative of Lyapunov functional
analysis.

Let us show a link between oscillatority and excitation indices.

Corollary 3.6. Let for almost all initial conditions x0 ∈ Cn[−τ,0] there exist solutions
x(x0,k(x), t) of the system (2.2) with control u = k(x), k(0) = 0, which are [π−,π+]
-oscillations with respect to the output ψ = η(x):

κ1
(|x|)≤ η(x)≤ κ2

(|x|), x ∈Rn, κ1,κ2 ∈�∞. (3.4)

Then excitation indices of system (2.2) satisfy inequality

π+−π− ≤ χ+
ψ(γ)− χ−ψ (γ) (3.5)

for γ ≥ γ∗, where γ∗ = supx∈Ω̃ |k(x)|,

Ω̃= {x : κ−1
2

(
π−
)≤ |x| ≤ κ−1

1

(
π+)}. (3.6)
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Proof. From oscillatority property with respect to output ψ and according to the prop-
erties of the output, the solutions of the system (2.2) with u = k(x) are bounded for all
x0 ∈ Cn[−τ,0] (almost all solutions are oscillating, while others are equilibriums):

∣
∣x(t)

∣
∣≤ P, P > 0, t ≥ 0. (3.7)

Therefore, input u= k(x) is upper bounded by

γ = sup
|x|≤P

∣
∣k(x)

∣
∣ (3.8)

and π+−π− ≤ χ+
ψ(γ)− χ−ψ (γ). Here P is some positive constant calculated along solutions

of the closed loop system. Also solutions asymptotically converge to set Ω̃ (i.e., assumed to
be nonempty), where the norm of control k is upper bounded by γ∗. Therefore, the state-
ment follows from Definitions 3.1 and 3.2 (excitation indices are nondecreasing functions
of γ). �

Hence, to compute estimates of excitation indices it is sufficient to find some control
law k for system (2.2), which ensures oscillations existence in the closed loop system.

4. Applications

4.1. Delayed model of testosterone dynamics. Let us consider the following model of
testosterone dynamics [14]:

Ṙ= f
(
T
(
t− τ1

))− b1R, L̇= g1R− b2L, Ṫ = g2L
(
t− τ2

)− b3T , (4.1)

where L is luteinising hormone concentration; R is luteinising hormone releasing hor-
mone concentration, T is concentration of testosterone in the blood, b1, b2, b3, g1, and g2

are from R+, f :R+ →R+ is differentiable, bounded from above and monotone decreas-
ing (during computer simulation we will use f (T) = A/(K + T2)), τ1 and τ2 are time
delays. It is assumed that the presence of R in the blood induces the secretion of L, which
induces testosterone to be secreted in the testes. The testosterone in turn causes a negative
feedback effect on the secretion of R. As it was proposed in [14] the presence of delay in
this stable model leads to oscillations arising, see also [15] for additional results in this
field. Let us apply proposed approach to the above system.

This model for monotone decreasing positive f has one unique equilibrium (R0,L0,
T0) being the solution of equations

f
(
T0)= b1b2b3

g1g2
T0, R0 = b2b3

g1g2
T0, L0 = b3

g2
T0. (4.2)

The instability property can be established based on linearization of testosterone model
near the equilibrium:

δṘ= f ′
(
T0
)
δT
(
t− τ1

)− b1δR, δL̇= g1δR− b2δL, δṪ = g2δL
(
t− τ2

)− b3δT ,
(4.3)



D. V. Efimov and A. L. Fradkov 7

where δR, δL and δT are deviations of R, L, and T from the equilibrium, respectively, f ′

derivative of f . The characteristic polynomial has the form
(
s+ b1

)(
s+ b2

)(
s+ b3

)− g1g2 f
′(T0

)
e−(τ1+τ2)s = 0. (4.4)

For chosen during simulation parameters

A= 10, K = 2, b1 = b2 = b3 = 1, g1 = 10, g2 = 50, (4.5)

the computation shows that for

τ1 + τ2 > 1.556 (4.6)

characteristic polynomial has roots with positive real parts. Thus, to apply Theorem 3.3
for testosterone model we should find a Lyapunov functional satisfying Lemma 2.1. One
possible solution is as follows:

V = 0.5b−1
1

(
aR + b−2

2

(
aL + b−1

3 g2
2

)
g2

1

)
R2 + 0.5T2

+ 0.5b−1
2

(
aL + b−1

3 g2
2

)
L2 + 0.5b−1

3 g2
2

∫ t

t−τ2

L(s)2ds,
(4.7)

where aR,aL > 0. Its time derivative for testosterone model admits the upper estimate

V̇ ≤−0.5aRR2− 0.5b3T
2− 0.5aLL2 +M, (4.8)

where M = 0.5b−2
1 (aR + b−2

2 (aL + b−1
3 g2

2 )g2
1 ) f 2

max and fmax ≥ f (T), T ∈ R+ (in our exam-
ple fmax = A/K). Therefore, the system is uniformly oscillatory. It is worth to stress that
testosterone model with the two time delays does not satisfy conditions of Poincaré-
Bendixson theorem [13] as well as conditions of book [10]. The value of

√
M serves

as estimate on upper bounds of oscillation amplitude for state vector x = [RLT]T (for
aR = aL = 1,

√
M ≈ 1768). A corresponding trajectory for τ1 = τ2 = 1 is presented in

Figure 4.1.

4.2. Circadian oscillations model. Let us consider circadian model from [16, 17] with
time delays:

Ṁ = vsKn
Kn +PN

(
t− τ1

)n − vmM

km +M
,

Ṗ0 = ksM
(
t− τ2

)− V1P0

K1 +P0
+

V2P1

K2 +P1
,

Ṗ1 = V1P0

K1 +P0
− V2P1

K2 +P1
− V3P1

K3 +P1
+

V4P2

K4 +P2
,

Ṗ2 = V3P1

K3 +P1
− V4P2

K4 +P2
− k1P2 + k2PN − vdP2

kd +P2
,

ṖN = k1P2− k2PN ,

(4.9)
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Figure 4.1. Trajectories of testosterone model.
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Figure 4.2. Circadian model oscillations.

where Pi, i= 0,2 are concentration degrees of phosphorylation of PER protein, PN indi-
cates concentration of PER in nucleus, M is concentration of per mRNA; τ1 and τ2 are
time delays. The following values of all other parameters were chosen [16]:

V1 = 3.2, V2 = 1.58, V3 = 5, V4 = 2.5, k1 = 1.9,

k2 = 1.3, km = 0.5, kd = 0.2, ks = 0.38, vs = 0.55,

vd = 0.95, vm = 0.65, n= 4, KI = 1,

K1 = K2 = K3 = K4 = 2.

(4.10)

The description of functionality of the above model can be found in [16, 17]. In [16],
it was mentioned without proof that for vs = 0.5 and for bigger values system with delays
exhibits oscillations. Also it was proven in [16] that this system has bounded solutions
(even with time delays) and unique equilibrium under some mild restrictions on values
of model parameters (like chosen for computer simulation)

M0 = 1.758, P0
0 = 0.95, P0

1 = 0.595, P0
2 = 0.474, P0

N = 0.693.
(4.11)

As it was mentioned in Remark 3.5, to establish global boundedness of the system trajec-
tories it is possible to use any other approaches not dealing with Lyapunov functions anal-
ysis. For example, [16, Proposition 3.1 and Theorem 1] help to establish global bounded-
ness of the system trajectories here. So, to establish oscillatority property of the system we
should investigate stability property of equilibrium. Linearizing circadian model near the
equilibrium as in the previous example, we obtain that the equilibrium is unstable and
oscillations exist for

τ1 + τ2 ≥ 3.44. (4.12)

For τ1 = τ2 = 2, the circadian system trajectory is shown in Figure 4.2.
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4.3. Blood cells production. Let us consider the conditions of oscillations arising in the
following simple model of blood cells production [18, 19]:

ż(t)=−γz(t) +β0
φn

φn + z(t− τ)n
, (4.13)

where z ∈R+ is the density of blood cells, γ, β0, φ, τ are strictly positive parameters, n is
integer number. During simulation we will choose γ = 10, β0 = 5, φ = 0.01, n= 2, τ = 5.
Nonlinear function in right-hand side of the above model is bounded, separated from
zero and strictly decreasing. Therefore, equation

γzc = β0
φn

φn + znc
(4.14)

has the single solution zc for positive values of γ, β0, φ. The value zc corresponds to the
single equilibrium point of the system. Rewriting the equation of the model in new coor-
dinate x = z− zc, we obtain

ẋ(t)=−γx(t) + g
(
x(t− τ)

)
,

g(x)= β0
φn

φn + (x+ zc)n
−β0

φn

φn + znc
.

(4.15)

Function g is bounded and g(0)= 0. To determine conditions of the system local insta-
bility let us consider the characteristic polynomial of linearized in the equilibrium x = 0
system:

λ+ γ+
nφnβ0zn−1

c
(
φn + znc

)2 e
−τλ = 0, (4.16)

which has roots with positive real parts for chosen values of parameters for all γ ≤ 320. To
prove global boundedness of the system trajectories let us apply the result of Lemma 2.2.
Due to boundedness of function g all conditions of the lemma are satisfied for

V = 0.5x2, R= gmax(γ− 0.5)−1, gmax = β0φn

φn + znc
. (4.17)

A trajectory of the system is shown in Figure 4.3 together with estimate R on upper bound
of amplitude of oscillations.

5. Conclusion

The paper presents definitions of oscillatority in the sense of Yakubovich and excitation
indices for nonlinear dynamical systems with time delays (which models are described
by functional differential equations). The sufficient conditions of oscillatority are given
as extension of the results of [3]. The good potentiality of proposed approach for de-
tecting of oscillations and evaluation of the amplitudes bounds is demonstrated through
examples of analytical design and computer simulation.
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Figure 4.3. Trajectory of the blood cells production model.
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