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1. Introduction

There has been a great interest in studying the fluid dynamics of pollutants in rivers, due
to increasingly important environmental and engineering problems, and more and more
refined models have been proposed [1–6]. Shulka [4] obtained analytical solutions by
the Fourier transform method for the case of unsteady transport dispersion of noncon-
servative pollutant/biochemical oxygen demand with first-order decay under each of the
sine and cosine variations of waste discharge concentration at upstream boundary and
nonzero initial condition through the river.

In this paper, we focus on a system of partial differential equations derived from both
Navier-Stokes and concentration equations for fluid flow. We employ the methods of
group of transformations for differential equations to analyze the system. In particular,
we make use of Lie point and potential symmetry techniques. Over the past 120 years, the
use of groups based on local symmetries originally due to Lie [7] has played an important
role in obtaining invariant/similarity solutions of differential equations (see, e.g., [8–13]).
Among other types, classical Lie point symmetries are classified as local symmetries and
potential symmetries as nonlocal symmetries.
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Calculations of symmetries are usually very long and tedious. However, we use the
free available program Dimsym [14], which is written as a subprogram for the com-
puter algebra package Reduce [15] to construct the admitted symmetries. This paper
is structured as follows; In Section 2, we discuss the derivation of the governing equa-
tion. In Section 3, we use classical Lie point symmetry techniques to analyze the system
of equations for a river pollution. Some exotic cases for the source term led to extra
symmetries being admitted. In Section 4, we discuss the potential symmetries admit-
ted by the system and construct some invariant solutions. Lastly we have conclusion in
Section 5.

2. Governing equations

The equations governing the water pollution problem is derived from both navier-stokes
and concentration equations for fluid flow. The basic assumption in the derivation of
such equations is initially the river is incompressible, fully developed with constant vis-
cosity, then a given pollutant is injected into the river and the fluid viscosity then changes
due to the concentration of the pollutant, that is, the fluid dynamic viscosity is now
pollutant-concentration-dependent. The problem now is to determine the diffusion of
pollutant with time and space in the river and the effect of pollutant on the river velocity
profiles.

The basic one-dimensional equations in original variables are

ρ
∂u

∂t
=−∂P

∂x
+

∂

∂y

(
μ
∂u

∂y

)
(equation for fluid motion), (2.1)

ρ
∂c

∂t
= ∂

∂y

(
D
∂c

∂y

)
+ S(y, t) (pollutant concentration equation), (2.2)

where

(i) ρ= constant river density,
(ii) D =mass diffusion,

(iii) S(y, t)= external source of pollutant,
(iv) μ= river dynamic viscosity,
(v) u= river velocity,

(vi) c = pollutant concentration,
(vii) P = river pressure,

(viii) t = time,
(ix) (x, y)= the axial and transverse coordinate, respectively.

At time t > 0, the fully developed stream is disturbed by injection of pollutant from an
external source. The river viscosity and the mass diffusivity is assumed to vary as follows:

μ

μ0
=
(
c

c0

)λ
,

D

D0
=
(
c

c0

)λ
, (2.3)
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where μ0, c0, D0, and λ are the river viscosity coefficient, characteristic concentration,
mass diffusivity coefficient, and constant exponent, respectively. The following dimen-
sionless variables are introduced:

u′ = uL

v0
, y′ = y

L
, x′ = x

L
, t′ = tv0

L2
, P′ = L2P

ρv2
0

, v0 = μ0

ρ
,

R= v0

D0
, K =−∂P′

∂x′
, S′ = SL2

v0c0
, c′ = c

c0
.

(2.4)

Neglecting the prime symbol for clarity, we obtain a dimensionless system of partial dif-
ferential equations (PDEs):

∂u

∂t
= K +

∂

∂y

(
cλ
∂u

∂y

)
, (2.5)

∂c

∂t
= 1

R

∂

∂y

(
cλ
∂c

∂y

)
+ S(y, t), (2.6)

where R is the Schmidt number and K is the imposed constant pressure axial gradient.

3. Point symmetry reductions of the system of (2.5) and (2.6)

In the initial Lie point symmetry analysis of the system of PDEs (2.5) and (2.6), with
S being an arbitrary function of y and t, the admitted generic point symmetries or the
principal Lie algebra are two dimensional and spanned by the base vectors

Γ1 = ∂

∂u
, Γ2 = (u−Kt)

∂

∂u
. (3.1)

The principal Lie algebra extends for the cases listed in Table 3.1. Wherever they appear
A, α, β, m, p, and w are arbitrary constants. Note that, following multiplication by the
constant R and then letting it vanish, the resulting equation (2.6) becomes an ordinary
differential equation (ODE). This case may not be physically realistic but leads to extra
admitted symmetries. The exercise of searching for the forms of arbitrary functions that
extend the principal Lie algebra is called group classification. The problem of group clas-
sification was introduced by Ovsiannikov [16] and recent accounts on this topic may be
found for example in [9, 17–19]. In this section we adopt methods in [9] to perform
group classification of the system of (2.5) and (2.6).

Invariant solutions. Here we consider only two examples for the cases which are more
realistic. Note that reduction by other symmetries leads to reduced nonlinear ordinary
differential equations.

Example 3.1. If we consider from Table 3.1 the case S = 0 with arbitrary R and λ, then
Γ3-invariant solution is given by

u= Kt+ c1, c = y2/λ
{
− 1
R

(
2 +

4
λ

)
t+ k1

}−1/λ

, (3.2)

where c1, and k1 are arbitrary constants of integration.
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Table 3.1. Special cases of S(y, t) and extension of the principal Lie algebra.

S(y, t) Constants Symmetries

Arbitrary R= 0, λ arbitrary
Γ3 = ∂y ; Γ4 = 2c

λ
∂c + y∂y

Γ5 = H ′(t)
λ

c∂c +KH(t)∂u +H(t)∂t

0

R, λ arbitrary
Γ3 = 2Kt∂u + y∂y + 2t∂t ; Γ4 = ∂t ;

Γ5 = 2c∂c + λy∂y ; Γ6 = ∂y

R= 1, λ arbitrary Γ7 = c∂u

R= 1, λ=−2 Γ8 =−c∂c + y∂y

A(αy +β)mewt R, λ arbitrary Γ3 = c∂c +
λ

2

(
y +

β

α

)
∂y +

1
2w

(2− λm)∂t

enytm R, λ arbitrary
Γ3 = 1

λ(m+ 1) + 1

{−Kλnt∂u +nc∂c

+
[
λ(m+ 1) + 1

]
∂y − λnt∂t

}

yntm
R, λ arbitrary

Γ3 = 1
λ(m+ 1) + 1

{−K(λn+ 2)t∂u +
[
2(m+ 1) +n

]
c∂c

+
[
λ(m+ 1) + 1

]
y∂y − λnt∂t

}

λ= −1
m+ 1

, m= n+ 2
−2

Γ3 = 2Kt∂u−nc∂c + 2t∂t
Γ4 = nc∂c + y∂y

emy+nt λ, R arbitrary Γ3 = −Km
n

∂u + ∂y − m

n
∂t

Aewt R, λ arbitrary
Γ3 = 2Kt∂u + 2wc∂c + λwy∂y + 2∂t ;

Γ4 = ∂y

ym f (t) λ= 2/m Γ3 =mc∂c + y∂y

f (t) R, λ arbitrary Γ3 = ∂y

tm R, λ arbitrary Γ4 = 2(m+ 1)c∂c + 2Kt∂u + 2t∂t +
[
1 + (m+ 1)λ

]
y∂y

f (y) R, λ arbitrary Γ3 = K∂u

emy R, λ arbitrary Γ4 = c∂c −Kλt∂u +
λ+ 1
m

∂y − λt∂t

ym R, λ arbitrary Γ4 = c∂c +
2− λm

m+ 2
Kt∂u +

λ+ 1
m+ 2

y∂y +
2− λm

m+ 2
t∂t

m(ny− pt) R, λ arbitrary Γ3 = p

n
∂y + ∂t

Example 3.2. For the case S = A(αy + β)mewt, we have Γ3 leads to the invariant solution
in functional form

c = exp
(

2wt
2− λm

)
G(η), u=H(η), η =

(
y +

β

α

)
exp

( −λwt
2− λm

)
, (3.3)
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with G and H satisfying the system of coupled ODEs

(2− λm)GλG′′ + λ(2− λm)Gλ−1(G′)2 + λRwηG′ + λmAR(2− λm)ηm− 2Rw = 0,

λ(2− λm)Gλ−1G′H′ + (2− λm)GλH′′ +wληH′ +K(2− λm)= 0,
(3.4)

where the prime indicate differentiation with respect to η. This system of ODE has no
exact solution for arbitrary values of λ. If λ= 0, then we obtain invariant solutions

c = exp
(

2wt
2− λm

)(
Rw

2
y2 + c1y + c2

)
, u=−Ky2

2
+ c3y + c4, (3.5)

wherein c′i s are constants. However, in this case the system is now linear and uncoupled.
Symmetry reductions by other admitted symmetries lead to highly nonlinear ODEs. We
herein omit those reductions.

In the next section, we analyze (2.5) and (2.6) using potential symmetry. It is possi-
ble when using potential symmetries to construct invariant solutions which cannot be
obtained by point symmetries.

4. Potential symmetry reductions and invariant solutions

4.1. Trivial case. The most trivial case is given when S= 0 and the solution of (2.2) is a
constant, say λ

√
γ, that is, given a constant river pollutant concentration. This trivial case

implies that (2.1) becomes a linear diffusion equation with a constant diffusion coefficient
and a constant K . In other words, the system of (2.1) and (2.2) reduces to a single PDE
written in conserved form

∂u

∂t
= ∂

∂y

(
Ky + γ

∂u

∂y

)
. (4.1)

Equation (4.1) may be embedded in a system of first order partial differential equation
called auxiliary system [9]. K may be equated to zero by the transformation u= u+Kt.
However, here we allow K to be nonzero. Pucci and Saccomandi [20] provided the nec-
essary condition for a PDE to admit potential symmetries. A PDE may be expressed in
an auxiliary system in more than one inequivalent way (see, e.g., [20]). For example [21],
the inhomogeneous nonlinear diffusion equation

ut =
[(

y

u

)2

uy

]
y

(4.2)

may be embedded into the auxiliary systems

vy = u, vt =
(
y

u

)2

uy , (4.3)

vy = u

y
, vt = y

u2
uy − 1

u
. (4.4)
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Equation (4.4) admits potential symmetries whereas (4.3) does not. Methods are being
developed to find the most general conservation laws or auxiliary systems which admit
nonlocal symmetries for the given governing equation (see, e.g., [22, 23]). We observe
that (4.1) may be expressed in two distinct systems of first-order PDEs, namely,

vy = u, vt = Ky + γuy , (4.5)

vy = u−Kt, vt = γuy , (4.6)

where v is the potential or nonlocal variable. The first system arises from a simple and
natural split of (4.1) whilst the second was, relatively, not quite obvious to construct. We
note that system (4.6) possesses point symmetries which induce potential symmetries
for (4.1), whereas system (4.5) does not. One may employ the “direct method of finding
auxiliary systems” [23]. If we assume that (4.1) can be embedded in the auxiliary system

vy = f
(
y, t,u,ut

)
, (4.7)

vt = g
(
y, t,u,uy

)
. (4.8)

For the compatibility of (4.7) and (4.8) we require

ft +ut fu +utt fut = gy +uygu +uyyguy (4.9)

on solutions of (4.1). Note that the system of (4.7) and (4.8) is the definition of the con-
servation law. Hence, by simple calculation, from (4.9) it follows that

f = c1u+ J(y, t), g = γc1uy +H(y, t), (4.10)

with c1 being a constant, J and H being functions of y, and t satisfying the equation

Jt +Kc1 =Hy. (4.11)

Without loss of generality we let c1 = 1. The auxiliary system (4.5) may be obtained by
letting J = 0, that way H = Ky, wherein the integration constant vanishes. Also, auxiliary
system (4.6) may be obtained by letting H = 0, that way J = −Kt with the integration
constant being zero. Note that if the constant of integration is nonzero, then beyond
translations, both the auxiliary systems admit infinite point symmetries. The System (4.6)
admits a finite six-dimensional Lie algebra spanned by

Γ1 = 1
4γ

(− y2u− 6γtu− 2yv+ ky2t+ 10Kγt2) ∂

∂u
+ t2 ∂

∂t
− 1

4γ

(
y2v+ 2γvt

) ∂
∂v

+ yt
∂

∂y
,

Γ2 = 2Kt
∂

∂u
+ v

∂

∂v
+ y

∂

∂y
+ 2t

∂

∂t
, Γ3 = K

∂

∂u
+

∂

∂t
,

Γ4 = (u−Kt)
∂

∂u
+ v

∂

∂v
, Γ5 = ∂

∂y
,

Γ6 = 1
2γ

(−yu− v+Kyt)
∂

∂u
− yv

2γ
∂

∂v
+ t

∂

∂y
, Γ7 = ∂G

∂y

∂

∂u
+G

∂

∂v
,

(4.12)
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where G=G(y, t) is a solution of the linear diffusion equation

Gt = γGyy. (4.13)

Clearly, Γ1 and Γ6 induce nonlocal symmetries for the governing equation (4.1).
We construct the invariant solution for the system (4.8) using the potential symmetry

operator Γ1 and Γ6. The Γ1-invariant solution is given in the functional form by

u= t−3/2 exp
(
y2

4γt

)∫
1

4γt
exp

(
− y2

4γt

)[
10γKt5/2− 2y exp

(
− y2

4γt

)
G(ρ) +Ky2t3/2

]
dt;

v = 1√
t

exp
(
− y2

4γt

)
G(ρ),

(4.14)

where the similarity variable ρ = y/t, and the Γ6-invariant solutions are

u=− Ay

2γ
√
t3

exp
(
− y2

4γt

)
+Kt; v = A√

t
exp

(
− y2

4γt

)
. (4.15)

Here, A is an arbitrary constant.

4.2. Nontrivial case. One may note that the solution of (2.6) appear as the coefficient in
(2.5). Unfortunately, as expected, not all the solutions to (2.6) lead to extra symmetries
for (2.5). However, we observe that the invariant solution c = k1/y to (2.6) with S = 0
(see, e.g., [9]) leads to a rich array of symmetries, particularly potential symmetries, be-
ing admitted by (2.5). In the classical Lie point symmetry analysis we observe that (2.5)
admits beside the infinite symmetry generator, the translation in t and scaling of y. The
linear combination of these finite point symmetries leads to a highly nonlinear ordinary
differential equation which was not analytically easy to solve.

On the other hand, (2.5) with c = k1/y and λ=−2, may be embedded in an auxiliary
system

vy = u−Kt, vt =
(
k1

y

)−2

uy , (4.16)

where v is a potential variable. Note that we choose the auxiliary system that gives rise
to potential symmetries. The case λ = −2 is not realistic, however it is interesting from
the mathematical point of view. The integrated form which is equivalent to the auxiliary
system (4.16) and arising from letting the potential variable be given by

v =
∫ (

u(y, t)−Kt
)
dy + J(t), (4.17)

where J(t) is the integration constant, is given by the nonconstant coefficient linear dif-
fusion equation,

vt =
(
y

k1

)2

vyy. (4.18)
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Note that (4.18) does not admit potential symmetries, but the auxiliary system (4.16)
admits the symmetries

Γ1 =
[(
− k2

1

4
u+

k2
1K

4
t− 1

2
ut− k2

1K

4y
v+

1
2
Kt2

)
log y

− 1
4k2

1
ut2− 3

2
ut+

1
2y

vt+
Kt3

4k2
1
− 5K

2
t2
]
∂

∂u

+
[(
− k2

1 y
2v+ 2vt

)
log y + t2v− 2vt

]
∂

∂v
+ 4ty log y

∂

∂y
+ t2 ∂

∂t
;

(4.19)

Γ2 =
[(

u

4
+
Kt

4

)
log y− ut

4k2
1
− u

2
+

v

4y
+
Kt2

4k2
1

+
3K
2
t
]
∂

∂u

+ t
∂

∂t
+
y

2
log y

∂

∂y
+
[
v

4
log y− vt

4k2
1

]
∂

∂v
;

(4.20)

Γ3 = ∂

∂u
+K

∂

∂t
; Γ4 = (u−Kt)

∂

∂u
+ v

∂

∂v
; Γ5 = (u−Kt)

∂

∂u
+ y

∂

∂y
;

Γ6 =
[
k2

1

2
(u−Kt) log y +

ut

2
+
k2

1v

2y
− Kt2

2

]
∂

∂u
− yt

∂

∂y
+
v

2

(
k2

1 log y− t
) ∂
∂v

;
(4.21)

and the infinite symmetry generator

Γ∞ = ∂H(y, t)
∂y

∂

∂u
+H(y, t)

∂

∂v
, (4.22)

where H is an arbitrary solution of (4.18). Γ1, Γ2, and Γ6 are potential symmetries. Equa-
tion (4.18) may naturally split into another auxiliary system using a different potential
variable, say w. However, the potential symmetries that may rise in terms of the variable
w are not transformable to the symmetries in given (4.20). The genuine potential sym-
metries lead to the functional form of the invariant solution. As an example, we construct
the solution using the Γ6 generator. Γ6-invariant solution is given by

v = √y exp
(
− k2

1

4t
(log y)2

)
G(t), (4.23)

u={∫
exp

(− k2
1(log y)2/4t

)(
k2

1Kty log y− k2
1
√
y exp

(− k2
1(log y)2/4t

))
G(t)+Kyt2

2y5/2t
dy + c1

}

· y(k2
1 /4t) log y+1/2,

(4.24)

where G(t) is an arbitrary function of t and c1 is a constant.

5. Some discussions and concluding remarks

The analysis in this paper refers to flow along a single channel. Even if water viscosity does
not vary much, the analysis applies equally well to industrial fluid mixtures, for example
water-alcohol mixtures, wherein this effect may be more important.
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The problem has been mathematically simplified by assuming both viscosity and dif-
fusivity to vary with concentration in the same way, that is, the power law with the same
exponent. Further analysis of the system of (2.5) and (2.6) with distinct exponents for
viscosity and diffusivity may be an interesting topic for future study.

Lie group analysis resulted in some exotic admitted symmetries and hence some in-
variant solution. We observed that the problem is difficult when the source term is
nonzero. However, we made use of nonconstant concentration that appeared as coeffi-
cient in the river velocity equation. A rich symmetry structure indicated in Table 3.1 may
lead to reductions and extra invariant solutions.
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