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Graded PI-exponents of simple Lie
superalgebras

Dušan Repovš and Mikhail Zaicev

Abstract. We study Z2-graded identities of simple Lie superalgebras over a field of char-

acteristic zero. We prove the existence of the graded PI-exponent for such algebras.

1. Introduction

Let A be an algebra over a field F with char F=0. A natural way of measuring

the polynomial identities satisfied by A is by studying the asymptotic behaviour of

its sequence of codimensions {cn(A)}, n=1, 2, .... If A is a finite dimensional algebra

then the sequence {cn(A)} is exponentially bounded. In this case it is natural to

ask the question about existence of the limit

(1) lim
n→∞

n
√
cn(A)

called the PI-exponent of A. Such question was first asked for associative algebras

by Amitsur at the end of 1980’s. A positive answer was given in [6]. Subsequently it

was shown that the same problem has a positive solution for finite dimensional Lie

algebras [14], for finite dimensional alternative and Jordan algebras [5] and for some

other classes. Recently it was shown that in general the limit (1) does not exist

even if {cn(A)} is exponentially bounded [15]. The counterexample constructed in

[15] is infinite dimensional whereas for finite dimensional algebras the problem of

the existence of the PI-exponent is still open. Nevertheless, if dimA<∞ and A is

simple then the PI-exponent of A exists as it was proved in [8].

If in addition A has a group grading then graded identities, graded codimen-

sions and graded PI-exponents can also be considered. In this paper we discuss
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graded codimensions behaviour for finite dimensional simple Lie superalgebras.

Graded codimensions of finite dimensional Lie superalgebras were studied in a num-

ber of papers (see for example, [11] and [12]). In particular, in [11] an upper bound

of graded codimension growth was found for one of the series of simple Lie super-

algebras.

In the present paper we prove that the graded PI-exponent of any finite di-

mensional simple Lie superalgebra always exists. All details concerning numerical

PI-theory can be found in [7].

2. Main constructions and definitions

Let L=L0⊕L1 be a Lie superalgebra. Elements from the component L0 are

called even and elements from L1 are called odd. Denote by L(X,Y ) a free Lie super-

algebra with infinite sets of even generators X and odd generators Y . A polynomial

f=f(x1, ..., xm, y1, ..., yn)∈L(X,Y ) is said to be a graded identity of Lie superalge-

bra L=L0⊕L1 if f(a1, ..., am, b1, ..., bn)=0 whenever a1, ..., am∈L0, b1, ..., bn∈L1.

Denote by Idgr(L) the set of all graded identities of L. Then Idgr(L) is an

ideal of L(X,Y ). Given non-negative integers 0≤k≤n, let Pk,n−k be the subspace

of all multilinear polynomials f=f(x1, ..., xk, y1, ..., yn−k)∈L(X,Y ) of degree k on

even variables and of degree n−k on odd variables. Then Pk,n−k∩Idgr(L) is the

subspace of all multilinear graded identities of L of total degree n depending on k

even variables and n−k odd variables. Denote also by Pk,n−k(L) the quotient

Pk,n−k(L)=
Pk,n−k

Pk,n−k∩Idgr(L)
.

Then the partial graded (k, n−k)-codimension of L is

ck,n−k(L)=dimPk,n−k(L)

and the total graded nth codimension of L is

(2) cgrn (L)=

n∑

k=0

(
n

k

)
ck,n−k(L).

If the sequence {cgrn (L)}n≥1 is exponentially bounded then one can consider

the related bounded sequence n
√
cgrn (L). The latter sequence has the following lower

and upper limits

expgr(L)= lim inf
n→∞

n

√
cgrn (L) and expgr(L)= lim sup

n→∞

n

√
cgrn (L)
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called the lower and upper PI-exponents of L, respectively. If the ordinary limit

exists, it is called the (ordinary) graded PI-exponent of L,

expgr(L)= lim
n→∞

n

√
cgrn (L).

Symmetric groups and their representations play an important role in the

theory of codimensions. In particular, in the case of graded identities one can

consider the Sk×Sn−k-action on multilinear graded polynomials. Namely, the

subspace Pk,n−k⊆L(X,Y ) has a natural structure of Sk×Sn−k-module where Sk

acts on even variables x1, ..., xk while Sn−k acts on odd variables y1, ..., yn−k.

Clearly, Pk,n−k∩Idgr(L) is the submodule under this action and we get an induced

Sk×Sn−k-action on Pk,n−k(L). The character χk,n−k(L)=χ(Pk,n−k(L)) is called

(k, n−k) cocharacter of L. Since char F=0, this character can be decomposed into

the sum of irreducible characters

(3) χk,n−k(L)=
∑

λ�k
μ�n−k

mλ,μχλ,μ

where λ and μ are partitions of k and n−k, respectively. All details concern-

ing representations of symmetric groups can be found in [9]. An application of

Sn-representations in PI-theory can be found in [1], [3], [7].

Recall that an irreducible Sk×Sn−k-module with the character χλ,μ is the

tensor product of Sk-module with the character χλ and Sn−k-module with the

character χμ. In particular, the dimension degχλ,μ of this module is the product

dλdμ where dλ=degχλ, dμ=degχμ. Taking into account multiplicities mλ,μ in (3)

we get the relation

(4) ck,n−k(L)=
∑

λ�k
μ�n−k

mλ,μdλdμ.

A number of irreducible components in the decomposition of χk,n−k(L), i.e. the

sum

lk,n−k(L)=
∑

λ�k
μ�n−k

mλ,μ

is called the (k, n−k)-colength of L. The total graded colength lgrn (L) is

lgrn (L)=

n∑

k=0

lk,n−k(L).

Now let L be a finite dimensional Lie superalgebra, dimL=d. Then

(5) cgrn (L)≤ dn
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by the results of [2] (see also [4]). On the other hand, there exists a polynomial ϕ

such that

(6) lgrn ≤ϕ(n)

for all n=1, 2, ... as it was mentioned in [11]. Note also that mλ,μ �=0 in (3) only

if λ	k, μ	n−k are partitions with at most d components, that is λ=(λ1, ..., λp),

μ=(μ1, ..., μq) and p, q≤d=dimL.

Since all partitions under our consideration are of the height at most d, we will

use the following agreement. If say, λ is a partition of k with p<d components then

we will write λ=(λ1, ..., λd) anyway, assuming that λp+1=...=λd=0.

For studying asymptotic behaviour of codimensions it is convenient to use the

following function defined on partitions. Let ν be a partition of m, ν=(ν1, ..., νd).

We introduce the following function of ν:

Φ(ν)=
1

(ν1

m )
ν1
m ...(νd

m )
νd
m

.

The values Φ(ν)m and dν=degχν are very close in the following sense.

Lemma 2.1. [8, Lemma 1] Let m≥100. Then

Φ(ν)m

md2+d
≤ dν ≤mΦ(ν)m.

Function Φ has also the following useful property. Let ν and ρ be two partitions

of m with the corresponding Young diagrams Dν , Dρ. We say that Dρ is obtained

from Dν by pushing down one box if there exist 1≤i<j≤d such that ρi=νi−1, ρj=

νj+1 and ρt=νt for all remaining 1≤t≤d.

Lemma 2.2. (see [8, Lemma 3], [16, Lemma 2]) Let Dρ be obtained from Dν

by pushing down one box. Then Φ(ρ)≥Φ(ν).

3. Existence of graded PI-exponents

Throughout this section let L=L0⊕L1 be a finite dimensional simple Lie su-

peralgebra, dimL=d. Then by (5) its upper graded PI-exponent exists,

a=expgr(L)= lim sup
n→∞

n

√
cgrn (L).

Note that the even component L0 of L is not solvable since L is simple (see [13,

Chapter 3, §2, Proposition 2]).

We shall need the following fact.
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Remark 3.1. Let G be a non-solvable finite dimensional Lie algebra over a field

F of characteristic zero. Then the ordinary PI-exponent of G exists and is an integer

not less than 2.

Proof. It is known that cn(G) is either polynomially bounded or it grows ex-

ponentially not slower that 2n (see [10]). The first option is possible only if G is

solvable. On the other hand exp(G) always exists and is an integer [14] therefore

we are done. �

By the previous remark Pn,0(L)�2n asymptotically and then

(7) a≥ 2.

The following lemma is the key technical step in the proof of our main result.

Lemma 3.2. For any ε>0 and any δ>0 there exists an increasing sequence

of positive integers n0, n1, ... such that

(i) n
√

cgrn (L)>(1−δ)(a−ε) for all n=nq , q=1, 2, ...,

(ii) nq+1−nq≤n0+d.

Proof. Fix ε, δ>0. Since a is an upper limit there exist infinitely many indices

n0 such that

cgrn0
(L)> (a−ε)n0 .

Fixing one of n0 we can find an integer 0≤k0≤n0 such that

(8)

(
n0

k0

)
ck0,n0−k0(L)>

1

n0+1
(a−ε)n0 >

1

2n0
(a−ε)n0

(see (2)). Relation (6) shows that

∑

λ�k
μ�n−k

mλ,μ ≤ϕ(n)

for any 0≤k≤n where mλ,μ are taken from (3). Then (4) implies the existence of

partitions λ	k0, μ	n0−k0 such that

(9)

(
n0

k0

)
dλdμ >

1

2n0ϕ(n0)
(a−ε)n0 .

The latter inequality means that there exists a multilinear polynomial

f = f(x1, ..., xk0 , y1, ..., yn0−k0)∈Pk0,n0−k0
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such that F [Sk0×Sn0−k0 ]f is an irreducible F [Sk0×Sn0−k0 ]-submodule Pk0,n0−k0

with the character χλ,μ and f �∈Idgr(L). In particular, there exist a1, ..., ak0∈L0,

b1, ..., bn0−k0∈L1 such that

A= f(a1, ..., ak0 , b1, ..., bn0−k0) �=0

in L. First we will show how to find n1, k1 which are approximately equal to

2n0, 2k0, respectively, satisfying the same inequality as (8).

Since L is simple and A �=0 the ideal generated by A coincides with L. Clearly,

every simple Lie superalgebra is centerless. Hence one can find c1, ..., cd1∈L0∪L1

such that

[A, c1, ..., cd1 , A] �=0

and d1≤d−1. Here we use the left-normed notation [[a, b], c]=[a, b, c] for nonasso-

ciative products. It follows that a polynomial

[f1, z1, ..., zd1 , f2] = g2 ∈P2k0+p,2n0−2k0+r, p+r= d1,

is also a non-identity of L where z1, ..., zd1∈X∪Y are even or odd variables, whereas

f1 and f2 are copies of f written on disjoint sets of indeterminates,

f1 = f
(
x1
1, ..., x

1
k0
, y11 , ..., y

1
n0−k0

)
,

f2 = f
(
x2
1, ..., x

2
k0
, y21 , ..., y

2
n0−k0

)
.

Consider the S2k0×S2n0−2k0 -action on P2k0+p,2n0−2k0+r where S2k0 acts on

x1
1, ..., x

1
k0
, x2

1, ..., x
2
k0

and S2n0−2k0 acts on y11 , ..., y
1
n0−k0

, y21 , ..., y
2
n0−k0

. Denote by

M the F [S2k0×S2n0−2k0 ]-submodule generated by g2 and examine its character. It

follows from Richardson–Littlewood rule that

χ(M)=
∑

ν�2k0
ρ�2n0−2k0

tν,ρχν,ρ

where either ν=2λ=(2λ1, ..., 2λd) or ν is obtained from 2λ by pushing down one or

more boxes of D2λ. Similarly, ρ is either equal to 2μ or ρ is obtained from 2μ by

pushing down one or more boxes of D2μ. Then by Lemma 2.2 we have

Φ(ν)≥Φ(2λ)=Φ(λ) and Φ(ρ)≥Φ(2μ)=Φ(μ).

By Lemma 2.1 and (9) we have

(10)

(
n0

k0

)(
Φ(λ)Φ(μ)

)n0
>

1

2n3
0ϕ(n0)

(a−ε)n0 .
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Now we present the lower bound for binomial coefficients in terms of function Φ.

Clearly, the pair (k, n−k) is a two-component partition of n if k≥n−k. Otherwise

(n−k, k) is a partition of n. Since x−xy−y=y−yx−x for all x, y≥0, x+y=1, we will

use the notation Φ( kn ,
n−k
n ) in both cases k≥n−k or n−k≥k. Then it easily follows

from the Stirling formula that

1

n
Φ

(
k

n
,
n−k

n

)n

≤
(
n

k

)
≤nΦ

(
k

n
,
n−k

n

)n

,

hence

(11)

(
qk0
qn0

)
>

1

qn0
Φ

(
qk0
qn0

,
qn0−qk0

qn0

)qn0

=
1

qn0
Φ

(
k0
n0

,
n0−k0
n0

)qn0

for all integers q≥2 and also

(12)

(
Φ

(
k0
n0

,
n0−k0
n0

)
Φ(λ)Φ(μ)

)n0

>
1

2n4
0ϕ(n0)

(a−ε)n0 ,

by virtue of (10).

Recall that we have constructed earlier a multilinear polynomial g2=[f1, z1, ...,

zd1 , f2] which is not a graded identity of L and f1, f2 are copies of f . Applying the

same procedure we can construct a non-identity of the type

gq = [gq−1, w1, ..., wdq−1 , fq]

of total degree nq−1=nq−2+n0+w1+...+wdq−1 where dq−1≤d and fq is again a

copy of f for all q≥2.

As in the case q=2 the F [Sqk0×Sqn0−qk0 ]-submodule of Pk,n−k(L) (where

n=nq−1=qn0+p′, k=kq−1=qk0+p′′) contains an irreducible summand with the

character χν,ρ where ν	qk0, ρ	qn0−qk0, Φ(ν)≥Φ(λ),Φ(ρ)≥Φ(μ). Moreover, for

n=nq−1 we have

cgrn (L) ≥
(
qn0

qk0

)
dνdρ >

1

n2d2+2d

(
qn0

qk0

)(
Φ(λ)Φ(μ)

)qn0

>
1

n2d2+2d+1

(
Φ

(
k0
n0

,
n0−k0
n0

)
Φ(λ)Φ(μ)

)qn0

by Lemma 2.1 and the inequality (11). Now it follows from (12) that

cgrn (L)>
1

n2d2+2d+1

1

(2n4
0ϕ(n0))q

(a−ε)qn0 .



154 Dušan Repovš and Mikhail Zaicev

Note that qn0≤n≤qn0+qd. Hence q/n≤1/n0 and

(a−ε)qn0 ≥ (a−ε)n

aqd

since a≥2 (see (7)). Therefore

n

√
cgrn (L)>

(a−ε)n

n
2d2+2d+1

n (2adn4
0ϕ(n0))

1
n0

for all n=nq−1, q=1, 2, .... Finally note that the initial n0 can be taken to be

arbitrarily large. Hence we can suppose that

n− 2d2+2d+1
n

(
2adn4

0ϕ(n0)
)− 1

n0 > 1−δ

for all n≥n0. Hence the inequality

n

√
cgrn (L)> (1−δ)(a−ε)n

holds for all n=nq , q=0, 1, .... The second inequality nq+1−nq≤n0+d follows

from the construction of the sequence n0, n1, ..., and we have thus completed the

proof. �

Now we are ready to prove the main result of the paper.

Theorem 3.3. Let L be a finite dimensional simple Lie superalgebra over a

field of characteristic zero. Then its graded PI-exponent

expgr(L)= lim
n→∞

n

√
cgrn (L)

exists an is less than or equal to d=dimL.

Proof. First note that, given a multilinear polynomial h=h(x1, ..., xk, y1, ...,

yn−k)∈Pk,n−k, the linear span M of all its values in L is a L0-module since

[h, z] =
∑

i

h
(
x1, ..., [xi, z], ..., xk, y1, ..., yn−k

)

+
∑

j

h
(
x1, ..., xk, y1, ..., [yj , z], ..., yn−k

)

for any z∈L(X,Y )0. Hence ML1 �=0 in L and 0≡[h,w] is not an identity of L for

odd variable w as soon as h �∈Idgr(L). It follows that

ck,n−k+1(L)≥ ck,n−k(L)
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and then

(13) cgrn (L)≥ cgrm (L)

for n≥m.

Fix arbitrary small ε, δ>0. By Lemma 3.2 there exists an increasing se-

quence nq, q=1, 2, ..., such that cgrn (L)>((1−δ)(a−ε))n for all n=nq, q=0, 1, ..., and

nq+1−nq≤n0+d. Denote b=(1−δ)(a−ε) and take an arbitrary nq<n<nq+1. Then

cgrn (L)≥cgrnq
(L) and n−nq≤n0+d. Referring to (7) we may assume that b>1. Then

bnq≥bn ·b−(n0+d) and

cgrn (L)≥
(
b1−

n0+d
n

)n

for all nq≤n≤nq+1 and all q=0, 1, ..., that is for all sufficiently large n. The latter

inequality means that

lim inf
n→∞

n

√
cgrn (L)≥ (1−δ)b=(1−δ)2(a−ε).

Since ε, δ were chosen to be arbitrary, we have thus completed the proof of the

theorem. �
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12. Repovš, D. and Zaicev, M., Graded codimensions of Lie superalgebra b(2), J. Algebra
422 (2015), 1–10.

13. Scheunert, M., The Theory of Lie Superalgebras; An Introduction, Lecture Notes in
Math. 716, Springer, Berlin, 1979.

14. Zaitsev, M. V., Integrality of exponents of growth of identities of finite-dimensional
Lie algebras, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), 23–48 (Russian).
English transl.: Izv. Math. 66 (2002), 463–487.

15. Zaicev, M., On existence of PI-exponents of codimension growth, Electron. Res. An-
nounc. Math. Sci. 21 (2014), 113–119.
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