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Banach analytic sets and a non-linear version
of the Levi extension theorem

Sergey Ivashkovich

Abstract. We prove a certain non-linear version of the Levi extension theorem for mero-

morphic functions. This means that the meromorphic function in question is supposed to be

extendable along a sequence of complex curves, which are arbitrary, not necessarily straight lines.

Moreover, these curves are not supposed to belong to any finite-dimensional analytic family. The

conclusion of our theorem is that nevertheless the function in question meromorphically extends

along an (infinite-dimensional) analytic family of complex curves and its domain of existence is a

pinched domain filled in by this analytic family.

1. Introduction

1.1. Statement of the main result

By (λ, z) we denote the standard coordinates in C
2. For ε>0 consider the

following ring domain

(1) R1+ε = {(λ, z) ∈ C
2 : 1−ε< |λ| < 1+ε and |z| < 1} =A1−ε,1+ε ×Δ,

i.e., R1+ε is the product of the annulus A1−ε,1+ε :={z ∈C:1−ε<|λ|<1+ε} and the
unit disk Δ. Let a sequence of holomorphic functions {φk : Δ1+ε→Δ} ∞

k=1 be given
such that φk converge uniformly on Δ1+ε to some φ0 : Δ1+ε→Δ. We say that such
a sequence is a test sequence if (φk −φ0)|∂Δ does not vanish for k �0 and

(2) Var Arg
∂Δ

(φk −φ0) stays bounded when k→ ∞.

Denote by Ck the graph of φk in Δ1+ε ×Δ, and by C0 the graph of φ0.

This research is supported in part by the grant ANR-10-BLAN-0118.
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Figure 1. The brighter dashed zone on this picture represents the ring domain R1+ε

and the curves are the graphs Cα. Around Cα0 , the graph of φ0=φα0 , the analytic
family {Cα }α∈ A fills in an another (darker) dashed zone, a pinched domain P . On
this picture there is exactly one pinch, the point at which most of the graphs intersect.

Theorem 1.1. Let f be a meromorphic function on R1+ε and {φk } ∞
k=1 be

a test sequence such that for every k the restriction f |Ck ∩R1+ε is well defined and
extends to a meromorphic function on the curve Ck, and that the number of poles
counted with multiplicities of these extensions is uniformly bounded. Then there
exists an analytic family of holomorphic graphs {Cα}α∈A parameterized by a Banach
ball A of infinite dimension such that :

(i) f |Cα ∩R1+ε extends to a meromorphic function on Cα for every α∈ A and
the number of poles counted with multiplicities of these extensions is uniformly
bounded ;

(ii) f meromorphically extends as a function of two variables (λ, z) to the
pinched domain P :=Int(

⋃
α∈A Cα) swept by Cα.

Here every Cα is a graph of some holomorphic function φα. The notion of a
pinched domain, though intuitively clear, see Figure 1, is discussed in details at the
beginning of Section 2.

Definition 1.2. The graphs {Ck } ∞
k=1 of our functions {φk } ∞

k=1 are in general
position if for every point λ0 ∈Δ there exists a subsequence {φkp } ∞

p=1 such that the
zeroes of φkp −φ0 do not accumulate to λ0.

Theorem 1.1 implies the following non-linear Levi-type extension theorem.

Corollary 1.3. If under the conditions of Theorem 1.1 the curves {Ck } ∞
k=1

are in general position then f extends to a meromorphic function in the bidisk
Δ1+ε ×Δ.

Remark 1.4. Let us explain the condition of a general position. Take the se-
quence Ck={z :z=λ/k} in C

2. Then the function f(λ, z)=ez/λ is holomorphic in
R:=C

∗ ×C and extends holomorphically along every curve Ck. But it is not holo-
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morphic (even not meromorphic) in C
2. It is also holomorphic when restricted

to any curve C={z :z=φ(λ)} provided φ(0)=0. Therefore the subspace H0 of
φ∈Hol(Δ1+ε, Δ) such that f extends along the corresponding curve is of codimen-
sion one. In fact this is the general case: the Banach ball A in Theorem 1.1 appears
as a neighborhood of the limit point α0 in the subspace of finite codimension of a
well-chosen Banach space of holomorphic functions.

Remark 1.5. To explain the condition (2) we impose on our test sequences we
construct in Section 5 for the following non-test sequence

{
φk(λ)=

(
2
3λ

)k}∞
k=1

a
holomorphic function f in C

∗ ×C which holomorphically extends along every graph
Ck but which is not extendable meromorphically along any one-parameter analytic
family {φα}α∈A, see Example 5.1 there.

1.2. Meromorphic mappings

The assumption that f is a function in Theorem 1.1 is not really important. We
prove also a non-linear version of an extension theorem for meromorphic mappings
with values in general complex spaces putting it into a form suitable for applications.
Let us call a family {φt ∈Hol(Δ1+ε, Δ):t∈T } a test family if there exists N ∈N

such that for every pair s �=t∈T there exists a radius 1−ε/2<r<1+ε/2 such that
(φs −φt)|∂Δr does not vanish and has winding number ≤N . As usual by Ct we
denote the graph of φt.

Corollary 1.6. Let X be a reduced disk-convex complex space and f : R1+ε→
X be a meromorphic mapping. Suppose that there exists an uncountable test family
of holomorphic functions {φt ∈Hol(Δ1+ε, Δ):t∈T } such that f |Ct ∩R1+ε holomorphi-
cally extends to Ct for every t∈T . Then f extends to a meromorphic mapping from
a pinched domain P to X .

Moreover, there exists, like in Theorem 1.1, an infinite-dimensional family of
graphs Cα parameterized by a Banach ball A such that f |Cα ∩R1+ε holomorphically
extends to Cα for all α∈ A. The condition that f |Ct ∩R1+ε is assumed to extend
holomorphically should not be confusing because meromorphic functions on curves
are precisely holomorphic mappings to the Riemann sphere P

1. That is, the mero-
morphic functions case is the case X=P

1 in this corollary.

1.3. Structure of the paper and notes

Theorem 1.1 is proved in Section 2. The set A such that f |Cα ∩R1+ε meromor-
phically extends to Cα for α∈ A is always a Banach analytic subset of a neigh-
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borhood of φ0 in the Banach space Hol(Δ1+ε, Δ). In particular the sequence
φk(λ)=

(
2
3λ

)k of Example 5.1 is a Banach analytic set, namely the zero set of an
appropriate singular integral operator, see Section 3 for more details. The (known)
problem however is that a every metrizable compact set can be endowed with a
structure of a Banach analytic set (in an appropriate complex Banach space), see
[Mz]. For the case of a converging sequence of points see Remark 3.9 for a very
simple example. Therefore in the infinite-dimensional case from the fact that our
Banach analytic set contains a non-isolated point we cannot deduce that it contains
an analytic disk. Our major task here is to overcome this difficulty.

In the case when Ck=Δ1+ε × {zk } with zk→0, i.e., when Ck are horizontal
disks, this result is exactly the theorem of E. Levi, see [L] (the case of holomorphic
extension is due to Hartogs, see [H]). It should be said that Levi’s theorem is usually
stated in the form as our Corollary 1.6: if f as above extends along an uncountable
family of horizontal disks Ct=Δ1+ε × {t}, then f meromorphically extends to Δ2.
But the proof goes as follows: one notes that then there exists a sequence {tk } ∞

k=1 (in
fact an uncountable subfamily) such that extensions along the Ctk

have uniformly
bounded number of poles, and then the statement similar to our Theorem 1.1 is
proved.

If the number of poles of the extensions f |Ck
is not uniformly bounded then

the conclusion of Theorem 1.1 fails to be true even in the case of horizontal disks.
This is shown by Example 5.3.

In the case when {Ct}t∈T are non-horizontal straight disks, i.e., intersections
of lines with Δ2, Corollary 1.3 is due to Dinh, see [D], Corollaire 1. The proof
in [D] uses results on the complex Plateau problem in projective space (after an
appropriate Segre imbedding) and is essentially equivalent to the solution of this
problem. From the point of view of this paper this is a special case when {Ck } ∞

k=1

ad hoc belong to a finite-dimensional analytic family: in the Levi case the family is
one-dimensional, in the case of Dinh two-dimensional. In Section 3, after recalling
the necessary facts about singular integral transforms, we give a very short proof
of a non-linear extension theorem, see Theorem 3.5, in the case when {Ck } ∞

k=1

are ad hoc included in an arbitrary finite-dimensional family. In the straight case,
i.e., when {Ct}t∈T are non-horizontal straight disks, the result of Corollary 1.6 for
Kähler X was proved in [Sk] following the approach of [D].

It is important to outline that we do not suppose a priori that {Ck } ∞
k=1 are

included into any finite-dimensional family of complex curves (e.g. any family of
algebraic curves of uniformly bounded degree) and, in fact, it is the main point of
this paper to develop techniques for producing analytic disks Cα in families.

Corollary 1.6 is proved in Section 4, where also a general position assumption
is discussed. Examples 5.1 and 5.3 are treated in Section 5.



Banach analytic sets and a non-linear version of the Levi extension theorem 153

Acknowledgement. At the end I would like to give my thanks to the referee
of this paper for the valuable remarks and suggestions.

2. Extension to pinched domains

2.1. Analytic families and pinched domains

By an analytic family of holomorphic mappings from Δ to Δ we understand
the quadruple (X , π, A, Φ) where:

– X is a complex manifold, which is either finite-dimensional or a Banach
manifold;

– a holomorphic submersion π : X →A, where A is a positive-dimensional com-
plex (Banach) manifold such that for every α∈ A the preimage Xα :=π−1(α) is a
disk;

– a holomorphic map Φ: X →C
2 of generic rank 2 such that for every α∈ A

the image Φ(Xα)=Cα is a graph of a holomorphic function φα : Δ→Δ.
A family (X , π, A, Φ) we shall often also call an analytic family of complex

disks in Δ2. In our applications A will always be a neighborhood of some α0 and
without loss of generally we may assume for convenience that φα0 ≡0, i.e., that
Cα0 =Δ× {0}. In this local case, after shrinking X and Δ2 if necessary, we can
suppose that X =Δ× A, and we shall regard in this case Φ as a natural universal
map

(3) Φ: (λ, α) �−→ (λ, φα(λ))

from Δ× A to Δ2, writing Φ(λ, α)=(λ, φ(λ, α)) when convenient, meaning φ(λ, α)=
φα(λ). We shall often consider the case when A is a one-dimensional disk, in that
case we say that our family is a complex one-parameter analytic family. In this
case taking as A a sufficiently small neighborhood of α0 and perturbing ∂Δ in
the λ-variable slightly we can suppose without loss of generality that φα does not
vanish on ∂Δ if α �=α0. In particular the winding number of φα|∂Δ is constant for
α∈ A \ {α0}, see Proposition 3.8.

Denote the image Φ(X ) by ˙P X ,Φ, where (X , π, Δ, Φ) is some complex one-
parameter analytic family of complex disks in Δ2. A point λ0 such that φ(λ0, α)≡0
as a function of α we call a pinch of ˙P X ,Φ and say that ˙P X ,Φ has a pinch at λ0.
Let us describe the shape of ˙P X ,Φ near a pinch λ0. Since φ(λ0, α)≡0 we can divide
it by (λ−λ0)l0 with some (taken to be maximal) l0 ≥1. That is, in a neighborhood
of (λ0, α0)∈Δ× A we can write

(4) φ(λ, α)= (λ−λ0)l0φ1(λ, α),
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where φ1(λ0, α) �≡0. Set

(5) Φ1 : (λ, α) �−→ (λ, φ1(λ, α)).

The image of Φ1 contains a bidisk Δ2
r(λ0, 0) of some radius r>0 centered at (λ0, 0).

Therefore

(6) ˙P X ,Φ ⊃ {z ∈ Δ2
r(λ0, 0) : |z| <c|λ−λ0|l0 }

with some constant c>0.

Definition 2.1. By a pinched domain we shall understand an open neighbor-
hood P of Δ̄\Λ, where Λ is a finite set of points in Δ, such that in a neighborhood
of every λ0 ∈Λ the domain P contains

(7) {z ∈ Δ2
r(λ0, 0) : |z| <c|λ−λ0|l0 } \ {(λ0, 0)}.

We shall call l0 the order of the pinch λ0.

After shrinking Δ (in the λ-variable) if necessary, we can suppose that the set
˙P X ,Φ which corresponds to the complex one-parameter analytic family (X , π, A, Φ)
has only finite number of pinches, say at λ1, ..., λN of orders l1, ..., lN respectively,
and therefore P X ,Φ :=˙P X ,Φ \ {λ1, ..., λN } is a pinched domain. Note that ˙P X ,Φ ob-
viously contains every curve in a neighborhood B of φ0 ≡0 of the subspace

(8) {φ ∈ Hol(Δ, Δ) : ord0(φ, λj) ≥ lj } ⊂ Hol(Δ, Δ),

which is of finite codimension.

Remark 2.2. (a) Therefore, let us make the following assumption: our pinched
domains will always be supposed to have only finitely many pinches and moreover,
these pinches do not belong to the corresponding pinched domain by definition.

(b) The Hilbert manifold structure on B (if needed) can be ensured by consid-
ering instead of Hol(Δ, Δ) the Hilbert space H1,2

+ (S1) of Sobolev functions on the
circle, which holomorphically extends to Δ, for example. This will be done later
in Section 3. At that point it will be sufficient for us to note that extension along
one-parameter analytic families is equivalent to that along infinite-dimensional ones,
and both imply the extension to pinched domains. More precisely, the following is
true:
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Proposition 2.3. Let (X , π, A, Φ) be a complex one-parameter analytic family
of complex disks in Δ2 and let P X ,Φ be the corresponding pinched domain. Suppose
that a holomorphic function f on R1+ε meromorphically extends along every Cα,
α∈ A. Let B be the infinite-dimensional analytic family of complex disks in Δ2

constructed as in (8). Then
(i) f meromorphically extends to P X ,Φ as a function of two variables;
(ii) for every β ∈ B the restriction f |Cβ ∩R1+ε extends to a meromorphic function

on Cβ and the number of poles of these extensions are uniformly bounded.

Proof. Writing X =Δ× A with A=Δ and α0=0, and taking the preimage W :=
Φ−1(R1+ε) in Δ× A ≡Δ2 we find ourselves in the following situation:

(i) W contains a ring domain (denote it by W as well), and g :=f ◦Φ is mero-
morphic (or holomorphic, after shrinking) on W .

(ii) For every α∈ A the restriction g|(Δ× {α})∩W meromorphically extends to
Δ× {α}.

The classical theorem of Levi, see [L] and [Si1], implies now that g meromor-
phically extends to X =Δ× A, and this gives us the extension of f to PX ,Φ.

For the proof of the extendability of f |Cβ ∩R1+ε to Cβ for every β ∈ B close
enough to zero let us first of all remark that Φ−1(Cβ) is contained in a relatively
compact part of X . Indeed, take a pinch λ0 and suppose without loss of generality
that λ0=0. Write

(9) φ(λ, α) =λl0φ1(λ, α)

as in (4). Since φ1(0, α) �≡0 we can use the Weierstrass preparation theorem and
represent

(10) φ1(λ, α) =u(αk+g1(λ)αk−1+...+gk(λ))

with u(0, 0) �=0 and g1(0)=...=gk(0)=0. Take the corresponding φβ ∈ B with graph
Cβ and write it as φβ(λ)=c0λ

l0 φ̃(λ). Consider the equation φ(λ, α)=φβ(λ), i.e.,

(11) λl0(αk+g1(λ)αk−1+...+gk(λ)) =u−1c0λ
l0 φ̃(λ),

or, equivalently

(12) αk+g1(λ)αk−1+...+gk(λ) =u−1c0φ̃(λ).

For λ∼0 all solutions α1(λ), ..., αk(λ) of (12) are close to zero, provided c0 is small
enough. This proves our assertion that Φ−1(Cβ)�X and implies that f |Cβ ∩R1+ε

meromorphically extends to Cβ .
The orders of the poles of the meromorphic function g of two variables (λ, α)

is bounded on every relatively compact part of X =Δ× A and therefore the orders
of the poles of our extensions are also bounded. �
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Remark 2.4. Note that f meromorphically extends to the pinched domain P B
swept by the family B as well, simply because it is the same domain (up to shrink-
ing).

2.2. Proof of Theorem 1.1

We start with the proof of (ii). Without loss of generality we may assume that
φ0 ≡0. Indeed, the condition φ0 ≡0 is not a restriction neither here, nor anywhere
else in this paper, because it can be always achieved by the coordinate change

(13)

{
λ �−→λ,

z �−→ z −φ0(λ).

Furthermore, when considering the extension of a meromorphic function f from a
ring domain R1+ε to the bidisk Δ1+ε ×Δ one can suppose that f is holomorphic on
R1+ε (after shrinking R1+ε if necessary and after multiplying by some power of z),
and moreover, after decomposing f=f++f −, where f+ is holomorphic in Δ1+ε ×Δ
and f − in (P1 \Δ̄)×Δ, one can subtract f+ from f and suppose that f+ ≡0. This
means that we can suppose that f has the Taylor decomposition

(14) f(λ, z) =
∞∑

n=0

An(λ)zn

in R1+ε with

(15) An(λ) =
−1∑

l=− ∞
an,lλ

l.

As a result, in this proof we may suppose that f=f − and f − is holomorphic in
A1−ε,1+ε ×Δ1+2ε. Therefore for |λ| near 1 the Taylor expansion of f is

(16) f(λ, z) =
∞∑

n=0

1
n!

∂nf(λ, 0)
∂zn

zn =
∞∑

n=0

An(λ)zn,

and we have the estimates

(17) |An(λ)| =
1
n!

∣
∣
∣
∣
∂nf(λ, 0)

∂zn

∣
∣
∣
∣ ≤ C

(1+ε)n
,

for some constant C, all k ∈N and all λ∈S1 :=∂Δ. Under the assumptions of the
theorem we see that meromorphic extensions fk(λ) of f(λ, φk(λ)) have a uniformly
bounded number of poles counted with multiplicities. As well as the number of
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zeroes of φk are uniformly bounded too. Up to taking a subsequence we can suppose
that

(a) the number of poles of the fk’s, counted with multiplicities, is constant,
say M , and these poles converge to the finite set b1, ..., bM ∈Δ1−ε with corresponding
multiplicities, i.e., some of the b1, ..., bM may coincide;

(b) the number of zeroes of φk, counted with multiplicities, is also constant,
say N and these zeroes converge to a finite set with corresponding multiplicities.
We shall denote it by a1, ..., aN , meaning that some of them can coincide.

Step 1. For every k take a Blaschke product Pk having zeroes exactly at the
poles of fk with corresponding multiplicities and extract from {Pk } ∞

k=1 a converging
subsequence with the limit

(18) P0(λ) =
M∏

j=1

λ−bj

1−b̄jλ
.

The holomorphic functions gk :=Pkfk have uniformly bounded modulus on Δ and
converge to some g0, with modulus bounded by C (a constant from (17)). Therefore
fk converge on compact subsets of Δ\ {b1, ..., bM } to a meromorphic function, which
is nothing but A0, and which satisfies the estimate

(19) |A0(λ)| ≤ CC1

|λ−b1|...|λ−bM | ,

where C1=max{
∏M

j=1 |1−b̄jλ|:|λ| ≤1}.

Step 2. Consider the function

(20) f1(λ, z) :=
f(λ, z)−A0(λ)

z
,

and the functions

(21) f1,k(λ) := f1(λ, φk(λ)) =
f(λ, φk(λ))−A0(λ)

φk(λ)
.

These functions are well defined and meromorphic on Δ1+ε, the equality in (21)
makes sense on A1−ε,1+ε. After taking a subsequence we see that the poles of f1,k,
which are different from the zeroes of φk, converge to the same points b1, ..., bN .
So the multiplicities do not increase. Let again Pk be the Blaschke product having
zeroes at the poles of f1,k with corresponding multiplicities. Take a subsequence
Pk uniformly converging to a corresponding Blaschke product P0 and holomorphic
functions gk :=Pkf1,k uniformly converging to some holomorphic function g0. In
A1−ε,1+ε it is straightforward to see that g0=P0A1. This proves that A1 (if not
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identically zero), has at most N+M poles counting with multiplicities and these
poles are located at a1, ..., aN , b1, ..., bM .

Moreover, for |λ|=1 from (17) we have the estimate

(22) |P0(λ)A1(λ)| ≤ C

1+ε
,

which implies that

(23) |A1(λ)| ≤ 1
|λ−a1|...|λ−aN | |λ−b1| |λ−bN |

CC1C2

1+ε

for λ∈Δ\ {a1, ..., aN , b1, ..., bM }. Here C1=max{
∏N

j=1 |1−ājλ|:|λ| ≤1}. Let from
now on C ′ =CC1C2.

Step 3. Suppose that we have proved that An extends to a meromorphic
function in Δ with the estimate

(24) |An(λ)| ≤ 1
∏N

j=1 |λ−aj |n
∏M

j=1 |λ−bj |
C ′

(1+ε)n

for λ∈Δ\ {a1, ..., aN , b1, ..., bM }. Note that inequality (24) means, in particular,
that A0, ..., An have no other poles than a1, ..., bN with corresponding multiplicities.
Apply considerations as above to

fn+1(λ, z) =
1

zn+1

(

f(λ, z)−
n∑

j=0

Aj(λ)zj

)

,

i.e., consider

fn+1,k(λ) =
1

φn+1
k

(

f(λ, φk)−
n∑

j=0

Aj(λ)φj
k

)

and repeat the same process with Blaschke products. Note only that the products
Aj(λ)φj

k have no poles at the zeroes of φk. On the boundary {λ:|λ|=1} the functions
|fn+1,k(λ)| are bounded by C/(1+ε)n+1 due to Cauchy inequalities and therefore
we get the conclusion that An+1 meromorphically extends to Δ with the estimate

(25) |An+1(λ)| ≤ 1
∏N

j=1 |λ−aj |n+1
∏M

j=1 |λ−bj |
C ′

(1+ε)n+1
.

Estimate (25) implies that (16) converges in the domain

(26) {(λ, z) ∈ Δ2 : |z| <c|λ−aj1 |l1 ...|λ−aN1 |lN1 } \
M⋃

j=1

{(λ, z) : λ = bj },
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for an appropriately chosen c>0. Here N1 is the number of different aj ’s, which
are denoted as aj1 , ..., aN1 having the corresponding multiplicities l1, ..., lN1 . In
particular we mean here that bk are different from aj1 for all k and j1. The estimate
(25) implies that the extension of f

∏M
j=1(λ−bj) to (26) is locally bounded near

every vertical disk {(λ, z):λ=bk1 } and therefore extends across it by Riemann’s
extension theorem. We conclude that f extends as a meromorphic function to the
pinched domain

(27) P = {(λ, z) ∈ Δ2 : |z| <c|λ−aj1 |l1 ...|λ−aN1 |lN1 },

and this proves part (ii) of Theorem 1.1.
(i) Take now any holomorphic function φ in Δ1+ε of the form

φ(λ)= (λ−aj1)
l1 ...(λ−aN1)

lN1 ψ

with ψ small enough in order that the graph Cφ is contained in P (more precisely
so that Cφ ∩((Δ\ {aj1 , ..., aN1 })×Δ)⊂ P ). To prove the part (i) of our theorem we
need to prove the following statement.

Step 4. f(λ, φ(λ)) meromorphically extends from A1−ε,1+ε to Δ1+ε. Indeed,
f(λ, φ(λ)) is meromorphic on Δ\ {aj1 , ..., aN1 }. At the same time from the estimate
(24) we see that the terms in the series

(28) f(λ, φ(λ)) =
∞∑

n=0

An(λ)φn(λ)

are, in fact, holomorphic in a neighborhood of every aj and converge normally there,
provided ‖ψ‖∞ was taken small enough. Uniform boundedness of the number of
poles follows now from Proposition 2.3. Part (i) is proved.

Remark 2.5. In order to prove Corollary 1.3 note that pinches that appeared
in the proof of Theorem 1.1 are limits of zeroes of φk. General position assumption
means that for every λ0 ∈Δ we can take a subsequence such that the resulting
pinched domain will not have a pinch in λ0. The rest follows.

3. Extension along finite-dimensional families

3.1. Properties of the singular integral transform

By L1,2(S1) we denote the Sobolev space of complex-valued functions on the
unit circle having their first derivative in L2. This is a complex Hilbert space
with the scalar product (h, g)=

∫ 2π

0
[h(eiθ)ḡ(eiθ)+h′(eiθ)ḡ′(eiθ)] dθ. Recall that by
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the Sobolev imbedding theorem L1,2(S1)⊂ C1/2(S1), where C1/2(S1) is the space of
Hölder 1

2 -continuous functions on S
1.

For the convenience of the reader we recall a few well known facts about the
Hilbert transform in L1,2(S1).

Lemma 3.1. A function φ∈L1,2(S1) extends holomorphically to Δ if and only
if the following condition is satisfied :

(29) P (φ)(τ) := − 1
2πi

∫

S1

φ(t)−φ(τ)
t−τ

dt ≡ 0.

Proof. The fact that φ extends holomorphically to Δ can be obviously ex-
pressed as

(30) lim
z→τ
z∈Δ

1
2πi

∫

S1

φ(t)
t−z

dt=φ(τ)

for all τ ∈S
1. Write then

lim
z→τ
z∈Δ

1
2πi

∫

S1

φ(t)
t−z

dt = lim
z→τ
z∈Δ

1
2πi

∫

S1

φ(t)−φ(τ)
t−z

dt+ lim
z→τ
z∈Δ

1
2πi

∫

S1

φ(τ)
t−z

dt(31)

= −P (φ)(τ)+φ(τ).

From (30) and (31) we immediately get (29). �

Denote by S
1
ε(τ) the circle S

1 without the ε-neighborhood of τ . Consider the
following singular integral operator (the Hilbert transform)

(32) S(φ)(τ) :=p.v.
1
πi

∫

S1

φ(t)
t−τ

dt := lim
ε→0

1
πi

∫

S1
ε(τ)

φ(t)
t−τ

dt.

In the sequel we shall write simply

(33) S(φ)(τ) :=
1
πi

∫

S1

φ(t)
t−τ

dt,

i.e., the integral in the right-hand side will be always understood in the sense of the
principal value.

Lemma 3.2. The following relation between the operators S and P holds:

(34) S = −2P +Id.

Therefore a function φ∈L1,2(S1) holomorphically extends to the unit disk if an only
if

(35) S(φ)(τ) ≡ φ(τ).
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Proof. Write

1
2
S(φ)(τ) =

1
2πi

∫

S1

φ(t)
t−τ

dt= lim
ε→0

1
2πi

∫

S1
ε(τ)

φ(t)
t−τ

dt

=
1

2πi

∫

S1

φ(t)−φ(τ)
t−τ

+lim
ε→0

1
2πi

∫

S1
ε(τ)

φ(τ)
t−τ

dt = −P (φ)(τ)+
1
2
φ(τ).

Therefore one has

(36) S(φ) = −2P (φ)+φ,

which is (34), and which implies (35). �

Denote by H1,2
+ (S1) the subspace of L1,2(S1) which consists of functions holo-

morphically extendable to the unit disk Δ. By H1,2
− (S1) denote the subspace of

functions holomorphically extendable to the complement of the unit disk in the
Riemann sphere P

1 and with zero at infinity. Observe the following orthogonal
decomposition

(37) L1,2(S1) =H1,2
+ (S1)⊕H1,2

− (S1).

We finish this review with the following lemma.

Lemma 3.3. (i) P and S are bounded linear operators on L1,2(S1) and

(38) S2 =Id.

(ii) Moreover, on the space H1,2
+ (S1) the operator S acts as identity and on the

space H1,2
− (S1) as −Id.

(iii) Consequently P is an orthogonal projector onto H1,2
− (S1).

For the proof of (38) we refer to [MP], pp. 46, 50 and 69. In fact, since
S=−2P +Id and because Ker P =H1,2

+ (S1), we see that S=Id on H1,2
+ (S1). From

(38) and (34) we also see that P =Id on H1,2
− (S1), i.e., P projects L1,2(S1) onto

H1,2
− (S1) parallel to H1,2

+ (S1).
This lemma clearly implies the following corollary.

Corollary 3.4. A function φ∈L1,2(S1) extends to a meromorphic function in
Δ with not more than N poles if and only if P (φ) is rational, is zero at infinity and
has not more than N poles.
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Indeed, decompose φ=φ++φ− according to (37). φ is meromorphic with at
most N poles, all in Δ, if and only if φ− is such, which means that φ− should be
rational with at most N poles. But since, according to (iii) of Lemma 3.3, one has
P (φ)=φ−, the last is equivalent to the fact that P (φ) is rational with at most N

poles.

3.2. The case of finite-dimensional families

To clarify the finite versus infinite-dimensional issues in this paper let us give
a simple proof of Theorem 1.1 in the special case when φk belong to an analytic
family {φα}α∈A parameterized by a finite-dimensional complex manifold A. More
precisely, as in Section 2, we are given a complex manifold X , a holomorphic sub-
mersion π : X →A such that for every α∈ A the preimage Xα :=π−1(α) is a disk. We
are also given a holomorphic map Φ: X →C

2 such that for every α∈ A the image
Φ(Xα)=Cα is a graph of a holomorphic function φα : Δ1+ε→Δ. We shall regard A
as a (locally closed) complex submanifold of H1,2

+ (S1). And, finally, by saying that
{φk } ∞

k=1 belong to {φα}α∈A we mean that there exist αk ∈ A, αk→α0 ∈ A, such that
φk=φαk

for k ≥0.
After shrinking, if necessary, we can suppose that our function f is holomorphic

on R1+ε=A1−ε,1+ε ×Δ1+ε. Consider an analytic mapping F : L1,2(S1)→L1,2(S1)
such that

(39) F : φ(λ) �−→ f(λ, φ(λ)),

and consider also the following integral operator F : H1,2
+ (S1)→H1,2

− (S1),

(40) F (φ)(λ) = − 1
2πi

∫

S1

f(ζ, φ(ζ))−f(λ, φ(λ))
ζ −λ

dζ =P (F (φ)).

According to Lemma 3.1, f(λ, φ(λ)) extends to a holomorphic function in Δ1+ε if
and only if F (φ)=0, and according to Corollary 3.4 it extends meromorphically to
Δ1+ε with at most N poles in Δ1−ε if an only if F (φ) is a boundary value of a
rational function with at most N poles all in Δ1−ε.

Theorem 3.5. Let f be meromorphic on R1+ε and {φk : Δ1+ε→Δ} ∞
k=1 be a

sequence of holomorphic functions converging to some φ0 : Δ1+ε→Δ, φk �≡φ0 for
all k. Suppose that

(a) {φk } ∞
k=1 belong to a finite-dimensional analytic family {φα}α∈A, i.e.,

φk=φαk
for some αk ∈ A and αk→α0 in A with φ0=φα0 ;

(b) for every k the restriction f |Ck ∩R1+ε is well defined and extends to a mero-
morphic function on the curve Ck;
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(c) the number of poles counted with multiplicities of these extensions is uni-
formly bounded.

Then there exists a complex disk Δ⊂ A containing α0 such that for every α∈Δ
the restriction f |Cα ∩R1+ε meromorphically extends to Cα, and the number of poles
of these extensions counted with multiplicities is uniformly bounded.

Proof. (i) Consider the holomorphic case first. Restrict F to A to obtain a
holomorphic map F A : A→H1,2

− (S1). The restriction f |Cα ∩R1+ε holomorphically
extends to Cα if and only if F (α)=0. Therefore we are interested in the zero set
A0 of F A. But the zero set A0 of a holomorphic mapping from a finite-dimensional
manifold is a finite-dimensional analytic set. Since this set contains a converging
sequence {αk } ∞

k=1 it has positive dimension. Denote (with the same letter) by
A0 a positive-dimensional irreducible component of our zero set which contains an
infinite number of the φαk

. Suppose, up to replacing αk by a subsequence, that
all αk are in A0. Let X 0 be the corresponding universal family, i.e., the restriction
of π : X →A to A0, and Φ0 : X 0→Δ1+ε ×Δ be the corresponding evaluation map.
Φ0 should be of generic rank two, otherwise φk would be constant. Therefore A0

contains a complex disk through α0 with properties as required.
(ii) The meromorphic extension in this case is also quite simple. Without loss

of generality we suppose that all extensions fαk
(λ) have at most N poles counting

with multiplicities. Since fαk
(λ)=f(λ, φαk

(λ)) for λ∈A1−ε,1+ε, all poles of these
extensions are contained in Δ̄1−ε. Denote by RN (1−ε) the subset of H1,2

− (S1) which
consists of rational functions, which are holomorphic on P

1 \Δ̄, zero at infinity and
having not more than N poles, all contained in Δ̄1−ε. RN (1−ε) can be explicitly
described as the set

(41)

RN (1−ε) =
{∑

j

(z −aj)−mj

mj −1∑

k=0

cjk(z −aj)k : cjk ∈ C, aj ∈ Δ̄1−ε and
∑

j

mj =N

}

.

Let us note that F A(φαk
)∈RN (1−ε) for all k and that the set AN of those α∈ A

for which f(λ, φα(λ)) is meromorphically extendable to Δ with not more than N

poles, all in Δ̄1−ε, is in fact F −1
A (RN (1−ε)).

Set g0=F A(φα0). From (41) we see that RN (1−ε) is a finite-dimensional sub-
space of H1,2

− (S1). Therefore we can take an orthogonal complement H ⊂H1,2
− (S1)

to it at g0 in such a way that H1,2
− (S1)=RN (1−ε)×H locally in a neighborhood

of g0. Denote by Ψ the composition of F A with the projection onto H . Now AN is
the zero set of Ψ and therefore we are done as in the case (i). �
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Let us make a few remarks concerning the finite-dimensional case of the last
theorem.

Remark 3.6. (a) Horizontal disks belong to a one-dimensional family, non-
horizontal straight disks to a two-dimensional family. Therefore Theorem 3.5 gen-
eralizes the Hartogs–Levi theorem and the result of Dinh.

(b) We do not claim in Theorem 3.5 that the disks Δ contains αk for k �1 and
this is certainly not true in general. What is true is that the set A0 (or AN ), of all
α∈ A such that f extends along Cα, is an analytic set of positive dimension, and so
contains an analytic disk with center at α0.

Remark 3.7. At the same time Theorem 3.5 is a particular case of Theorem 1.1
because of the following observation.

Proposition 3.8. Let (X , π, A, Φ) be a finite-dimensional analytic family of
holomorphic maps Δ1+ε→Δ and let α0 ∈ A be a point. Then there exist a neighbor-
hood V �α0, a complex hypersurface A in V and a radius r ∼1 such that for α∈V \A

the restriction (φα −φ0)|∂Δr does not vanish and therefore VarArg∂Δ(φα −φα0) is
constant on V \A. If, in particular, (X , π, A, Φ) is a one-parameter family then
A={α0}.

Proof. After shrinking we can suppose that X =Δ1+ε ×Δn, α0=0 and φ0 ≡0.
Since Φ: X →Δ1+ε ×Δ acts as (λ, α) �→(λ, φ(λ, α)) we can consider the zero divisor
Z =φ−1(0) of φ. Z is not empty, because φ(λ, 0)≡0, and is proper, because Φ is of
generic rank two. Denote by Z1 the union of all irreducible components of Z which
contain Δ1+ε × {0}. Set A:=Z1 ∩ {0} and note that A is a hypersurface in Δn.

Let Z0 be the union of all irreducible components of Z which do not contain
Δ1+ε × {0}. The intersection Z0 ∩Δ1+ε × {0} is a discrete set. Therefore we can find
r ∼1 such that Z0 ∩∂Δr=∅. Now it is clear that for a sufficiently small neighbor-
hood V �0 in Δn we have that φ( · , α) does not vanish on ∂Δr provided α∈V \A.
Then Var Arg∂Δ(φα) is clearly constant. In the one-parameter case A is discrete
but contains α0. �

Note that in general a test sequence does not belong to any finite-dimensional
family. Take for example φk(λ)=λ2/k+e−kλk. Therefore Theorem 1.1 properly
contains Theorem 3.5.

Remark 3.9. (a) If Ck are intersections of Δ1+ε ×Δ with algebraic curves of
bounded degree, then they are included in a finite-dimensional analytic (even alge-
braic in this case) family.
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(b) If φk(∂Δ)⊂M , where M is totally real in ∂Δ×Δ̄, and have bounded Maslov
index then they are included in a finite-dimensional analytic family.

(c) If we do not suppose ad hoc that φk belong to some finite-dimensional
analytic family of holomorphic functions then the argument above is clearly not
sufficient. The following example is very instructive. Consider a holomorphic map
F : l2→l2 ⊕l2 defined as

(42) F : {zk } ∞
k=1 → { {zk(zk −1/k)} ⊕ {zkzj }j>k }.

The zero set of F is a sequence {Zk=(0, ..., 0, 1/k, 0, ...)}∞
k=1 ⊂l2 together with the

origin. These Zk’s might well be our φk’s and therefore we cannot conclude the
existence of families in the zero set of our F from (40) at this stage.

(d) Example 5.1 has precisely the feature as above with F being the integral
operator (40).

4. Mappings to complex spaces

In this section we shall prove Corollary 1.6. The proof consists in making
a reduction to the holomorphic function case of Theorem 1.1. This reduction will
follow the lines of arguments developed in [I1], [I2], [I3] and [I4]. For the convenience
of the reader we shall briefly recall the key statements from these papers which are
relevant to our present task.

4.1. Continuous families of analytic disks

An analytic disk in a complex space X is a holomorphic map h : Δ→X contin-
uous up to the boundary. Recall that a complex space X is called disk-convex if for
every compact K�X there exists another compact K̂ such that for every analytic
disk h : Δ̄→X with h(∂Δ)⊂K one has h(Δ̄)⊂K̂. K̂ is called the disk envelope
of K. All compact Stein 1-convex complex spaces are disk-convex.

Given a meromorphic mapping f : R1+ε→X , where R1+ε=A1−ε,1+ε ×Δ, we
can suppose without loss of generality that f is holomorphic on R1+ε and that
f(R1+ε) is contained in some compact K. We suppose that our space X is reduced
and that it is equipped with some Hermitian metric form ω. Denote by ν=ν(K̂)
the minima of the areas of rational curves in the disk envelope K̂ of K. Note
that ν is achievable by some rational curve and therefore ν>0. We are given an
uncountable family of disks {Ct :t∈T } which are the graphs of holomorphic functions
φt : Δ1+ε→Δ. Note that the condition on our family of disks to be a test family
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(see the introduction) implies, in particular, that they are all distinct. In the sequel
when writing f(Ct) we mean more precisely f |Ct(Ct), i.e., the restriction of f to Ct.
This is an analytic disk in X and since f |Ct(∂Ct)⊂K we see that for every t∈T

one has f(Ct)⊂K̂ . For every natural k set

(43) Tk =
{

t ∈ T : area(Γf |Ct
) ≤ k

ν

2

}
,

where Γf |Ct
=:Γt is the graph of f |Ct in Δ2

1+ε ×X and the area is taken with respect
to the standard Euclidean form ωe=ddc(|λ|2+|z|2) on C

2 and ω on X . For some k

the set Tk \Tk−1 is uncountable, so denote this set by T again.
It will be convenient in the sequel to consider our parameter space T as a

subset of the space of 1-cycles in Δ2
1+ε ×X . Let us say a few words about this issue.

For general facts about cycle spaces we refer to [B], for more details concerning
our special situation to §1 of [I4]. Recall that a 1-cycle in a complex space Y is
a formal sum Z=

∑
j njZj , where {Zj }j is a locally finite sequence of irreducible

analytic subsets of Y of pure dimension one. The space of analytic 1-cycles in Y

will be denoted as Cloc
1 (Y ). It carries a natural topology, i.e., the topology of

currents.
From now on Y =Δ2

1+ε ×X . Denote by CT the subset of Cloc
1 (Y ) which consists

of graphs Γt, i.e., CT ={Γt :t∈T }. We see CT as a topological subspace of C and
in the sequel we shall identify T with CT . Indeed, note that t �→Γt is injective,
because already t �→Ct is injective. Since T was supposed to be uncountable, so is
also {Γt :t∈T }=CT .

Denote by C T the closure of CT in our space of 1-cycles Cloc
1 (Y ) on Δ2

1+ε ×X .
Cycles Z in C T are characterized by following two properties:

(i) Z has an irreducible component Γ which is a graph of the extension of the
restriction f |C∩R1+ε , where C is a graph of some holomorphic function φ : Δ1+ε→Δ̄;

(ii) the other irreducible components for Z (if any) are a finite number of
rational curves projecting to points in Δ×Δ1+ε.

This directly follows from the theorem of Bishop, because the areas of the
graphs Γt are uniformly bounded, and from Lemma 7 in [I1], which says that a
limit of a sequence of disks is a disk plus a finite number of rational curves. More
precisely in (i) we mean that C is a graph of some holomorphic φ : Δ1+ε→Δ̄ and
f |C∩R1+ε holomorphically extends to C with Γf |C

=Γ, see Lemma 1.3 from [I4] for
more details. Note that by the choice we made we have that

(44) (k −1)
ν

2
≤ area(Z) ≤ k

ν

2

for all Z ∈ C T . Indeed (44) is satisfied for Z=Γt and therefore for their limits.
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Figure 2. When Ct (the punctured curve downstairs) approaches C0 (the bold line) the
graph Γt=Zt (the punctured curve upstairs) of f |Ct stays irreducible and approaches
Z0 (the bold curve upstairs). Z0 is reducible, its irreducible component Γ0 is a graph
over C0, and its second irreducible component R0 is a rational curve, which is contained
in {0} ×X . Γ0=Γ′

0 ∪R0 is an element of CT \ CT =RT and Γf is the graph of f over
R1+ε.

Remark 4.1. Let us mention that we write Z both for a 1-cycle as an analytic
subset of Y =Δ2

1+ε ×X and for the corresponding point in the cycle space Cloc
1 (Y ).

Denote by RT the subset of reducible cycles in C T . This is a closed subset
of C T . Indeed, if Zn is a converging sequence from RT then every Zn has at least
one irreducible component, say Rn, which is a rational curve. Therefore the limit
Z :=limn→∞ Zn contains a limit R:=limn→∞ Rn (up to taking a subsequence, if
necessary). This R can only be a union of rational curves, i.e., Z is reducible. The
difference CT \R

˙T is uncountable since it contains CT .
From here we get easily that there exists a point Z0 ∈ CT \ RT having a funda-

mental system of neighborhoods {Un} ∞
n=1 in Cloc

1 (Y ) such that Un ∩ C T ⊂ C T \ RT for
all n and such that all these intersections are uncountable and relatively compact.
The last is again by the theorem of Bishop.

Note now that for every Z1, Z2 ∈ CT ∩U1 we have

(45) |area(Z1)−area(Z2)| ≤ ν

2
.

This readily follows from (44). The first step in the proof of Lemma 2.4.1 from [I3]
states that a family of cycles satisfying (45) is continuous in the cycle-space topology.
Note that since Z1 and Z2 are irreducible we have Z1=Γf |C1

and Z2=Γf |C2
for some

disks Ci={z :z=φ(λ)}, and (45) means that f |C1 is close to f |C2 .
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4.2. Proof of Corollary 1.6

For every radius r close to 1 consider the subfamily Tr of T such that for t∈Tr

the function φt −φt0 does not vanish on ∂Δr. Take a sequence rm↗1−ε/2. Suppose
that Trm is at most countable for every rm. Then for all t∈T \(Tr1 ∪...∪Trm), which
is an uncountable set, the function φt −φt0 vanishes on all ∂Δrj , j=1, ..., m. For
m>N we get a contradiction (N here bounds the winding numbers of our test
family, see the discussion before Corollary 1.6 in the introduction). Therefore for
some radius r ∼1−ε/2 (we can suppose that r=1 after all) we find an uncountable
subfamily T ′ ⊂T such that for every t∈T ′ the function φt −φt0 does not vanish
on ∂Δ. Take this T ′ as T and make the reductions of the previous subsection for
this T .

Now note that Z0 is irreducible, i.e., is an analytic disk, simply because Z0 was
taken from C T \ RT . According to (i), Z0 is a graph of the extension of f |C0∩R1+ε

to C0 for some curve C0={z :z=φ0(λ)}. Take a Stein neighborhood W of the disk
Z0=Γf |C0

, see [Si2], and note that by continuity of the family {Z :Z ∈ CT ∩U1} we
have that Z ⊂W for all Z ∈U ∩(C T \ RT ) for some neighborhood U ⊂U1 of Z0 in the
space of cycles. Every such Z is the graph of the extension to some C={z :z=φ(λ)}
of the restriction f |C∩R1+ε . Via an imbedding of W to an appropriate C

n, our
f is an n-tuple of holomorphic functions which holomorphically extend to every
corresponding C. We are in position to apply the (holomorphic functions case
of) Theorem 1.1 and get a holomorphic extension of f to an appropriate pinched
domain. This finishes the proof.

4.3. General position and further assumptions

In practice one looks for extending f to a bidisk Δ2. As we have seen this de-
pends first of all on whether a test sequence/family is in general position, which can
be expressed in several different ways. One of them was given in the introduction.
Another one was given in [D] and used also in [Sk]. It sounds as follows: a family
(or, a sequence) {Ct}t is said to be in general position if for any distinct t1, t2 and
t3 one has

(46) Ct1 ∩Ct2 ∩Ct3 = ∅,

i.e., if no three of our curves pass through one point. When Ct ad hoc belong to
a finite-dimensional analytic family this notion is equivalent to ours, simply be-
cause the set of α such that f extends along Cα is an analytic set and a fortiori
forms a pinched domain, to which all but a finite number of Ct should belong.
In general these notions seem to be different. However let us note that for an
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uncountable family condition (46) implies ours. Indeed, given λ0 ∈Δ if for every
bidisk Δ2((λ0, 0), 1/n) the set of t∈T such that Ct ∩Δ2((λ0, 0), 1/n)=∅ is at most
countable then T would be at most countable, unless almost all Ct pass through
(λ0, 0). Since this is forbidden by (46) we see that there exists an uncountable
T ′ ⊂T such that Ct ∩Δ2((λ0, 0), 1/n)=∅ for t∈T ′. Taking a convergent sequence
from T ′ we have that the zeroes of this sequence do not accumulate to λ0. Ap-
plying Theorem 1.1 we extend f to a pinched domain which has no pinch at λ0.
Repeating this argument a finite number of times we extend f to a neighborhood
of Δ× {0}.

One can try to define the general position condition so that it ensures the
“non-pinching”. Again if φk a priori belong to a finite-dimensional family this
condition will be equivalent to both conditions above. Indeed, after all we know
that the set of φ’s such that f extends along its graph is an analytic set in a
finite-dimensional parameter space. Therefore all φk except finitely many fit into a
positive-dimensional families, i.e., all (except finitely many) pass (or not) through
some fixed number of points. When φk do not belong to a finite-dimensional family
(but is a test sequence) the situation is unclear. It may happen that the Banach
analytic family {φα}α∈A of those φα along which f extend does not contain any φk,
and therefore it is not clear how to “read off” the “non-pinching” property of the
family {φα}α∈A from the behavior of φk.

For the last point suppose now that our sequence/family is in general position,
as in the introduction, and therefore f extends to a neighborhood of Δ× {0} (or
to a neighborhood of the graph Cφ0 , but this is the same). The extendability of
f further to the whole of Δ2 depends now on the image space X . More precisely
it depends on whether a Hartogs-type extension theorem is valid for meromorphic
mappings with values in this particular X . If X is projective or, more generally
Kähler, then this is true and was proved in [I2]. For more general X this is not
always the case, see [I4] for examples and further statements on this subject.

5. Examples

5.1. Construction of the example

Example 5.1. Let the function f be defined by the following series

(47)
∞∑

n=1

3−4n3
n∏

j=1

[

z −
(

2
3
λ

)j]

λ−n2
zn.

Then f is holomorphic in the ring domain R:=C
∗ ×C, holomorphically extends

along every Ck :=
{
z :z=

(
2
3λ

)k}
, but there does not exist an analytic family {φα}α∈A
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parameterized by a disk A �0, with φ0 ≡0, such that f |Cα ∩(C∗ ×C) meromorphically
extends to Cα for all α∈ A.

First of all the terms of this series are holomorphic and converge normally to a
holomorphic function in the ring domain R=C

∗ ×C. Indeed, fix any 0<ε< 1
3 , then

for ε<|λ|<1/ε and |z|< 1
3ε one has

n∏

j=1

∣
∣
∣
∣z −

(
2
3
λ

)j∣∣
∣
∣ ≤

n∏

j=1

(
1
ε

)j

=
(

1
ε

)n(n+1)/2

,

and therefore
∞∑

n=1

3−4n3
n∏

j=1

∣
∣
∣
∣z −

(
2
3
λ

)j∣∣
∣
∣

|z|n
|λ|n2 ≤

∞∑

n=1

3−4n3−n

(
1
ε

)n(n+1)/2(1
ε

)n2+n

≤
∞∑

n=1

3−4n3−n

(
1
ε

)3(n2+n)/2

,

i.e., the series (47) normally converges on compact sets in R to a holomorphic
function, which will still be denoted as f(λ, z). Note that for

(48) z =φl(λ) =
(

2
3

)l
λl, l ≥ 2,

the sum in (47) is finite and is equal to

l−1∑

n=1

3−4n3
n∏

j=1

[

z −
(

2
3
λ

)j]
zn

λn2 =
l−1∑

n=1

3−4n3
n∏

j=1

[(
2
3
λ

)l

−
(

2
3
λ

)j](
2
3

)nl

λn(l−n),

with all terms being polynomials, because l>n there.

Proposition 5.2. There does not exist a complex one-parameter analytic fam-
ily {φα}α∈Δ of holomorphic functions in Δ2 with values in Δ̄ with φ0 ≡0 and such
that for every α∈Δ the restriction f(λ, φα(λ)) extends from Δ∗

2 to a meromorphic
function in Δ2.

Proof. Suppose such a family exists and let P be a corresponding pinched
domain. All pinches of P except at zero can be removed using graphs Ck and
Theorem 1.1. For this it is sufficient to observe that on a small disk Δδ around
such a pinch φk never vanishes and therefore our sequence is a test sequence on Δδ .
After that by Proposition 2.3 one can take as our one-parameter family

(49) φα(λ) =αλn0−1



Banach analytic sets and a non-linear version of the Levi extension theorem 171

with some n0 ≥1. From (49) we see that for λ close to zero the image of φα(λ) as
a function of α will contain a disk of radius ∼c|λ|n0 . Therefore for every λ∈R

+

close to zero there exists α∈Δ1/2 such that φα(λ)∈R
+ and φα(λ)≥cλn0 for some

constant c>0.
Take some n1>n0 such that

(
2
3

)n1
<c/2. First of all represent our function as

(50) f(λ, z) = f1(λ, z)+
n1∏

j=1

[

z −
(

2
3
λ

)j]

f2(λ, z),

where

f1(λ, z) =
n1∑

n=1

3−4n3
n∏

j=1

[

z −
(

2
3
λ

)j]

λ−n2
zn

and

f2(λ, z) =
n1∏

j=1

[

z −
(

2
3
λ

)j] ∞∑

n=n1+1

3−4n3
n∏

j=n1+1

[

z −
(

2
3
λ

)j]

λ−n2
zn.

Since f1 is a rational function its restriction f1(λ, φα(λ)) will be meromorphic
in Δ2. Therefore if f(λ, φα(λ)) would be meromorphic in Δ2 we would conclude
that f2(λ, φα(λ)) is meromorphic in Δ2 to, unless

n1∏

j=1

[

φα(λ)−
(

2
3
λ

)j]

is identically zero. The latter is possible only if φα is one of φl in (48). This is not
the case and actually by Proposition 3.8 any complex one-parameter family cannot
contain a converging sequence with infinitely growing winding numbers. Therefore
we have that φα is not one of φl for all non-zero α small enough. Hence f2(λ, φα(λ))
should be meromorphic in Δ2 with pole only at zero if we suppose that f(λ, φα(λ))
is such a function. This implies that f2(λ, φα(λ)) should be meromorphic in Δ2 ×Δ
as a function of the two variables (λ, α). But the series

(51) f2(λ, φα(λ)) =
∞∑

n=n1+1

3−4n3
n∏

j=n1+1

[

φα(λ)−
(

2
3
λ

)j]

λ−n2
φα(λ)n

representing f2(λ, φα(λ)) at the point (λ, φα(λ))∈R
+ ×R

+ can be estimated as fol-
lows. Since

n∏

j=n1+1

[

φα(λ)−
(

2
3
λ

)j]

≥ λn0(n−n1)
n∏

j=n1+1

[
c− c

2
λj−n0

]
≥ λn0(n−n1)

( c

2

)n−n1

,
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we get that

∞∑

n=n1+1

3−4n3
n∏

j=n1+1

[

φα(λ)−
(

2
3
λ

)j]

λ−n2
φα(λ)n

≥
∞∑

n=n1+1

3−4n3
λn0(n−n1)−n2

( c

2

)n

cnλn0n

=
∞∑

n=n1+1

2−n3−4n3
λn0(2n−n1)−n2

c2n.(52)

The right-hand side in (52) grows faster than any polynomial of 1/λ as λ→0,
λ∈R

+. Therefore f2(λ, φα(λ)) has an essential singularity at {(λ, α):λ=0}, which
is a contradiction. �

5.2. One more example

The following example can be found in [Si1], p. 16.

Example 5.3. Let {zk } ∞
k=0 be a sequence converging to zero, zk �=0. Let Pl(z)

be a polynomial of degree l+1 such that Pl(z0)=...=Pl(zl)=0 and Pl(0) �=0 with
‖Pl‖L∞(Δ)=1/l!. Set

(53) f(λ, z) =
∞∑

l=1

Pl(z)λ−l.

The function f is holomorphic in C
∗ ×C and {0} ×C is its essential singularity. For

every zk the restriction f |Ck
:=f( · , zk), where Ck :=Δ× {zk }, is rational, having a

pole of order k at zero. Moreover the disks Ck form a test sequence and are in
general position. Therefore the conclusions of Theorem 1.1 and Corollary 1.3 fail
when the orders of the poles of the restrictions are not uniformly bounded.
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