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A normality criterion involving rotations and
dilations in the argument

Jürgen Grahl

Abstract. We show that a family F of analytic functions in the unit disk D all of whose

zeros have multiplicity at least k and which satisfy a condition of the form

fn(z)f (k)(xz) �=1

for all z ∈D and f ∈ F (where n≥3, k ≥1 and 0<|x| ≤1) is normal at the origin. The proof relies

on a modification of Nevanlinna theory in combination with the Zalcman–Pang rescaling method.

Furthermore we prove the corresponding Picard-type theorem for entire functions and some gen-

eralizations.

1. Introduction and statement of results

In 1959 W.K. Hayman [10, Corollary on p. 36 and Theorem 10] proved that if
f is a transcendental meromorphic function in C and n≥3 is an integer, then fnf ′

assumes all values in C\ {0} infinitely often; if f is entire, this holds also for n=2.
In 1979, E. Mues [13] extended this result (for meromorphic f ) to the case n=2;

the case n=1 was settled by W. Bergweiler and A. Eremenko [1] and independently
by H. Chen and M.-L. Fang [3] in 1995. For entire functions the case n=1 goes
back to J. Clunie [4].

X.-C. Pang and L. Zalcman [15] showed that in the entire case an analogous
result also holds for the differential polynomial fnf (k) provided that all zeros of
f have multiplicity at least k; their key idea was to use the well-known Zalcman–
Pang rescaling lemma (an extension of Lemma 2.10) to reduce considerations to
functions of exponential type. A similar result for meromorphic functions (and
involving “small” exceptional functions instead of exceptional values) was proved by
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J.-P. Wang [17, Theorem 2] in 2003. A further extension to more general differential
polynomials is due to W. Döringer [5, Corollary 1]; he has shown that if f is
a transcendental meromorphic function in C and M is an arbitrary normalized
differential monomial, then fnM [f ] assumes all values in C\ {0} infinitely often
provided that n≥3; if f is entire, this holds also for n=2.

According to Bloch’s principle, to every “Picard-type” theorem there should be-
long a corresponding normality criterion. The normality result corresponding to the
aforementioned Picard-type theorems was proved by L. Yang and K.-H. Chang [18]
in 1965, I. B. Oshkin [14] in 1982 and Pang and Zalcman [15] in 1999.

Theorem A. ([14], [15] and [18]) Let n and k be natural numbers and F be a
family of analytic functions in a domain D all of whose zeros have multiplicity at
least k. Assume that fnf (k) −1 is non-vanishing for each f ∈ F . Then F is normal
in D.

In view of the various Picard-type theorems and normality results for differen-
tial polynomials known so far one might ask whether these results remain valid for
“generalized” differential polynomials admitting rotations and dilations in the ar-
gument of some terms, i.e. whether conditions like P1[f ](z)P2[f ](xz)+P3[f ](yz) �=1
(where P1, P2 and P3 are appropriate differential polynomials and 0<|x|, |y| ≤1) con-
stitute normality or force entire (meromorphic) functions to be constant.(1) This
would be an indication that Bloch’s principle is a much more far-reaching and ver-
satile phenomenon than known so far.(2) The first positive results in this direction,
concerning the condition fn(z)+af (k)(xz) �=b, were obtained in [9].

In the present paper we show that at least for analytic functions and n large
enough (i.e. n≥3) normality results and Picard-type theorems of the type discussed
above also hold for the “generalized” differential polynomial fn(z)f (k)(xz) (with
|x| ≤1) instead of fnf (k). In fact, our Picard-type result admits some extensions in
the style of Döringer’s result mentioned above.

We use the standard notation of Nevanlinna theory [11]. Furthermore, we
denote the open resp. closed disk with center c and radius r by Ur(c) resp. Br(c)
and set D:=U1(0) for the open unit disk and more generally Dr :=Ur(0).

Theorem 1.1. Let F be a family of analytic functions in D, n≥3, k ≥1 and
0<|x| ≤1. Assume that for each f ∈ F the zeros of f are of multiplicity at least k

(1) Originally, this question was inspired by the study of the semiduality of certain small
sets of analytic functions in the unit disk [7], see also footnote 1 in [9].

(2) Furthermore, in view of the introduced complex quantities x and y, it would suggest that
there might be some connections to the theory of functions of several complex variables.
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and that

(1) fn(z)f (k)(xz) �=1

for all z ∈D. Then F is normal at z=0.

The question whether F is normal in the whole of D remains open. Further-
more, we do not know whether Theorem 1.1 still holds for families of meromorphic
functions (and sufficiently large n).

The assumption on the multiplicities is inevitable, even in the “classical” case
x=1, as the functions fj(z):=jz show: They satisfy

fn
j (z)f (k)

j (xz) ≡ 0 �=1

for all j ∈N, z ∈D, x∈D\ {0}, n≥1 and k ≥2, but the family {fj } ∞
j=1 is non-normal

at z=0.
The family of the functions fj(z)=ejz demonstrates that Theorem 1.1 is no

longer valid for n=1: For x=−1 we have fj(z)f ′
j(xz)=j �=1 for all z ∈D and all

j ≥2, but {fj } ∞
j=1 is not normal at z=0. The case n=2 remains unclear.

Finally, Theorem 1.1 does not hold for x=−n. (Here, of course one has to
assume (1) only for |z|<1/n.) Again, this is shown by the functions fj(z):=ejz

which satisfy fn
j (z)f (k)

j (−nz)=jk �=1 for all z ∈C and all j ≥2. However, we do not
know whether the condition |x| ≤1 can be weakened; we conjecture that this is not
possible.

Theorem 1.2. Let f be a transcendental entire function, k1, ..., ks and n be
natural numbers with n≥s+2, x1, ..., xs ∈C with 0<|xj | ≤1 for all j=1, ..., s, and
c �≡0 be a meromorphic function satisfying T (r, c)=S(r, f). Then the function

ψ(z) := c(z)fn(z)f (k1)(x1z)...f (ks)(xsz)−1

has infinitely many zeros in C.

This result no longer holds for n≤s since for f :=exp and x:=−n/s∈D we have
2fn(z)(f ′)s(xz)−1=1 �=0 for all z ∈C. The case n=s+1 remains open.

While the Picard-type result in Theorem 1.2 can be proved using “classical”
Nevanlinna theory (in a similar way as in [5] and [17]), the proof of Theorem 1.1 is
more complicated. The proof of Theorem A in [15] was based on the Zalcman–Pang
rescaling method which has proved to be a very helpful tool in normality theory for
many years since it reduces normality results to the corresponding Picard-type the-
orems which in most cases are easier to prove. Unfortunately, this elegant method
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seems to fail in our context since the newly introduced rotations and dilations in
f (k)(xz) destroy the translation invariance of the assumption (1). For the same rea-
son, the methods from Nevanlinna theory established in Drasin’s seminal paper [6]
from 1969 cannot be applied immediately.

Therefore, in the proof of Theorem 1.1 (as in [9]) we resort to a modified version
of Nevanlinna theory which was developed in [8] and which refines previous ideas
of H. Cartan [2] and D. Drasin [6]. Since it makes use of the full generality of
Poisson–Jensen–Nevanlinna’s formula, it gives us more flexibility in dealing with
the so-called initial value terms appearing in applications of Nevanlinna theory
to normality problems. For the convenience of the reader, the required tools are
summarized in Section 2.

But then again, Zalcman’s rescaling lemma is also useful in our proof to simplify
the discussion of one special case. And of course, we hope that our method (which
surely is quite complicated) gives some kind of inspiration to adjust the Zalcman–
Pang rescaling method to problems of the described kind, and therefore leading to
a deeper and broader understanding of Bloch’s principle.

2. A modification of Nevanlinna theory and some other lemmas

In this section we tacitly assume (unless otherwise stated) that f is a non-
constant meromorphic function in the disk DR0 , where 0<R0 ≤ ∞.

Let log+ x:=max{log x, 0} if x>0 and log+ 0:=0.

Definition 2.1. Let α∈DR0 be such that α is not a pole of f . Let the bk be the
poles of f , each of them taken into account according to its multiplicity. Then for
|α|<r<R0 we define

mα(r, f) :=
1
2π

∫ 2π

0

log+ |f(reit)| Re
reit+α

reit −α
dt,

Nα(r, f) :=
∑

|bk |<r

log
∣∣∣∣ r2 −b̄kα

r(α−bk)

∣∣∣∣,

Tα(r, f) := mα(r, f)+Nα(r, f)

and call them the modified proximity function, counting function and characteristic
of f with respect to α, respectively. In the same way we define Nα(r, f); here each
pole of f is counted only once.

As we have shown in [8], the results from the “classical” Nevanlinna theory
(corresponding to the case α=0) remain valid for these modified quantities, the
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first fundamental theorem being an immediate consequence of the general form of
Poisson–Jensen–Nevanlinna’s formula.

Remark 2.2. ([8, Remark 1]) For the functions Vα=mα, Nα, Nα and Tα the
following fundamental estimates hold:

Vα(r, f) ≥ 0,

Vα

(
r,

p∏
j=1

fj

)
≤

p∑
j=1

Vα(r, fj),

Vα

(
r,

p∑
j=1

fj

)
≤

p∑
j=1

Vα(r, fj)+log p,

Nα

(
r,

p∑
j=1

fj

)
≤

p∑
j=1

Nα(r, fj)

for f, f1, ..., fp meromorphic in DR0 and α∈DR0 with f(α) �=∞, f1(α) �=∞, ...,
fp(α) �=∞ and |α|<r<R0.

Theorem 2.3. (Generalized first fundamental theorem, [8, Theorem 1]) Let
α∈DR0 be given such that it is not a zero or pole of f . Then for |α|<r<R0 we
have

Tα

(
r,

1
f

)
=Tα(r, f)−log |f(α)|.

Theorem 2.4. ([8, Theorem 4]) Let α∈DR0 be such that f(α) �=∞. Then the
functions Nα(r, f) and Tα(r, f) are increasing and continuous for |α|<r<R0.

Theorem 2.5. (Generalized second fundamental theorem, [8, Theorem 5]) Let
f be non-constant and meromorphic in DR0 and let α∈DR0 be such that f(α) �=∞
and f ′(α) �=0. If c1, ..., cq ∈C, q ≥2, are pairwise distinct, then for |α|<r<R0 the
estimate

mα(r, f)+
q∑

k=1

mα

(
r,

1
f −ck

)
≤ 2Tα(r, f)−N1,α(r, f)+Sα(r, f)

holds, where

N1,α(r, f) = Nα

(
r,

1
f ′

)
+2Nα(r, f)−Nα(r, f ′) ≥ 0,
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Sα(r, f) = mα

(
r,

f ′

f

)
+

q∑
k=1

mα

(
r,

f ′

f −ck

)
+log

1
|f ′(α)| +C0

and C0 is an absolute constant independent of f and r.

The estimate in the next lemma is obvious but proves to be crucial in the proof
of Theorem 1.1.

Lemma 2.6. Let α∈DR0 with f(α) �=∞ be given. Then the estimate

r − |α|
r+|α| m(r, f) ≤ mα(r, f) ≤ r+|α|

r − |α| m(r, f)

holds for all r ∈]|α|, R0[.

There is also a theorem on the logarithmic derivative for the modified proximity
function, but since in its general form it is not needed for our purposes we refer
to [8, Theorem 7] for it and state only a consequence of this result for non-normal
families which is required in the proof of Theorem 1.1.

Lemma 2.7. ([8, Corollary 9]) Let F be a family of functions analytic in D

and assume that F is not normal at z0 ∈D. Then there exist a sequence {fj } ∞
j=1 ⊆ F ,

not normal at z0, and constants Ak<∞ such that for all r0 ∈]|z0|, 1[ and all k ∈N

the estimate

(2) m

(
r,

f
(k)
j

fj

)
≤ Ak

(
log

1
R−r

+log+ m(R, fj)+log
1

r0 − |z0| +1
)

holds for all but finitely many j ∈N and r0<r<R<1.

A slightly weaker form of this result was proved already by Drasin [6, Lemma 8].
To get rid of the terms log+ Tαj (R, fj) and m(R, fj) in Lemma 2.7 we need the

following growth estimate [12, Chapter VIII, Lemma 1.5].

Lemma 2.8. Let −∞<a<b<∞ and U : [a, b[→[0, ∞[ be a continuous, in-
creasing function. Assume that there is a constant A<∞ such that

U(r) ≤ A

(
log+ 1

R−r
+log+ U(R)+1

)

for all r ∈[a, b[ and all R∈]r, b[. Then there exists a constant B<∞ depending only
on A such that

U(r) ≤ B

(
log+ 1

b−r
+1

)
for all r ∈ [a, b[.
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The next lemma characterizes normality of families of analytic functions in
terms of the proximity functions.

Lemma 2.9. ([16, Lemma 4.4.1]) Let F be a family of analytic functions in D.
If the family {r 	→m(r, f):f ∈ F } of the corresponding proximity functions is locally
(uniformly) bounded, then F is normal.

Case 1 of the proof of Theorem 1.1 relies essentially on Zalcman’s lemma in its
original form [19].

Lemma 2.10. (Zalcman’s lemma) Let F be a family of functions meromorphic
in D. Then F is non-normal at z0 ∈D if and only if there are sequences {fn} ∞

n=1 ⊆ F ,
{zn} ∞

n=1 ⊆D and {�n} ∞
n=1 ⊆]0, 1[ such that limn→∞ �n=0, limn→∞ zn=z0 and such

that the sequence {gn} ∞
n=1 defined by

gn(ζ) := fn(zn+�nζ)

converges locally uniformly in C (with respect to the spherical metric) to a non-
constant function g meromorphic in C.

3. Proof of Theorem 1.1

For the sake of abbreviation, we set

c(r, α) :=
r+|α|
r − |α|

for r>|α|. Then the estimate of Lemma 2.6 can be written as

mα(r, f) ≤ c(r, α)m(r, f) and m(r, f) ≤ c(r, α)mα(r, f) for r > |α|.

In the following, we frequently use the monotonicity of mα(r, f) for analytic f

(Theorem 2.4) to estimate terms like mα(r|x|, f) by mα(r, f). Furthermore, we use
that

(3) mα(r, f(xz)) =mxα(r|x|, f) and Nα(r, f(xz)) =Nxα(r|x|, f)

for functions f meromorphic in D, 0<|x| ≤1 and |α|<r<1; these relations can be
easily seen from the definitions of mα and Nα. Finally, estimates like

c(r, αx) ≤ c(r, α) ≤ c(r, �)
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for |α|<�<r<1 and 0<|x| ≤1 will prove to be useful soon. By C1, C2, ... we de-
note any absolute constants independent of the radius r and the function under
consideration.

Assume that F is not normal at z=0. Then by Lemma 2.7 there exists a
sequence {fj } ∞

j=1 ⊆ F , non-normal at z=0, such that for all r0 ∈]0, 1[ the estimate

(4) m

(
r,

f
(k)
j

fj

)
≤ A

(
log

1
R−r

+log+ m(R, fj)+log
1
r0

+1
)

holds for all but finitely many j and r0<r<R<1. Without loss of generality we
may assume that every subsequence of {fj } ∞

j=1 is non-normal at z=0 as well. We
define

(5) gj(z) := f
(k)
j (xz) and ψj := fn

j gj −1

for z ∈D and all j. Then all ψj are non-vanishing in D by the assumption.

Case 1. A subsequence of {f
(k)
j } ∞

j=1 converges to 0 uniformly in a neighbor-
hood of 0.

Without loss of generality we may assume that {f
(k)
j } ∞

j=1 itself converges to 0
uniformly in a neighborhood of 0.

Choosing an appropriate subsequence if necessary, by Zalcman’s lemma we
can find sequences {zj } ∞

j=1 ⊆D and {�j } ∞
j=1 ⊆]0, 1[ such that limj→∞ zj =0 and

limj→∞ �j =0, and the sequence {ϕj } ∞
j=1 defined by

ϕj(ζ) := fj(zj +�jζ)

converges locally uniformly in C to a non-constant limit function ϕ. From

ϕ
(k)
j (ζ) = �k

j f
(k)
j (zj +�jζ)

and the assumption in case 1 we deduce that {ϕ
(k)
j } ∞

j=1 converges to 0 locally uni-

formly in C. On the other hand, by the Weierstraß convergence theorem {ϕ
(k)
j } ∞

j=1

converges to ϕ(k). Therefore, ϕ(k) ≡0, so ϕ is a polynomial of degree at most k −1.
Since ϕ is non-constant, it has at least one zero z0 in C. From the assumption
on the multiplicities of the zeros of the functions fj and Hurwitz’s theorem we
conclude that z0 is a zero of ϕ of multiplicity at least k. This is impossible since
deg(ϕ)≤k −1.

Case 2. {ψj } ∞
j=1 is normal at the origin.

Considering an appropriate subsequence, we may assume that {ψj } ∞
j=1 itself

converges to a limit function ψ (possibly ψ ≡ ∞) locally uniformly in U3δ(0) for some
δ>0.
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Case 2.1. ψ is analytic.
Then {ψj } ∞

j=1 is uniformly bounded in B2δ(0), so there exists an M<∞ such
that |ψj(z)| ≤M for all j ∈N and z ∈B2δ(0). This means that

mα(r, ψj +1) ≤ log(M+1) for all α ∈ U2δ(0), r ∈ ]|α|, 2δ[ and j ∈ N.

We choose �∈]0, δ[ such that c2(δ, �)≤n−1.
We may assume that case 1 does not hold. Then there exists an ε>0, a j0 ∈N

and a sequence {αj } ∞
j=j0

⊆U�(0) such that

|gj(αj)| ≥ ε for all j ≥ j0.

By (5), we have fn
j =(ψj +1)/gj . Using this we obtain for r ∈]δ, 2δ[ and j ≥j0,

nmαj (r, fj) = mαj (r, f
n
j )

≤ mαj (r, ψj +1)+mαj

(
r,

1
gj

)

≤ log(M+1)+Tαjx(r|x|, f (k)
j )+log

1
|gj(αj)|

≤ c(r, αjx)m(r, f (k)
j )+log(M+1)+log+ 1

ε

≤ c2(r, �)mαj (r, fj)+c(r, �)m
(

r,
f

(k)
j

fj

)
+log(M+1)+log+ 1

ε
.

In view of
c(r, �) ≤ c(δ, �) ≤

√
n−1 for all r ≥ δ

we deduce that

mαj (r, fj) ≤
√

n−1 m

(
r,

f
(k)
j

fj

)
+log(M+1)+log+ 1

ε
.

Hence

m(r, fj) ≤ c(r, �)mαj (r, fj)(6)

≤ (n−1)m
(

r,
f

(k)
j

fj

)
+

√
n−1

(
log(M+1)+log+ 1

ε

)
,

for all r ∈]δ, 2δ[ and all j ≥j0. By inserting (4) (with r0 :=δ) into (6) we conclude
that

m(r, fj) ≤ C1

(
log

1
R−r

+log+ m(R, fj)+log
1
δ

+1
)
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for δ<r<R<2δ and all but finitely many j with some constant C1. From Lemma 2.8
we deduce the local boundedness of {m(r, fj)}∞

j=1 on the interval ]δ, 2δ[. Since
r 	→m(r, fj)=T (r, fj) is increasing, {m(r, fj)}∞

j=1 is locally bounded also on [0, 2δ[.
So from Lemma 2.9 we obtain the normality of {fj } ∞

j=1 in D2δ which contradicts
our choice of {fj } ∞

j=1.

Case 2.2. ψ ≡ ∞.
Omitting finitely many j if necessary, we may assume that |ψj(z)| ≥2 for all j

and all z ∈U2δ(0). In particular, all fj are non-vanishing in U2δ(0) (since fj(z)=0
implies ψj(z)=−1), and from |ψj(z)+1| ≥1 for all z ∈U2δ(0) we see that

mβ

(
r,

1
ψj +1

)
=0 for all β ∈ U2δ(0), r ∈ (|β|, 2δ) and j ∈ N.

Again, we choose �∈]0, δ[ such that c2(δ, �)≤n−1.
By assumption, no subsequence of {fj } ∞

j=1 is normal in U�(0), so by Montel’s
theorem we can find a sequence {βj } ∞

j=j0
in U�(0) such that |fj(βj)| ≤1 for all

j ≥j0. Observing that by (5) we have 1/fn
j (z)=f

(k)
j (xz)/(ψj(z)+1), we obtain for

all r ∈]δ, 2δ[ and all j ≥j0,

nmβj (r, fj) = Tβj

(
r,

1
fn

j

)
+n log |fj(βj)|

≤ mβj

(
r,

1
fn

j

)
+0

≤ mβj

(
r,

1
ψj +1

)
+mβjx(r|x|, f (k)

j )

≤ 0+c2(δ, �)mβj (r, fj)+c(δ, �)m
(

r,
f

(k)
j

fj

)

≤ (n−1)mβj (r, fj)+
√

n−1 m

(
r,

f
(k)
j

fj

)
.

Hence

mβj (r, fj) ≤
√

n−1 m

(
r,

f
(k)
j

fj

)
.

From this, (4) and Lemma 2.8 we deduce the local boundedness of {mβj (r, fj)}∞
j=1,

and hence of {m(r, fj)} ∞
j=1 in U2δ(0). By Lemma 2.9, {fj } ∞

j=1 is normal in U2δ(0),
once again a contradiction.

Cases 3 and 4. From now on, we can assume that {ψj } ∞
j=1 is not normal at

z=0. This enables us to assume (by Lemma 2.7) that
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(7) m

(
r,

ψ′
j

ψj

)
+m

(
r,

ψ′
j

ψj +1

)
≤ B

(
log

1
R−r

+log+ m(R, ψj)+1
)

for all j and r0<r<R<1 with some constant B.

Case 3. {ψj } ∞
j=1 is not normal at z=0 and there exists a neighborhood U2r0(0)

of 0 and an integer μ∈ {n−2, n−1} such that both {ψ′
j/ψjf

μ
j } ∞

j=1 and {ψ′
j/fμ

j } ∞
j=1

converge to 0 uniformly in U2r0(0).
We choose a �∈]0, r0[ such that c4(r0, �)< 5

4 .

We may assume that case 1 does not hold. This provides us (after turning to
a subsequence) with an ε>0 and a sequence {αj } ∞

j=1 ⊆U�(0) such that

(8) |gj(αj)| ≥ ε for all j.

In view of the non-normality assumption in case 3, by Marty’s theorem and the
estimate

ψ#
j =

|ψ′
j |

1+|ψj |2 ≤
|ψ′

j |
2|ψj | ,

we may assume that to each j there is a βj ∈U�(0) with

(9)
|ψ′

j(βj)|
|ψj(βj)| ≥ 1.

From ∣∣∣∣
ψ′

j

ψj
fn−μ

j gj

∣∣∣∣ =
∣∣∣∣
ψ′

j

ψj

ψj +1
fμ

j

∣∣∣∣ ≤
∣∣∣∣
ψ′

j

fμ
j

∣∣∣∣
(

1+
1

|ψj |

)

and the second assumption in case 3 we see that {(ψ′
j/ψj)f

n−μ
j gj } ∞

j=1 converges to
0 uniformly in U2r0(0). So without loss of generality we may assume that∣∣∣∣

ψ′
j

ψ
(z)fn−μ

j (z)gj(z)
∣∣∣∣ ≤ 1, and hence |fn−μ

j (z)gj(z)| ≤
∣∣∣∣ψj

ψ′
j

(z)
∣∣∣∣,

for all j and all z ∈U2r0(0). In particular, we have

mβ(r, fn−μ
j gj) ≤ mβ

(
r,

ψj

ψ′
j

)

for all β ∈U2r0(0) and all r ∈]|β|, 2r0[. By the first fundamental theorem, the fact
that all ψj are non-vanishing and (9), this yields that

(10) mβj (r, f
n−μ
j gj) ≤ Tβj

(
r,

ψ′
j

ψj

)
+log

∣∣∣∣ψj

ψ′
j

(βj)
∣∣∣∣ ≤ mβj

(
r,

ψ′
j

ψj

)

for all j and all r ∈]|βj |, 2r0[. This turns out to be the crucial step in the reasoning
for case 3 because now we have managed to estimate the proximity function of
fn−μ

j gj by the proximity function of ψ′
j/ψj which is “small” by the lemma on the

logarithmic derivative.
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Case 3.1. μ=n−2.
Then from (10) (with μ=n−2), (8), the first fundamental theorem and the

analyticity of gj , we deduce for all r ∈]r0, 2r0[ and all j,

2mαj (r, fj) ≤ mαj (r, f
2
j gj)+mαj

(
r,

1
gj

)

≤ c2(r, �)mβj (r, f
2
j gj)+Tαj (r, gj)+log

1
|gj(αj)|

≤ c2(r, �)mβj

(
r,

ψ′
j

ψj

)
+mxαj (r|x|, f (k)

j )+log+ 1
ε

≤ c2(r, �)
(

mβj

(
r,

ψ′
j

ψj

)
+mαj

(
r,

f
(k)
j

fj

)
+mαj (r, fj)

)
+log+ 1

ε
.

Hence in view of c2(r0, �)< 5
4 ,

mαj (r, fj) ≤ 2mβj

(
r,

ψ′
j

ψj

)
+2mαj

(
r,

f
(k)
j

fj

)
+2 log+ 1

ε
.(11)

From (7) we have that

m

(
r,

ψ′
j

ψj

)
≤ B

(
log

2
R−r

+log+ m

(
R+r

2
, ψj

)
+1

)

for all j and r0<r<R<1; here

log+ m

(
R+r

2
, ψj

)
≤ log+

(
nm(R, fj)+m

(
R+r

2
, gj

)
+log 2

)

≤ log n+log+ m(R, fj)

+log+

(
m

(
R+r

2
,
f

(k)
j

fj

)
+m

(
R+r

2
, fj

))
+log 3.

Combining this with (11), we obtain an estimate of the form

mαj (r, fj) ≤ C2

(
m

(
R+r

2
,
f

(k)
j

fj

)
+log+ m(R, fj)+log+ 1

R−r
+1

)

for all j and r0<r<R<2r0 with a certain constant C2. Now inserting (4) (with
(R+r)/2 instead of r), in the usual way we deduce the normality of {fj } ∞

j=1 at the
origin, a contradiction.
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Case 3.2. μ=n−1.
In this case we mainly use the generalized second fundamental theorem (The-

orem 2.5) which gives us

mγ(r, ψj)+mγ

(
r,

1
ψj

)
+mγ

(
r,

1
ψj +1

)

≤ 2Tγ(r, ψj)−Nγ

(
r,

1
ψ′

j

)
+2mγ

(
r,

ψ′
j

ψj

)
+mγ

(
r,

ψ′
j

ψj +1

)
+log

∣∣∣∣ 1
ψ′

j(γ)

∣∣∣∣+C0(12)

for all r ∈]�, 1[, j ∈N and all γ ∈U�(0) with ψ′
j(γ) �=0. Furthermore, the following

arguments are crucial: Since the ψj are analytic and non-vanishing, we have

Nγ(r, ψj) =Nγ

(
r,

1
ψj

)
=0

for all r ∈]�, 1[, j ∈N and all γ ∈U�(0). If z0 is a zero of ψj +1=fn
j gj , then it is a

zero of fj or a zero of fjgj . In the first case, we conclude that it is a zero of ψj +1
of multiplicity at least n. Therefore

(13) Nγ

(
r,

1
ψj +1

)
≤ 1

n−1
Nγ

(
r,

1
ψj +1

)
+

n−2
n−1

Nγ

(
r,

1
fjgj

)

for all r ∈]�, 1[, j ∈N and all γ ∈U�(0).
We may assume that {ψ′

j/ψjf
n−2
j } ∞

j=1 or {ψ′
j/fn−2

j } ∞
j=1 does not converge to

0 uniformly in any neighborhood of 0. (Otherwise we are in case 3.1.)

Case 3.2.1. {ψ′
j/ψjf

n−2
j } ∞

j=1 does not converge to 0 uniformly in any neigh-
borhood of 0.

Then, taking subsequences if necessary, we may assume that there exists an
ε0>0 and a sequence {γj } ∞

j=1 ⊆U�(0) such that

(14)
∣∣∣∣

ψ′
j

ψjf
n−2
j

(γj)
∣∣∣∣ ≥ ε0

for all j. Adding Nγ(r, ψj)+Nγ(r, 1/ψj)+Nγ(r, 1/(ψj +1)) to both sides of (12)
and applying the first fundamental theorem to Tγ(r, 1/ψj) and to Tγ(r, 1/(ψj +1))
gives

Tγ(r, ψj +1) ≤ Nγ(r, ψj)+Nγ

(
r,

1
ψj

)
+Nγ

(
r,

1
ψj +1

)
−Nγ

(
r,

1
ψ′

j

)

+2mγ

(
r,

ψ′
j

ψj

)
+mγ

(
r,

ψ′
j

ψj +1

)
+log

|ψj(γj)| |ψj(γj)+1|
|ψ′

j(γ)| +C0

for all r ∈]�, 1[, all j ∈N and all γ ∈U�(0) with ψ′
j(γ) �=0. Keeping in mind that

Nγ(r, ψj)=Nγ(r, 1/ψj)=0 and observing (13), we obtain for all r ∈]�, 1[ and all j,
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Tγj (r, ψj +1) ≤ Nγj

(
r,

1
ψj +1

)
+2mγj

(
r,

ψ′
j

ψj

)
+mγj

(
r,

ψ′
j

ψj +1

)

+log
∣∣∣∣ψj(ψj +1)

ψ′
j

(γj)
∣∣∣∣+C0

≤ 1
n−1

Nγj

(
r,

1
ψj +1

)
+

n−2
n−1

Nγj

(
r,

1
fjgj

)
(15)

+2mγj

(
r,

ψ′
j

ψj

)
+mγj

(
r,

ψ′
j

ψj +1

)
+log

∣∣∣∣ψj(ψj +1)
ψ′

j

(γj)
∣∣∣∣+C0

≤ 1
n−1

Tγj (r, ψj +1)+
n−2
n−1

Tγj (r, fjgj)+2mγj

(
r,

ψ′
j

ψj

)

+mγj

(
r,

ψ′
j

ψj +1

)
+log

|ψj | |ψj +1|1−1/(n−1)

|ψ′
j | |fjgj |1−1/(n−1)

(γj)+C0.

Here from ψj +1=fn
j gj and (14) we get that

log
|ψj | |ψj +1|1−1/(n−1)

|ψ′
j | |fjgj |1−1/(n−1)

(γj) ≤ log
∣∣∣∣
ψjf

n−2
j

ψ′
j

(γj)
∣∣∣∣ ≤ log+ 1

ε0
,

so noting that (n−1)/(n−2)≤2 we arrive at

Tγj (r, ψj +1) ≤ Tγj (r, fjgj)+
n−1
n−2

(
2mγj

(
r,

ψ′
j

ψj

)
+mγj

(
r,

ψ′
j

ψj +1

)
+log+ 1

ε0
+C0

)

≤ c2(r, �)mβj (r, fjgj)+4mγj

(
r,

ψ′
j

ψj

)
+2mγj

(
r,

ψ′
j

ψj +1

)

+2 log+ 1
ε0

+2C0.

Now inserting (10) (with μ=n−1) and observing that c4(r0, �)<2 we obtain

Tγj (r, ψj) ≤ c2(r, �)mβj

(
r,

ψ′
j

ψj

)
+4mγj

(
r,

ψ′
j

ψj

)
+2mγj

(
r,

ψ′
j

ψj +1

)
+C3

≤ 6mγj

(
r,

ψ′
j

ψj

)
+2mγj

(
r,

ψ′
j

ψj +1

)
+C3

for all r ∈]r0, 2r0[ with some constant C3. On recalling (7) we deduce the normality
of {ψj } ∞

j=1 at the origin which contradicts our assumption in case 3.

Case 3.2.2. {ψ′
j/fn−2

j } ∞
j=1 does not converge to 0 uniformly in any neighbor-

hood of 0.
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This case is very similar to case 3.2.1: Again, we may assume that there exists
an ε0>0 and a sequence {γj } ∞

j=1 ⊆U�(0) such that

(16)
∣∣∣∣

ψ′
j

fn−2
j

(γj)
∣∣∣∣ ≥ ε0

for all j. The new ingredient in this case is the following: By the assumption in
case 3, {ψj } ∞

j=1 is not normal at the origin, so on skipping finitely many j we can
find δj ∈U�(0) such that

|ψj(δj)| ≤ 1

for all j. Using that ψj is analytic and non-vanishing, this gives us

mγj (r, ψj) ≤ c2(r, �)
(

mδj (r, ψj)+log
1

|ψj(δj)|

)
(17)

= c2(r, �)mδj

(
r,

1
ψj

)
≤ c4(r, �)mγj

(
r,

1
ψj

)
.

If we add Nγ(r, ψj)≡0 and Nγ(r, 1/(ψj +1)) to both sides of (12), apply the
first fundamental theorem to Tγ(r, 1/(ψj +1)) and observe (17) and (13), we obtain
for all r ∈]�, 1[ and all j,

1
c4(r, �)

mγj (r, ψj) ≤ mγj

(
r,

1
ψj

)

≤ Nγj

(
r,

1
ψj +1

)
+2mγj

(
r,

ψ′
j

ψj

)
+mγj

(
r,

ψ′
j

ψj +1

)

+log
∣∣∣∣ψj +1

ψ′
j

(γj)
∣∣∣∣+C0+log 2

≤ 1
n−1

Nγj

(
r,

1
ψj +1

)
+

n−2
n−1

Nγj

(
r,

1
fjgj

)
(18)

+2mγj

(
r,

ψ′
j

ψj

)
+mγj

(
r,

ψ′
j

ψj +1

)
+log

∣∣∣∣ψj +1
ψ′

j

(γj)
∣∣∣∣

+C0+log 2

≤ 1
n−1

Tγj (r, ψj)+
n−2
n−1

Tγj (r, fjgj)+2mγj

(
r,

ψ′
j

ψj

)

+mγj

(
r,

ψ′
j

ψj +1

)
+log

|ψj +1|1−1/(n−1)

|ψ′
j | |fjgj |1−1/(n−1)

(γj)

+C0+2 log 2.



104 Jürgen Grahl

In view of (16) and
1

c4(r0, �)
− 1

n−1
≥ 4

5
− 1

2
>

1
4
,

this yields

1
4
Tγj (r, ψj) ≤ mγj (r, fjgj)+2mγj

(
r,

ψ′
j

ψj

)
+mγj

(
r,

ψ′
j

ψj +1

)
+log

∣∣∣∣
fn−2

j

ψ′
j

(γj)
∣∣∣∣

+C0+2

≤ c2(r, �)mβj (r, fjgj)+2mγj

(
r,

ψ′
j

ψj

)
+mγj

(
r,

ψ′
j

ψj +1

)

+log+ 1
ε0

+C0+2

for all r ∈]r0, 1[. Again recalling (10) and c4(r0, �)<2, we obtain

Tγj (r, ψj) ≤ 4c2(r, �)mβj

(
r,

ψ′
j

ψj

)
+8mγj

(
r,

ψ′
j

ψj

)
+4mγj

(
r,

ψ′
j

ψj +1

)
+C4

≤ 16mγj

(
r,

ψ′
j

ψj

)
+4mγj

(
r,

ψ′
j

ψj +1

)
+C4

for all r ∈]r0, 2r0[ with some constant C4.
Now we use (7) again and deduce the normality of {ψj } ∞

j=1 at the origin, a
contradiction once more.

Case 4. {ψj } ∞
j=1 is not normal at z=0 and one of the sequences {ψ′

j/ψjf
n−1
j } ∞

j=1

and {ψ′
j/fn−1

j } ∞
j=1 does not converge to 0 uniformly in any neighborhood of the ori-

gin.
This case can be treated similarly to case 3.2. Since n≥3 and (2n−1)/(n−1)≤

5
2 <n we can choose a �∈

]
0, 1

2

[
such that

σ := c
(

1
2 , �

)
< 4

√
5
4 and τ :=n− σ8(2n−1)

n−σ4
> 0.

With a similar reasoning as in (13) we deduce that

(19) Nγ

(
r,

1
ψj +1

)
≤ 1

n
Nγ

(
r,

1
ψj +1

)
+

n−1
n

Nγ

(
r,

1
gj

)

for all r ∈]�, 1[, j ∈N and all γ ∈U�(0).
We may assume that case 1 does not hold. So we may assume the existence of

an ε>0 and of a sequence {αj } ∞
j=1 ⊆U�(0) such that
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|gj(αj)| ≥ ε for all j.

From this and from fn
j =ψj +1/gj (see (5)) we obtain

nmαj (r, fj) ≤ mαj (r, ψj +1)+mαj

(
r,

1
gj

)

≤ mαj (r, ψj)+Tαj (r, gj)+log
1

|gj(αj)| +log 2

≤ mαj (r, ψj)+mxαj (r, fj)+mxαj

(
r,

f
(k)
j

fj

)
+log

1
ε
+1(20)

≤ mαj (r, ψj)+c2(r, �)
(

mαj (r, fj)+m

(
r,

f
(k)
j

fj

))
+log+ 1

ε
+1

for all r ∈]�, 1[.

Case 4.1. {ψ′
j/ψjf

n−1
j } ∞

j=1 does not converge to 0 uniformly in any neighbor-
hood of 0.

Then we may assume that there exists an ε0>0 and a sequence {γj } ∞
j=1 ⊆U�(0)

such that

(21)
∣∣∣∣

ψ′
j

ψjf
n−1
j

(γj)
∣∣∣∣ ≥ ε0 for all j.

As in (15), from the generalized second fundamental theorem we obtain for all
r ∈]�, 1[ and all j,

Tγj (r, ψj +1) ≤ Nγj

(
r,

1
ψj +1

)
+2mγj

(
r,

ψ′
j

ψj

)
+mγj

(
r,

ψ′
j

ψj +1

)

+log
∣∣∣∣ψj(ψj +1)

ψ′
j

(γj)
∣∣∣∣+C0

≤ 1
n

Nγj

(
r,

1
ψj +1

)
+

n−1
n

Nγj

(
r,

1
gj

)
(22)

+2mγj

(
r,

ψ′
j

ψj

)
+mγj

(
r,

ψ′
j

ψj +1

)
+log

∣∣∣∣ψj(ψj +1)
ψ′

j

(γj)
∣∣∣∣+C0

≤ 1
n

Tγj (r, ψj +1)+
n−1

n
Tγj (r, gj)+2mγj

(
r,

ψ′
j

ψj

)

+mγj

(
r,

ψ′
j

ψj +1

)
+log

|ψj | |ψj +1|1−1/n

|ψ′
j | |gj |1−1/n

(γj)+C0.
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Here from ψj +1=fn
j gj and (21) we have

log
|ψj | |ψj +1|1−1/n

|ψ′
j | |gj |1−1/n

(γj)= log
∣∣∣∣
ψjf

n−1
j

ψ′
j

(γj)
∣∣∣∣ ≤ log+ 1

ε0
.

Noting that n/(n−1)≤ 3
2 and using (3) yields

Tγj (r, ψj +1) ≤ mγj (r, gj)+
n

n−1

(
2mγj

(
r,

ψ′
j

ψj

)
+mγj

(
r,

ψ′
j

ψj +1

)
+log

1
ε0

+C0

)

≤ mxγj (r, fj)+mxγj

(
r,

f
(k)
j

fj

)
+3mγj

(
r,

ψ′
j

ψj

)
(23)

+2mγj

(
r,

ψ′
j

ψj +1

)
+2 log+ 1

ε0
+2C0

for all r ∈]�, 1[ and all j. Inserting (23) into (20) we arrive at

nmαj (r, fj)

≤ c4(r, �)
(

2mαj (r, fj)+2m

(
r,

f
(k)
j

fj

)
+3m

(
r,

ψ′
j

ψj

)
+2m

(
r,

ψ′
j

ψj +1

))
+C5

for all r ∈]�, 1[ and all j with some constant C5. Hence in view of 2c4( 1
2 , �)< 5

2 ≤n− 1
2 ,

mαj (r, fj) ≤ 5m

(
r,

f
(k)
j

fj

)
+8m

(
r,

ψ′
j

ψj

)
+5m

(
r,

ψ′
j

ψj +1

)
+2C5

for all r ∈
]
1
2 , 1

[
and all j. Now the usual arguments (cf. the end of case 3.1, below

(11)) yield the assertion in this case.

Case 4.2. {ψ′
j/fn−1

j } ∞
j=1 does not converge to 0 uniformly in any neighborhood

of the origin.
Then we may assume that there exists an ε0>0 and a sequence {γj } ∞

j=1 ⊆U�(0)
such that

(24)
∣∣∣∣

ψ′
j

fn−1
j

(γj)
∣∣∣∣ ≥ ε0

for all j. Since {ψj } ∞
j=1 is not normal at the origin, skipping finitely many j we can

find δj ∈U�(0) such that
|ψj(δj)| ≤ 1
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for all j. As in (17) this yields

mγj (r, ψj) ≤ c4(r, �)mγj

(
r,

1
ψj

)
.

Now the same arguments as in (18) and (22) lead us to

1
c4(r, �)

mγj (r, ψj) ≤ 1
n

Tγj (r, ψj)+
n−1

n
Tγj (r, gj)+2mγj

(
r,

ψ′
j

ψj

)

+mγj

(
r,

ψ′
j

ψj +1

)
+log

|ψj +1|1−1/n

|ψ′
j | |gj |1−1/n

(γj)+C0+2 log 2

for all r ∈]�, 1[ and all j. Here c(r, �)≥c
(

1
2 , �

)
=σ, so in view of (24) we conclude

that

n−σ4

nσ4
mγj (r, ψj) ≤ mγj (r, gj)+2mγj

(
r,

ψ′
j

ψj

)
+mγj

(
r,

ψ′
j

ψj +1

)

+log
∣∣∣∣
fn−1

j

ψ′
j

(γj)
∣∣∣∣+C0+2

≤ mxγj (r, fj)+mxγj

(
r,

f
(k)
j

fj

)
+2mγj

(
r,

ψ′
j

ψj

)
(25)

+mγj

(
r,

ψ′
j

ψj +1

)
+log+ 1

ε0
+C0+2

for all r ∈
]
1
2 , 1

[
and all j. Now from (20) and (25) we obtain

nmαj (r, fj) ≤ σ2

(
mγj (r, ψj)+mαj (r, fj)+m

(
r,

f
(k)
j

fj

))
+log+ 1

ε
+1

≤
( nσ8

n−σ4
+σ2

)(
mαj (r, fj)+m

(
r,

f
(k)
j

fj

))

+
nσ7

n−σ4

(
2m

(
r,

ψ′
j

ψj

)
+m

(
r,

ψ′
j

ψj +1

))
+C6

for all r ∈
]
1
2 , 1

[
and all j with some constant C6. Hence in view of

nσ8

n−σ4
+σ2 ≤ σ8(2n−1)

n−σ4
=n−τ,
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we have

τmαj (r, fj) ≤ n

(
m

(
r,

f
(k)
j

fj

)
+2m

(
r,

ψ′
j

ψj

)
+m

(
r,

ψ′
j

ψj +1

))
+C6

for all r ∈
]
1
2 , 1

[
and all j, and we can proceed in the same way as above.

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

We set

g(z) :=
s∏

j=1

f (kj)(xjz) and a := − 1
fn

ψ′

ψ
.

Then g �≡0 as f is transcendental. We will later (in (26)) see that a can be written
as the product of g and a combination of logarithmic derivatives. This is the crucial
observation in our proof. By the lemma on the logarithmic derivative we have

T (r, g) = m(r, g) ≤
s∑

j=1

m(r|xj |, f (kj)) ≤
s∑

j=1

(
m(r, f)+m

(
r,

f (kj)

f

))

≤ sm(r, f)+S(r, f).

In particular, we have S(r, g)≤S(r, f) and S(r, ψ)≤S(r, f).
If ψ would be constant, then there would be a γ ∈C\ {0} such that fn=γ/cg.

Hence by the first fundamental theorem

nT (r, f) =T

(
r,

γ

cg

)
≤ T (r, g)+T (r, c)+O(1) ≤ sm(r, f)+S(r, f),

and thus
(n−s)T (r, f) ≤ S(r, f),

which is impossible. Therefore ψ is non-constant and so a �≡0. Now from

ψ′ = c′fng+ncfn−1f ′g+cfng′

we obtain

(26) a =
1
fn

(
ψ′ −(ψ+1)

ψ′

ψ

)
= c′g+nc

f ′

f
g+cg′ −cg

ψ′

ψ
= cg

(
c′

c
+n

f ′

f
+

g′

g
− ψ′

ψ

)
.

This yields
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m(r, a) ≤ m(r, c)+m(r, g)+m
(
r,

c′

c

)
+m

(
r,

f ′

f

)
(27)

+m

(
r,

g′

g

)
+m

(
r,

ψ′

ψ

)
+log 4+log n

≤ m(r, g)+S(r, f)+S(r, c)+S(r, g)+S(r, ψ)

≤ sm(r, f)+S(r, f).

Furthermore, from (26) we see that

N(r, a) ≤ N(r, c′)+N

(
r,

1
f

)
+N

(
r,

1
ψ

)
≤ T (r, f)+N

(
r,

1
ψ

)
+S(r, f).

Combining this with (27) yields

T (r, a) ≤ (s+1)m(r, f)+N

(
r,

1
ψ

)
+S(r, f).

Using the definition of a we deduce that

nT (r, f) = m(r, fn) ≤ m

(
r,

1
a

)
+m

(
r,

ψ′

ψ

)

≤ T (r, a)+S(r, ψ) ≤ (s+1)m(r, f)+N

(
r,

1
ψ

)
+S(r, f).

Hence

(n−s−1)T (r, f) ≤ N

(
r,

1
ψ

)
+S(r, f).

If ψ would have only finitely many zeros, then we would have N(r, 1/ψ)=O(log r)=
S(r, f) since f is transcendental. So in view of n−s−1≥1 we would deduce T (r, f)=
S(r, f), a contradiction. This shows the assertion.
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