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The hitting distributions of a half real line
for two-dimensional random walks

Kôhei Uchiyama

Abstract. For every two-dimensional random walk on the square lattice Z2 having zero

mean and finite variance we obtain fine asymptotic estimates of the probability that the walk hits

the negative real line for the first time at a site (s, 0), when it is started at a site far from both

(0, s) and the origin.

1. Introduction and results

Let Sn be a two-dimensional random walk on the square lattice Z2 whose
increments are independent and identically distributed and have zero mean and
finite variance. We embed Z2 in the complex plane C to use complex number
notation. The walk Sn is supposed irreducible, namely for every x+iy ∈Z2 there
exists n such that Px+iy[Sn=0]>0, where Px+iy stands for the probability measure
of the walk starting at x+iy. Denote by Hx+iy(s) the probability that the first visit
(after time 0) of the real axis by the walk starting at x+iy takes place at s∈Z:

Hx+iy(s) =Px+iy[there is n ≥ 1 such that Sn = s and Sk /∈ Z for 1 ≤ k <n].

Similarly, denote by H+
x+iy(s) and H −

x+iy(−s), s=1, 2, 3, ..., the distributions of the
first visiting sites (after time 0) of the positive and negative real axes, respectively
(the origin is excluded from both the half lines).

The present author [12] derived certain asymptotic expressions of Hx+iy(s) as
|x−s+iy|→∞ which are valid uniformly either in x−s or in y. In this paper we
shall obtain similar ones for H −

x+iy . The significance of these results consist largely
in their being of a fundamental nature. If the walk is started at a point far from
the half line, Donsker’s invariance principle says that the law H −

x+iy if suitably
normalized is approximated by the corresponding Brownian law whose density, say
h−

x+iy(s), is explicitly written down in a simple form (see Appendix B). However,
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this approximation, being in the topology of weak convergence of probability laws,
contains little information about, e.g., the probability that a point near the end
of the half line is the first visited site. Our result provides a precise asymptotic
form of such probabilities in terms of a pair of harmonic functions on the half
line associated to H0. A crude application of it shows that H −

x+iy(s) is uniformly
comparable to h−

x+iy(s), namely there exists two positive numbers c1 and c2 such
that for all s∈Z∩(−∞, −1] and all x+iy ∈Z2 \((−∞, 0]× {0}),

(1) c1h
−
x+iy(s) ≤ H −

x+iy(s) ≤ c2h
−
x+iy(s),

provided E[|S(1)
1 |2 log |S(1)

1 |]<∞ in addition. Our approach is based on a profound
theory concerning one-dimensional walk on a half line (as given in the Spitzer’s
book [10]); owing to it we can use the powerful method of generating functions and
Fourier analysis.

Let Q be the covariance matrix for the variable S1 under P0 and put σ=
(det Q)1/4. Let φ(t) be the characteristic function of H0(s), namely

φ(t) =
∞∑

s=− ∞
eitsH0(s), −π ≤ t ≤ π,

and bring in the functions

ρ(t)= 1−φ(t) and for t �=0, θ(t)= arg ρ(t),

and the constants

θ+ =
1
π

∫ π

0

θ(t)
2 tan t/2

dt and c =exp
(

1
π

∫ π

0

log |ρ(t)| dt

)
,

where arg ρ denotes the argument ∈(−π/2, π/2) of a complex number ρ with Re ρ>0
and the integrals are absolutely convergent (Lemma 2.1).

Let Xn be the one-dimensional random walk with the transition probability
pX(x, y)=H0(y −x). It is natural to write P0 also for the law of Xn if Xn starts
at the origin: Xn may then be identified with the place on Z at which the walk
S· starting at the origin makes the nth return to the real axis. The walk Sn is
recurrent and so is Xn. Let uk and vk, k=0, 1, 2, ..., be two sequences determined
via the equations

∞∑

k=0

ukzk =
1√
c

exp
∞∑

k=1

1
k

E0[z−Xk ; Xk < 0];(2a)

∞∑

k=0

vkzk =
1√
c

exp
∞∑

k=1

1
k

E0[zXk ; Xk > 0];(2b)
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|z|<1, (for well-definedness cf. [10], p. 202) and put for integers s

μ(s) =
√

π eθ+

σ

∞∑

k=0

(v0+...+vk)H0(s−k)

and

ν(s) =
√

π e−θ+

σ

∞∑

k=0

(u0+...+uk)H0(−s+k).

For two real numbers a and b write a∧b=min{a, b} and a∨b=max{a, b}. De-
note by S

(1)
n and S

(2)
n the first and second components of Sn, respectively.

Theorem 1.1. Let s<0. If x∨(−s)→∞ with x≥0, then

(3) H −
x (s) =

σ2

2π

ν(x)μ(s)
|x−s| (1+o(1)).

(Here o(1) vanishes in the stated limit.) This formula holds true also in the case
x<0 with o(1)→0 as |s−x|→∞ in such a manner that either (log |s|)

√
s/x or

(log |x|)
√

x/s is bounded by any prescribed constant ; if E[|S(1)
1 |2 log |S(1)

1 |]<∞ in
addition, this constraint on the manner of |s−x| tending to infinity may be removed.
Moreover

(4)
√

x ux →
eθ+

σ
√

π
and

ν(x)√
x

→ 2
σ2

, as x→ ∞,

and

(5)
√

−s μ(s)→ 1 and
√

−s ν(s)→ 1, as s→ − ∞.

The proof of Theorem 1.1 (as that of Kesten [4] does for the corresponding
result) depends on the following representation of the Green function for the walk
Xn killed on x≤ −1:

(6) g(x, y) =
∑

0≤n≤x∧y

ux−nvy−n, x, y ≥ 0,

(cf. Spitzer [10], Section 19, Proposition 3). In view of this formula the probability
H −

x (s) is rather directly related to the functions μ and ν via the identity

H −
x (s) =

∞∑

y=0

g(x, y)H0(s−y)

which is our real starting point for the proof of Theorem 1.1.
We make it explicit in the following corollary that the principal part of H −

x

has the same form (for large values of x∧(−s)) as the density of the corresponding
distribution for the standard Brownian motion.
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Corollary 1.2.

H −
x (s) =

1
π

1
x−s

√
x

−s
(1+o(1)),

where o(1)→0 as x∧(−s)→∞.

It holds that c=exp(−
∑∞

k=1 P [Xk=0]/k) (see (21) of Section 2); in particular
the sequences uk and vk are the same as those introduced in [10] (D18.2). The
constant θ+ has a simple probabilistic expression:

(7) θ+ =
∞∑

k=1

1
k

(
1
2

−P [Xk > 0]
)

+
1
2

log c =
1
2

∞∑

k=1

1
k

(P0[Xk < 0]−P0[Xk > 0]).

The first infinite sum in (7) appears in [10] (Section 18, Proposition 5) but in the case
when the second moment of the walk Xn is finite ((7) will be verified in Appendix C
of this paper although not used for proofs of theorems). (The constants uk and vk

also have simple probabilistic meanings; see [10], p. 203.) The restrictions of μ and
ν to the nonnegative integers are positive solutions of the Wiener–Hopf integral
equations (associated with the kernels H0(±x), x≥0) to the effect that

μ(x) =
√

π eθ+

σ
(v0+...+vx) and ν(x) =

√
π e−θ+

σ
(u0+...+ux)

for x=0, 1, 2, ... (cf. [10], p. 212), which may be conveniently used to deduce the
second relation of (4) from the first.

The error estimates in the formula (3) may be improved under the stronger
moment conditions. We here state results only in the case when E0|S1|2+δ<∞ for
some δ> 1

2 (see Theorem 4.1 in Section 4 for the case δ ≤ 1
2 ); also the initial site x

is restricted to [0, ∞).

Theorem 1.3. Suppose E0|S1|2+δ<∞ for some δ> 1
2 . Then uniformly for

x≥0 and s<0,

(8) H −
x (s) =

1
π

1
x−s

√
x∨1

−s

[
1+O

(
1√

−s

)
+O

(
1√
x∨1

)]
;

moreover

(9) H −
x (s) =

σ2

2π

ν(x)
(x−s)

√
−s

[
1+O

(
1√

−s

)
+O

( x

−s

)]
, as

x∨1
−s

→ +0,

and

(10) H −
x (s) =

√
xμ(s)

π(x−s)
+O

(
1
x

)
, as

x

−s
→ ∞.

((9) and (10) are valid (uniformly) in the ranges −s>x≥0 and x≥ −s, respectively,
but ‘sharp’ only in the case as indicated in the limits.)
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Due to the present method of proof the error estimates in the formulae above
do not depend on δ (i.e. do not improve as δ increases) (see remark on the proof of
Theorem 4.1 in Section 4).

From the result on H −
x given above together with those on Hx+iy obtained in

[12] one can derive asymptotic formulae for H −
x+iy as we shall exhibit at the end of

this section in the case when |x−s+iy| ∧ |x+iy|→∞.

Some upper bounds of H −
x+iy are obtained in [7] by a method that is quite

different from and more flexible than ours, while the results derived in this paper
short cut some arguments made there. For simple random walk some evaluation
of H −

x+iy(s) was given by [4] and [1]. Kesten [4] verifies among others the second
relation of (4) and the upper bound

∑
s<−2r H −

x (s)=O(1/
√

(−x+1)r) uniformly
valid for −r<x≤0. The time reversed version of (14) shows that 1/

√
(−x+1)r

is the correct order in this bound. The method of [2] also gives an estimate of
H −

x (s) (for simple walk), which is better than (8) and that of [4] but not sharp
near the edge (cf. [13]) as in (9) or (10). Bousquet-Mélou and Schaeffer [1] com-
pute the number of walks of length n that avoid the half line (for a class of walks
admitting nonnearest neighbor transitions) by algebraic arguments and apply the
result to compute the generating function

∑∞
k=1 Hx+iy(−k)zk explicitly in a sense:

it gives e.g. H −
(−1,1)(−1)= 1

2 , H −
(1,−1)(−1)=2−

√
2 (these results are due to Kenyon

according to that paper) and H −
0 (−s)=[(

√
2−1)/2π]−1/2(−s)−3/2(1+o(1)); they

also study the walk starting at the end point (−1, 0) and killed on the negative half
line and compute the hitting probability and the mean sojourn time of a lattice
point outside the half line and also prove the local limit theorem for the conditional
process given that the walk has not been killed. The upper bounds of H −

x+iy are
used in [5] and [6] to obtain upper bounds of the growth rate of the diffusion-limited
aggregation model. Fukai [3] studies the first hitting time of the negative half line
for the walk similar to ours (with δ>0) but started at (−1, 0) and shows that the
tail of its distribution function is asymptotic to a constant times t1/4. The hitting
distribution of long linear segments is computed by using the results of the present
paper [13].

The essential part of the proofs is done in Section 2, where certain analytic
properties of the generating function of vk (and of uk) are obtained by means of
Fourier analytic methods. In Section 3 the results obtained in Section 2 will be
used to find asymptotic estimates for vk. With Spitzer’s representation of the
Green function (6) together with the estimates of its constituents the proofs of
the theorems are performed by rather elementary calculus as will be carried out in
Section 4.
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General starting points x+iy. We conclude this section by exhibiting estimates
of H −

x+iy(s) (for x+iy /∈L+) which are deduced from theorems given above combined
with the estimates of Hiy(s) in [12] in view of the decomposition

(11) H −
x+iy(s) =Hiy(s−x)+

∞∑

ξ=0

Hiy(ξ −x)H −
ξ (s).

Define a∗(y)=1+
∑∞

n=1(E0[S
(2)
n =0]−E0[S

(2)
n =−y]): a∗(y) is equal to the potential

function of the one-dimensional walk S
(2)
n if y �=0 (cf. [10]) and a∗(0)=1. Let σkj

be the entries of the covariance matrix Q and bring in two constants

(12) λ =
σ2

σ22
and ω =

σ12

σ22
.

For simplicity we here suppose that E0[|S(1)
1 |2 log |S(1)

1 |]<∞. It then follows that

(13) Hx+iy(s) =
σ2a∗(y)

π[(s−x+ωy)2+(λy)2]
(1+o(1)),

where o(1) approaches zero as |x−s+iy|→∞ (Theorem 2 of [12]). Using this to-
gether with (3) (with x≥0) the Brownian version of (11) (see (50)) yields not only
the formula (1) but also that for s<0, as |x−s+iy| ∧ |x+iy|→∞,

H−
x+iy(s) =

σ22a
∗(y)μ(s)

√
−s

|y| h−
x−ωy+iλy(s), y �=0,(14)

where h−
x+iy(s) is the density of the first hitting distribution of the negative real

line for the standard Brownian motion. Using an explicit form of h−
x+iy(s) in (14)

(see Appendix B) we obtain the following result.

Theorem 1.4. Suppose E0[|S(1)
1 |2 log |S(1)

1 |]<∞ in addition. Then

H −
x+iy(s) =

σ2a∗(y)μ(s)(r(x, y)−s)
π[r(x−s, y)]2

√
2(r(x, y)−x+ωy)

, as |x−s+iy| ∧ |x+iy| → ∞

for s<0 and x+iy /∈[0, ∞)× {0}, where r(x, y)=
√

(x−ωy)2+(λy)2.

If the limit is taken in such a way that the ratio (r+|s|)/
√

(r+1−x+ωy)|s|
remains bounded, then the first term Hx+iy(s) in the decomposition (11) contributes
to the sum significantly and vice versa; and if so is taken the limit, without the
extra condition E0[|S(1)

1 |2 log |S(1)
1 |]<∞, both (1) and the formula of Theorem 1.4

can break down in view of Theorem 1.3 of [12].
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2. The generating function of vn

Recall that Xn in (2) is the one-dimensional random walk starting at 0 with
the transition probability pX(x, x′)=H0(x′ −x). Define H0

0 (s)=δ0,s (Kronecker’s
symbol) and Hk

0 (s)=
∑∞

j=− ∞ H0(j)Hk−1
0 (s−j). Then for |z|<1,

(15)
∞∑

n=0

vnzn =
1√
c

exp
∞∑

n=1

zn
∞∑

k=1

1
k

Hk
0 (n)

and analogously for
∑∞

n=0 unzn (with Hk
0 (−n) in place of Hk

0 (n)). The inner infinite
sum in the right-hand side is the (nth) Fourier coefficient of − log(1−φ(t)) (see (21)
below) and Fourier analysis will reveal a certain analytic nature of the power series
in the exponent and hence that of the left-hand side.

Recall that ρ(t)=1−φ(t). We introduce a function F (t) defined by F (0)=0
and

F (t) = − log
[

ρ(t)/σ2

|2 sin(t/2)|

]
, 0 < |t| ≤ π,

(the logarithm is understood to be the principal branch) and denote by F ∨(n) its
Fourier coefficient:

(16) F ∨(n) =
1
2π

∫ π

−π

F (t) e−int dt.

Then the fact mentioned just after (15) may be expressed in the form

(17)
∞∑

k=1

Hk
0 (n)
k

=F ∨(n)+
1

2|n| , n �=0,

(see (22) below) and (15) and its analogue for {un} ∞
n=0 accordingly become

(18)
∞∑

n=0

vnzn =
1

√
c

√
1−z

em+(z) and
∞∑

n=0

unzn =
1

√
c

√
1−z

em−(z),

where

(19) m±(z) =
∞∑

n=1

znF ∨(±n), |z| < 1.

The formula (17) is derived in the following preliminary discussion.
Let ψ(t, l) be the characteristic function of one step transition of the walk Sn:

ψ(t, l)=E0[eitX+ilY ], where X and Y denote the first and second components of
S1, respectively. It is not hard to see that

1
ρ(t)

=
1
2π

∫ π

−π

dl

1−ψ(t, l)
, t �=0,
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and that if E0[|S1|2+δ]<∞ for some 0≤δ<1, then as t→±0,

(20) ρ(t) =σ2|t|+o(|t|1+δ), ρ′(t) = ±σ2+o(|t|δ) and ρ′ ′(t) = o(|t|δ−1)

(cf. [12], Lemmas 2.1 and 4.2). We have Hk
0 (s)=(2π)−1

∫ π

−π
(1−ρ(t))k e−ist dt,

s∈Z. Hence by dominated convergence

(21)
∞∑

k=1

1
k

Hk
0 (s) = − 1

2π

∫ π

−π

log ρ(t) e−ist dt.

(In fact this identity holds generally for every nondegenerate random walk.) Here
(as above) the logarithm is the principal branch, so that

log ρ(t)= log |ρ(t)|+iθ(t).

Notice that |ρ(t)| is even and θ(t)=arg ρ(t) is odd; also θ(t)=arg(ρ(t)/|ρ(t)|)→0 as
t→0. We are to separate from log ρ(t) its logarithmic singularity at 0. To this end it
is convenient to represent it not by log |t| but by log |2 sin(t/2)|=−

∑∞
k=1 k−1 cos kt,

for which

(22)
1
2π

∫ π

−π

log
∣∣∣∣2 sin

t

2

∣∣∣∣ e−int dt=
{

−1/2|n|, if n=±1, ±2, ...,

0, if n=0.

Thus

(23) − 1
2π

∫ π

−π

log ρ(t) e−int dt=
1

2|n| − 1
2π

∫ π

−π

log
[

ρ(t)/σ2

|2 sin(t/2)|

]
e−int dt, n �=0,

which combined with (21) gives (17). An application of the Riemann–Lebesgue
lemma shows that the last integral converges to zero as n→∞, where the speed of
convergence depends on the regularity of ρ at 0, which in turn depends on moment
conditions of S1. In the typical case of simple random walk it is O(1/nN ) for every
N>0 (see Appendix A), while it is o(1/n) in general (see Lemma 2.2).

Now we proceed to analysis of the function m±(z) defined by the power se-
ries (19): our interest is mainly in its boundary behavior at z=1. Clearly F is
periodic of period 2π. From (20) it follows that as t→0,

(24)
F (t) = o(|t|δ),

F ′(t) = − ρ′

ρ
+

1
2

cot
t

2
= o(|t|δ−1) and F ′ ′(t) = o(|t|δ−2);

also by (22)

(25)
1
2π

∫ π

−π

F (t) dt=
∞∑

k=1

1
k

Hk
0 (0)+log σ2 = − log

c

σ2
.
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Hence

m±(z) =
1
2

log
c

σ2
+

1
4π

∫ π

−π

1+ze∓it

1−ze∓it
F (t) dt.

We shall verify below that m±(1) exist,

(26) lim
N→∞

N∑

s=−N

F ∨(s)= 0,

and

(27) m+(1)+m−(1) = log
c

σ2
.

To this end put

a(n) =
1
π

∫ π

−π

F (t) cos nt dt = − 1
π

∫ π

−π

log
∣∣∣∣

ρ(t)/σ2

2 sin(t/2)

∣∣∣∣ cosnt dt

and

b(n) =
1
π

∫ π

−π

F (t) sin nt dt = − i

π

∫ π

−π

θ(t) sin nt dt

(so that F ∨(n)= 1
2 (a(n)−ib(n))) and consider the Fourier series

(28) F (t) =
a(0)
2

+
∞∑

n=1

(a(n) cos nt+b(n) sin nt)

and its conjugate series

(29) F (t) := − 1
π

∫ π

0

F (t+y)−F (t−y)
2 tan(y/2)

dy =
∞∑

n=1

(a(n) sin nt−b(n) cosnt).

These trigonometric series converge to the functions on the left for every t �=0 at
which F is continuously differentiable. We shall see shortly that this holds true also
for t=0.

Lemma 2.1.
∫ π

0
|θ(t)/t| dt<∞.

Proof. Since

ρ(t)ρ(−t) = |ρ(t)|2 and ρ(t)−ρ(−t) = i2|ρ(t)| sin θ(t),

it suffices to prove that ∫ π

0

∣∣∣∣
1

ρ(t)
− 1

ρ(−t)

∣∣∣∣ dt < ∞.
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We write

i

ρ(t)
− i

ρ(−t)
= − Im

(
2

ρ(t)

)
= − 1

π

∫ π

−π

E0[sin(tX+lY )]
|1−ψ(t, l)|2 dl,

and, using the decomposition

E0[cos lY sin tX] =E0[(cos lY −1) sin tX]+E0[sin tX −tX]

and a similar one for E0[sin lY cos tX], obtain
∫ π

−π

∫ π

−π

|E0[sin(tX+lY )]|
|1−ψ(t, l)|2 dt dl < ∞

(see Lemma 3.1 of [11]). Thus the lemma is verified. �

Lemma 2.2. (i) If E0|S1|2+δ<∞ for some 0≤δ<1, then as n→∞, a(n)=
o(n−δ−1) and b(n)=o(n−δ−1).

(ii) Both
∑∞

n=0 a(n) and
∑∞

n=0 b(n) are convergent and
∑∞

n=1 a(n)=−a(0)/2.

Proof. Split the integral
∫ π

−π

F (t)
(

cosnt

sin nt

)
dt

by dividing the range |t|<π at ±1/n. With the help of (24) the contribution of the
interval |t|<1/n is immediately disposed of; and for the other intervals we perform
integration by parts twice to conclude that (i) is true. Similarly, from F ′ =o(1/t)
and F (±0)=0 we infer that

lim
n→∞

∫ π

−π

F (t)
sin nt

t
dt =0,

which is equivalent to the validity of (28) at 0 (see e.g., [15], II.7.1). This gives
(26), hence the identity of (ii). It remains to verify the convergence of

∑∞
n=0 b(n).

A sufficient condition for it is that |F (t)−F (−t)|/|t| is integrable about the origin,
which indeed is true owing to Lemma 2.1. �

Now we compute m+(1). Recalling the defining expression (19) of m+(z), we
find (from the Fourier expansions (28) and (29)) that

(30) 2m+(eit) = − a(0)
2

+F (t)+iF (t).

By (25)
1
2
a(0) = − log

c

σ2
.
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On the other hand F (0)=0 and, since log[ρ(t)/ρ(−t)]=2iθ(t),

iF (0) = − 1
π

∫ π

0

θ(t)
tan(t/2)

dt = −2θ+,

where the integral is absolutely convergent owing to Lemma 2.1. Hence

(31) m+(1) = log
√

c/σ2 −θ+.

We shall need further regularity properties of F .

Lemma 2.3. The function F (t) is continuous on [−π, π] and continuously
differentiable except at 0, about which F

′
(t)=o(1/t).

Proof. It suffices to show that the function

g(t) =
∫ 1

0

F (t+y)−F (t−y)
y

dy

satisfies the property asserted for F in the lemma. The continuity of g is obvious
for 0<|t|<2π, in which F is continuously differentiable with

∫ ε

0

y−1(F (t+y)−F (t−y)) dy

approaching zero as ε↓0 locally uniformly. The continuity at t=0 is proved by using
that F ′(t)=o(1/t) as follows. By symmetry we have only to consider the case t>0.
Decompose the integral

∫ 1

0
into the three parts g1=

∫ t/2

0
, g2=

∫ 2t

t/2
and g3=

∫ 1

2t
. By

the mean-value theorem

g1 =2
∫ t/2

0

F ′(t+ηt(y)) dy

with |ηt(y)| ≤t/2, so that F ′(t+ηt(y))=o(1/t); hence g1=o(1). The integrand of
g2 is o(1/t) uniformly on the range of integration; hence g2=o(1). As for g3 we
decompose it as

(32) g3 =
∫ 1

2t

F (t+y)−F (y)
y

dy+
∫ 1

2t

F (y)−F (−y)
y

dy+
∫ 1

2t

F (−y)−F (t−y)
y

dy.

Since F (t+y)−F (y)=to(1/y), the first integral is t
∫ 1

2t
o(1/y2) dy=o(1). In a similar

way we see that the third integral vanishes in the limit. By Lemma 2.1(ii) the second
integral converges to g(0). Thus g(t)→g(0) as required.
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Employing the fact that F is twice continuously differentiable on t>0, the same
reasoning advanced for the continuity of g at t>0 is adapted to verify that g(t) is
continuously differentiable there and its derivative is given by

g′(t) =
∫ 1

0

F ′(t+y)−F ′(t−y)
y

dy.

Making decomposition parallel to (32) and using F ′ ′(t)=o(1/t2) we can readily show
that g′(t)=o(1/t). �

What is proved for F and m± is summarized in the following corollary.

Corollary 2.4. (i) Both F (t) and F (t) are continuous, F (0)=0 and iF (0)=
−2θ+.

(ii) The functions m±(z) are continuous on the closed disc |z| ≤1 with the
boundary functions m±(eit)= 1

2 (log(c/σ2)+F (±t)±iF (±t)).

Proof. We have only to examine the continuity of m±. From the definition it
is clear that m± is in the Hardy class H2 and therefore represented as the Poisson
integral of its boundary function determined by nontangential limits (see e.g. [9],
Theorem 17.11). Thus the continuity follows from that of F and F . �

3. Estimates of vn

Let {cn} ∞
n=1 be a bounded sequence of complex numbers, put f(z)=

∑∞
n=1 cnzn

and let a0=1 and

ef(z) =1+a1z+a2z
2+... .

From (ef )′ =f ′ef it follows that

(33) (n+1)an+1 = anb0+an−1b1+...+a0bn,

where we set bn=(n+1)cn+1 so that f ′(z)=
∑∞

n=0 bnzn.

Lemma 3.1. Let δ be a positive constant. If cn=O(1/n1+δ), n≥1, then an=
O(1/n1+δ).

Proof. We have a0=1 and, by the assumption on f , |bk | ≤A/(k+1)δ for some A.
First consider the case δ=1. Set a′

n=n2|an| and Mn=max{a′
1, ..., a

′
n}. Then, taking
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N so large that A
∑

k>N k−2+A supn>N

∑n
k=1[k(n+1−k)]−1< 1

2 , we obtain from
the recursion relation (33) that for n≥N ,

a′
n+1 ≤ A

n∑

k=1

(n+1)a′
k

k2(n+1−k)
+A

= A
n∑

k=1

a′
k

[
1
k2

+
1

k(n+1−k)

]
+A

≤ A+AMN

∞∑

k=1

1
k2

+
1
2
Mn,

which shows by induction that Mn ≤2A+2AMN

∑∞
k=1 k−2. Thus a′

n is bounded as
desired. For δ �=1 taking a′

n=n1+δ |an| we can proceed in a similar way but using
the inequalities

n∑

k=N+1

(n+1)δ

k1+δ(n+1−k)δ
≤ 1

(n+1)δ

∫ 1−1/(1+n)

N/(n+1)

dt

t1+δ(1−t)δ
+

(1+n)δ

n1+δ
≤ C

N δ
. �

The argument given above can be readily adapted to verify that if cn=o(1/n1+δ),
n≥1, then an=o(1/n1+δ).

Lemma 3.2. If cn=O(1/n2), as n→∞, and the infinite series
∑∞

n=1 ncn is
convergent, then {n2an} ∞

n=1 is bounded and the series
∑∞

n=1 nan converges to the
sum f ′(1) ef(1).

Proof. That {n2an} ∞
n=1 is bounded follows from the preceding lemma. The

second half then follows from the Littlewood version of Tauberian theorems ([14],
p. 360) applied to the power series f ′(z) ef(z)=a1+2a2z+3a3z

2+... . �

Recall the first identity of (18):
∞∑

k=0

vkzk =
1

√
c

√
1−z

em+(z), |z| < 1;

and also that F ∨(n) is the Fourier coefficient of F defined in (16).

Lemma 3.3. Let δ be a positive constant. If F ∨(n)=O(1/n1+δ), then as
n→∞,

vn − e−θ+

√
πσ2n

=

⎧
⎨

⎩

O(n−3/2), if δ>1,

O(n−3/2 log n), if δ=1,

O(n−δ−1/2), if δ<1.
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Proof. Let 1/
√

1−z=α0+α1z+α2z
2+..., namely α0=1 and

(34) αn =
(2n−1)!!

(2n)!!
=

1√
πn

+O(n−3/2) for n> 0.

If em+(z)=1+a1z+a2z
2+..., then Lemma 3.1 together with the assumption of the

lemma (see (19)) yields an=O(1/n1+δ), so that

√
cvn = α0an+...+αna0 =

n−1∑

k=0

ak√
π

√
n−k

+O(n−1/2−(1∧δ)) =
1√
πn

∑

0≤k<n/2

ak+R,

with
R ≤ C

2n
√

n

∑

0≤k<n/2

k|ak |+O(n−1/2−(1∧δ)).

Since
∑∞

k=0 ak=em+(1)=e−θ+
√

c/σ2, the relations above show those of the lemma. �

Lemma 3.3 provides reasonable estimates for vn under the (2+δ)-moment con-
dition with δ>0, whereas without assuming it we have the following result.

Proposition 3.4.

vn =
e−θ+

σ
√

πn
(1+o(1)).

Proof. The proof depends on the representation

(35) vn =
1
2π

∫ π

−π

v̂(t) e−int dt,

where v̂(t), t �=0, is the boundary value at z=eit of the analytic function
∑∞

n=0 vnzn

in |z|<1, and, according to (30), given by

v̂(t) =
em+(eit)

√
c

√
1−eit

=
exp

(
1
2F (t)+i 1

2F (t)
)

σ
√

1−eit
.

Owing to Lemma 2.3 and (24) it holds that v̂(t)=O(1/
√

|t|) and as t→0,

(36) v̂′(t) =
(

d

dt

1√
1−eit

)(
e−θ+

σ
+o(1)

)
.

We are going to compare vn with e−θ+αn/σ, where αn is the same as in the
preceding proof so that α̂(t)=

∑∞
n=0 αneitn=1/

√
1−eit, 0<|t|<π. Now employing

(36) and setting A=e−θ+/σ we have v̂(t)−Aα̂(t)=o(|t| −1/2) and v̂′(t)−Aα̂′(t)=
o(|t| −3/2), and then
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2π(vn −Aαn) =
∫ π

−π

(v̂(t)−Aα̂(t)) e−int dt

=
∫

|t|<1/n

(v̂(t)−Aα̂(t)) e−int dt+o

(
1√
n

)

+
1
in

∫

1/n<|t|<π

(v̂′(t)−Aα̂′(t)) e−int dt

= o(1/
√

n).

Thus we conclude that vn=e−θ+/
√

πσ2n+o(1/
√

n) as desired. �

4. Estimation of H−
x

The Green function g(x, y) for the one-dimensional random walk Xn killed on
{x≤ −1} is given by

g(x, y) =
∑

0≤n≤x∧y

ux−nvy−n, x, y ≥ 0,

(cf. Spitzer [10], Section 19, Proposition 3). Our estimation of H −
x will be based on

the formula

H−
x (s) =

∞∑

y=0

g(x, y)H0(s−y)

=
x∑

n=0

ux−n

∞∑

y=n

vy−nH0(s−y)

=
x∑

n=0

ux−n

∞∑

y=0

vyH0(s−n−y)

as well as the estimates of vn and un and of H0 in Lemma 3.3 and Proposition 3.4
and in [12], respectively.

Remark. Using the estimate in Lemma 3.3 as well as the identity m+(1)+
m−(1)=log(c/σ2),

g(x, y) =
2+o(1)

πσ2
log

√
y+

√
x√

|y −x| ∨1
,

as x∨y→∞, x, y ≥0. This asymptotic form of g however is not useful for our present
purpose (and is thus not applied below).
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The case E0|S1|2+δ<∞, δ>0. The form of dependence on δ of the estimates
changes at δ= 1

2 and in order to express them concisely we introduce the function
�δ(y) defined for y ≥0 by

(37) �δ(y) =

{
(y ∨1)1/2−δ log(y ∨e), if δ ≤ 1

2 ,

1, if δ> 1
2 .

The next theorem reduces to Theorem 1.3 in the case δ> 1
2 .

Theorem 4.1. Suppose E0|S1|2+δ<∞, δ>0. Then uniformly for x≥0 and
s<0,

(38) H −
x (s) =

1
π

1
x−s

√
x∨1

−s

[
1+

O(�δ(−s))√
−s

+
O(�δ(x))√

x∨1

]
;

if −s>x≥0, then

(39) H −
x (s) =

σ2ν(x)
2π (x−s)3/2

[
1+

O(�δ(−s))√
−s

+O

(
x∨1
x−s

)]
;

if x≥ −s, then

(40) H −
x (s) =

μ(s)
π

√
x−s

[
1+o

(
1
xδ

)
+O

(√
−s

x

)]
.

Here (and in what follows as well) O(�δ( · )) can be replaced by o(�δ( · )) if δ ≤ 1
2 .

Proof. We may restrict the range of the parameter δ to the open unit inter-
val (0, 1); in the case δ ≥1 some of the estimates given below have to be altered
but without making any effect to the net result. Thus let 0<δ<1 and suppose
E0|S1|2+δ<∞. Under this condition it is shown in [12] that

H0(s) =
σ2

π

1
s2

[
1+o

(
log |s|

|s|δ

)]
, as s→ ∞.

Observing that
∫ ∞
0

[y−1/2(y+k)−2−δ] log(k+y) dy ≤const·k−(3/2+δ) log k and as
k→∞,

(41)
∫ ∞

0

1
(y+1)1/2+δ(y+k)2

dy =O

(
�δ(k)
k2

)
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we see that for k>0,

∞∑

y=0

vyH0(−k −y) =
σ2

π

∞∑

y=0

vy
1

(y+k)2
+o

(
log k

k3/2+δ

)

=
σ2 em+(1)

π
√

πc

∫ ∞

0

dy
√

y (y+k)2
+O

(
�δ(k)
k2

)
.

(Here O appearing above may be replaced by o if δ ≤ 1
2 but not if δ> 1

2 .) Hence, by
the formula

(42)
1
π

∫ ∞

0

1
(a+y)2

√
y

dy =
1

2a3/2
,

(43)
∞∑

y=0

vyH0(−k −y) =
σ2 em+(1)

2
√

πc

1
k3/2

+O

(
�δ(k)
k2

)
, as k→ ∞.

Applying the last formula with k=n−s and the following formulas:

un =
em−(1)

√
πcn

+o

(
1

n1/2+δ

)
,

∫ x

0

1
(a−t)3/2

√
t
dt =

2
a

√
x

a−x
, 0 <x<a (=x−s),

x−1∑

n=1

1
(x−n)1/2+δ(n−s)3/2

=
∑

n≤x/2

+
∑

n>x/2

≤ C ′ √
x

xδ(x−s)
√

−s
+

C�δ(x)
(x−s)3/2

,(44)

x−1∑

n=1

�δ(n−s)√
x−n (n−s)2

≤ C
�δ(−s)

√
x

(x−s)(−s)
,(45)

we obtain (38).
Further applying the simple estimates

(n−s)−3/2 =(x−s)−3/2+O((x−n)(x−s)−5/2)

and
∑x−1

n=1(x−n)/
√

x−n≤Cx3/2 we also obtain (39).
Similarly, using that 1/

√
x−n=(x−s)−1/2+O((n−s)(x−s)−3/2) as well as

(42), (43) and (44) and observing that

x−1∑

n=0

n−s

(n−s)3/2
≤

√
x−s−

√
−s ≤ x√

x−s
,
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we find that

H−
x (s) =

x∑

n=0

em−(1)

√
πc(x−n)

∞∑

y=0

vyH0(s−n−y)+o

( √
x

xδ(x−s)
√

−s

)
+

O(�δ(x))
(x−s)3/2

,

=
1

π
√

x−s
μx(s)+O

(
x

(x−s)2

)
+o

( √
x

xδ(x−s)
√

−s

)
,

where

μx(s) =
em−(1)

√
c/π

x∑

n=0

∞∑

y=0

vyH0(s−n−y).

But by (43),

μ(s)−μx(s) =
√

π eθ+

σ

∞∑

n=x+1

∞∑

y=0

vyH0(s−n−y) ≤ C√
x−s

.

Now we have only to take into account the constraint x≥ −s to modify the error
terms to obtain (40). �

Remark on the proof of Theorem 4.1. As mentioned in Section 1 it seems hard
to improve the estimates of H − in Theorem 4.1 for δ> 1

2 by the present method.
The bottlenecks are the term in (41) and the last term in (44), which arise from the
discrepancies of e−θ± /

√
πσ2n from vn and un, respectively (for small values of n).

It follows that μ(s)=(
√

π eθ+/σ)
∑∞

y=0 vy

∑∞
j=y H(s−j), or what is the same

thing,

(46) μ(s)−μ(s−1) =
√

π eθ+

σ

∞∑

y=0

vyH0(s−y).

Hence (43) and (27) yield the following proposition in the case δ>0.

Proposition 4.2. Suppose E0|S1|2+δ<∞, δ>0, and let �δ be defined by (37).
Then

(47) μ(s)−μ(s−1) =
1

2(−s)3/2
+

O(�δ(−s))
(−s)2

as s→−∞. Here O(�δ(−s)) may be replaced by o(�δ(−s)) if δ ≤ 1
2 .
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The case δ=0. To complete the proof of Proposition 4.2 we must prove the
following lemma, which in particular implies (5).

Lemma 4.3.

∞∑

y=0

vyH0(−k −y) =
σ e−θ+

2
√

πk3/2
(1+o(1)), as k→ ∞.

Proof. Under only the existence of variance the asymptotic form of H0(s) as
|s|→∞ is not always given by σ2/πs2; we resort to the Fourier analytic method.

Owing to Proposition 3.4, vy may be replaced by any sequence whose as-
ymptotic form, as y→∞, is e−θ+/

√
σ2πy. For our present purpose it is conve-

nient to take e−θ+αy/σ, where {αn} ∞
n=0 is the sequence introduced in the proof of

Lemma 3.3. Let α̂(t)=1/
√

1−eit as before so that

(48)
∞∑

y=0

αyH0(−k −y) =
1
2π

∫ π

−π

α̂(t)φ(t) eikt dt,

which is valid since H0(n) and α̂(t) (with Fourier coefficients α̂y=0 for y<0) are
summable over n∈Z and |t|<π, respectively. By the same formula (applied in the
reverse way),

1
2π

∫ π

−π

α̂(t) e−σ2|t| eikt dt =
∞∑

y=0

αy
σ2

π[σ4+(k −y)2]
=

σ2

2
√

π

1
k3/2

(1+o(1))

as k→∞. It therefore suffices to prove that if f(t)=α̂(t)(φ(t)−e−σ2|t|), then
∫ π

−π

f(t) eikt dt= o(k−3/2), as k→ ∞.

We know that ρ(t)=σ2|t|(1+o(t)), ρ′(t)=σ2t/|t|+o(t) and ρ′ ′(t)=o(1/t) as t→0,
which show that f(t)=o(|t|1/2), f ′(t)=o(|t| −1/2) and f ′ ′(t)=o(|t| −3/2). By using
these bounds we observe, as in the last step of the proof of Proposition 3.4, that∫ π

−π
f(t) eikt dt=−(ik)−1

∫ π

−π
f ′(t) eikt dt=o(k−3/2). �

Proof of Theorem 1.1. If x, the initial site, is nonnegative, the formula (3) is
proved as in the proof of Theorem 4.1 (especially its last step) owing to Lemma 4.3.
If x<0 and |x−s|→∞, then (3) is a special case of Theorem 1.4, but in the latter
theorem the additional condition E0[|S(1)

1 |2 log |S(1)
1 |]<∞ is supposed. In order to

dispense with it we proceed as in the proof of the preceding lemma. In [12] it is
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shown that H0(s)=σ2/πs2+o(|s| −2 log |s|) as |s|→∞ and owing to it our task is
readily reduced to showing that under (log |s|)

√
s/x≤C,

(49)
∞∑

ξ=1

√
ξ

ξ −s

[
H0(ξ −x)− σ2

π[σ4+(x−ξ)2]

]
= o

(
1

(−x)3/2

)

as x→−∞. On the left the numerator
√

ξ may be replaced by
√

πξαξ . Taking this
into account define

g(t) =
∞∑

ξ=0

ξαξ

ξ −s
eiξt.

Then, on writing α̂(t)=1/
√

1−eit as before,

g(t) = α̂(t)+isG(t), where G(t) =
1
i

∞∑

ξ=0

αξ

ξ −s
eiξt.

Put η(t)=φ(t)−e−σ2|t| and f(t)=g(t)η(t)=α̂(t)η(t)+isG(t)η(t) and observe that
G′ =g, |sG(t)| ≤C

√
−s and that for k=0, 1, 2, |(d/dt)kα̂(t)|=O(|t| −k−1/2) and

|(d/dt)kη(t)|=o(|t|1−k) as t→0. Then by integration by parts

(
1− s

x

) ∫ π

−π

f(t) e−ixt dt=
1
ix

∫ π

−π

(α̂η)′ e−ixt dt+
1
x

∫ π

−π

sGη′ e−ixt dt

= o

(
1

(−x)3/2

)

as x→−∞ under (log |x|)
√

s/x≤C, where the computation for the last estimate is
carried out as in the proof of Lemma 2.2(i).

For the case when s→−∞ under 0<−x≤C|s|/(log |s|)2 one has only to con-
sider the time reversed walk.

The proof of Theorem 1.1 is finished. �

Appendix A

For simple random walk (for which ψ(t, l)= 1
2 (cos t+cos l) and σ2= 1

2 ) we have

ρ(t)
σ2

=
√

(3−cos t)(1−cos t) and F (t) = − log
√

(3−cos t)/2;

if a=3−2
√

2, then F (t)=− log
√

(1−2a cos t+a2)/(1−a)2 and, by simple compu-
tations,
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F (t)= log(1−a)+
∞∑

n=1

an

n
cosnt, c =

1
2(1−a)

,

m+(z) =m−(z) = − log
√

(1−az) and un = vn =
√

2/πn

(
1− 1+a

16n
+O(n−2)

)
.

Appendix B

Let h−
z (s), s<0, be the density of the distribution of the position s of the

first visit to the negative real axis L− =(−∞, 0) of the standard two-dimensional
Brownian motion Bt starting at z ∈C\L−. We must distinguish whether the hitting
of L− takes place through the upper or lower half plane. To this end we assign to
every number s<0 two points s+i0 and s−i0 representing the points of the ‘upper
edge’ and the ‘lower edge’, respectively, of the region C\L− along the slit L−. Thus,
e.g., for s<0,

h−
z (s+i0) =

d

ds
Pz[Bτ(L−) ≤ s; there is ε> 0 such that ImBτ(L−)−t > 0 for 0 <t<ε]

and h−
z (s)=h−

z (s+i0)+h−
z (s−i0). Since the function f(z)=

√
z=

√
r eiθ/2, r>0,

−π<θ<π, conformally and univalently maps the region C\L− onto the right half
plane {z :Re z>0} and the density at

√
s, s<0, of hitting distribution of the imag-

inary axis for the process Bt starting at w=
√

z=u+iv equals

π−1u

u2+(
√

−s−v)2
,

we obtain that

h−
z (s+i0) =

1
π

√
r cos(θ/2)

r −s−2
√

r(−s) sin(θ/2)
1

2
√

−s

and, by simple computation, that for z=reiθ=x+iy /∈L−, s<0,

h−
z (s) =

1
π

(r −s)
√

r cos(θ/2)
r2+s2 −2rs cos θ

1√
−s

=
1
π

(r −s)
√

r+x

[(x−s)2+y2]
√

−2s
;

in particular

h−
x (s) =

1
π

√
x

(x−s)
√

−s
, x> 0, s < 0.

Let hx+iy(s) denote the Poisson kernel: hx+iy(s)=y/π(y2+(s−x)2). For the
Brownian motion B̃t=Q1/2Bt the densities of the first hitting distribution of the
real line and the negative real line are given by hx−ωy+iλy(s) and h−

x−ωy+iλy(s),
respectively, so that
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(50) h−
x−ωy+iλy(s) =hx−ωy+iλy(s)+

∫ ∞

0

hx−ωy+iλy(u)h−
u (s) du

(λ and ω are defined in (12)). It is remarked that hx−ωy+iλy(s) and hx+iy(s) are
uniformly comparable (since λ2>ω2), hence so are h−

x−ωy+iλy(s) and h−
x+iy(s).

Appendix C

Here we prove the identity (7), which may be written as

(51) θ+ =
1
2

∞∑

k=1

1
k

∞∑

n=1

[Hk
0 (−n)−Hk

0 (n)],

and the absolute convergence
∑∞

k=1 k−1|
∑∞

n=1(H
k
0 (n)−Hk

0 (−n))|<∞ as well.

Proof. The proof is similar to that found in [8]. Recall that m±(1) exists and
2θ+=−m+(1)+m−(1)=−

∑∞
n=1(F

∨(n)−F ∨(−n)) (owing to Lemma 2.2(ii) and (31),
respectively). Substitution from (17) then yields

θ+ = − 1
2

∞∑

n=1

∞∑

k=1

1
k

[Hk
0 (n)−Hk

0 (−n)].

This becomes (51) on interchanging the order of summation which it is our task to
justify. By Abel’s theorem

θ+ = − lim
r↑1

∞∑

k=1

1
2k

T k(r), where T k(r) =
∞∑

n=1

rn−1[Hk
0 (n)−Hk

0 (−n)].

It follows that for r<1,

T k(r) =
∞∑

n=1

rn−1 1
2π

∫ π

−π

[φk(t)−φk(−t)] e−int dt

=
1
π

∫ π

0

|φ(t)|k sin(k arg φ(t))
2 sin t

1−2r cos t+r2
dt.

One can choose ε>0 so small that

|φ(t)| < 1−ε for ε ≤ |t| ≤ π,

and
|ρ(t)|

2
≤ 1− |φ(t)| and |ρ(t)| < |φ(t)| for |t| <ε.

Of these three inequalities the last one implies |φ(t) arg φ(t)| ≤ |ρ(t)θ(t)|, which to-
gether with the first one and the inequality 1−2r cos t+r2 ≥1−cos2 t yields that

1
2k

|T k(r)| ≤ Cε(1−ε)k+
4
π

∫ ε

0

|φ(t)|k−1|ρ(t)θ(t)| dt

t
.
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Now use the second one to see that the sum of the right-hand side over k ≥1 is dom-
inated by Cεε

−1+(8/π)
∫ ε

0
|θ(t)|t−1 dt, which is finite owing to Lemma 2.1. Thus

the dominated convergence theorem is applied to conclude the desired identity. �
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