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Elliptic CR-manifolds and shear invariant
ordinary differential equations with additional

symmetries

Vladimir Ezhov and Gerd Schmalz

Abstract. We classify the ordinary differential equations that correspond to elliptic CR-

manifolds with maximal isotropy. It follows that the dimension of the isotropy group of an elliptic

CR-manifold can only be 10 (for the quadric), 4 (for the listed examples) or less. This is in contrast

with the situation of hyperbolic CR-manifolds, where the dimension can be 10 (for the quadric),

6 or 5 (for semi-quadrics) or less than 4. We also prove that, for all elliptic CR-manifolds with

non-linearizable isotropy group, except for two special manifolds, the points with non-linearizable

isotropy form exactly some complex curve on the manifold.

1. Introduction

In [3] the authors used a correspondence between so-called torsion-free elliptic
CR-manifolds and complex second order ordinary differential equations (ODEs) to
describe elliptic CR-manifolds with non-linearizable isotropy. This description was
based on an investigation of ODEs with a shear symmetry y∂/∂x on the xy-plane
near the singularity (0, 0).

The major aim of this paper is to describe elliptic CR-manifolds with big
isotropy. We will show that the maximal dimension of the isotropy for non-quadratic
elliptic CR-manifolds is 4 and is attained exactly for manifolds that correspond to
the ODEs

y′′ = yk(y−xy′)3 and y′′ = yly′(y−xy′)2+Cy2l+2(y−xy′)3

where k and l are non-negative integers and C is a complex constant. Thus, accord-
ing to earlier results by the authors [2], the possible dimensions of the isotropy of
elliptic CR-manifolds are 10, 4, 3, 2, 1 and 0. This is somewhat unexpected, because
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the corresponding numbers for analogous hyperbolic manifolds are 10, 6, 5, 3, 2, 1
and 0 (see [5]).

In Section 4 we represent open parts of elliptic CR-manifolds with non-linear-
izable isotropy as copies of SL(2,C) with the standard action of subgroups of
SL(2,C).

In Section 5 we show that the duality of ODEs that results from swapping the
rôles of the variables x and y and the parameters c1 and c2 corresponds simply to
switching to the complex conjugate CR-manifold. We demonstrate this feature for
the exceptional quartic.

Section 6 is devoted to shear invariant elliptic CR-manifolds with one additional
non-isotropic symmetry. We show that these manifolds coincide with the manifolds
obtained in Section 3 for a different choice of the reference point.

In Section 7 we conclude that the quartic is the only shear invariant elliptic
CR-manifold with 6-dimensional automorphism group.

Finally, in Section 8 we show that the quadric and the quartic are character-
ized by the property that the points with non-linearizable isotropy fill more than
a complex curve, whereas in all other cases they fill exactly a complex curve.

2. Preliminaries

Let M be a CR-manifold M of CR-dimension two and CR-codimension two,
i.e., M is a 6-dimensional manifold with a rank-4 distribution D⊂TM and a smooth
field of endomorphisms Jx : Dx!Dx with J2

x =− id. The Levi form at x∈M is
a bilinear mapping

Lx : Dx×Dx −!TxM/Dx.

Lx(X,Y ) is defined as the bracket of two sections ˜X and ˜Y of D which extend
X and Y , followed by the natural projection π : Tx!Tx/Dx.

M is called elliptic if any real linear combination of the two scalar components
of L is a non-degenerate bilinear form. It follows that there exist two mutually
conjugate complex degenerate combinations. Their null vectors define a canonical
splitting Dx=D+

x ⊕D−
x . For a pair of sections ˜X in D+ and ˜Y in D− the vectors

( ˜Xx,
�

˜Y x, [ ˜X,
�

˜Y ]x) define a complex structure on TxM .
We assume that Lx(JxX, JxY )=Lx(X,Y ) for all x∈M , i.e. M is partially

integrable.
For partially integrable elliptic CR-manifolds a Cartan connection was con-

structed in [1] (see also [6] and [8]). In the present paper we consider only elliptic
manifolds, whose so-called torsion-part of the Cartan curvature vanishes. This al-
gebraic condition is equivalent to the following geometric properties:
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(1) M is embeddable;
(2) the line bundles D+ and D− are integrable;
(3) the canonical almost complex structure is integrable.
It follows that M must be real-analytic. For a smooth embedded elliptic CR-

manifold, vanishing of the torsion at a point x∈M can also be expressed by the
equivalent condition that M has contact of third order with its osculating quadric
at x (see [7]).

We have the following result.

Proposition 1. There is a local one-to-one correspondence between
(1) torsionfree elliptic CR-manifolds of CR-dimension two and CR-codimen-

sion two
(2) complex 3-folds with two holomorphic direction fields that span a non-

involutive distribution
(3) complex second order ODEs.

Proof. If ˜M is a complex 3-fold with a pair of non-involutive direction fields
one can introduce local coordinates x, y and p such that Z1=∂/∂p and Z2=∂/∂x+
p∂/∂y+B(x, y, p)∂/∂p (see [3]). This allows us to interpret a local part of ˜M as
a chart of the projectivized tangent bundle over C2 with coordinates x and y in
the base and p=dy/dx in the fibre. The projections of the integral curves of Z2 are
then nothing but the integral curves of y′′=B(x, y, y′) in C2. Vice versa, the lifts
of integral curves of a second order ODE to the projectivized tangent bundle define
a direction field Z2 that does not commute with Z1=∂/∂p.

If M is a torsionfree elliptic CR-manifold then M has an integrable almost
complex structure and two holomorphic direction fields that generate D+, D

−
. Vice

versa, if ˜M is a complex 3-fold with holomorphic direction fields Z1 and Z2 then Dx

can be defined as the span of these direction fields. Jx is defined by JxZ1,x=iZ1,x

and JxZ2,x=−iZ2,x. Non-involutivity of the two direction fields is equivalent to the
ellipticity of the Levi form.

It remains to show that the obtained CR-manifold M is torsionfree. It is
convenient to represent M as an embedded CR-submanifold of C4. We look for
four independent coordinate functions that are annihilated by

�Z1 =
∂

∂p̄
and Z2 =

∂

∂x
+p

∂

∂y
+B(x, y, p)

∂

∂p
.

Two obvious solutions are z2=x̄ and w2=ȳ. We need two additional coordinate
functions of the form f(x, y, p). Thus, we have to solve

∂

∂x
f+p

∂

∂y
f+B(x, y, p)

∂

∂p
f = 0.
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The characteristic equation of this partial different equation is

ẋ= 1, ẏ= p and ṗ=B(x, y, p).

It is equivalent to ÿ=B(t, y, ẏ). Let the characteristic curves be

x= t, y=φ(t, C1, C2) and p= φ̇(t, C1, C2).

Then the desired coordinate functions are z1=C1(x, y, p) and z2=C2(x, y, p).
In C4 with coordinates z1, z2, w1 and w2 the equation of the manifold M takes
the form

�w2 =φ(z̄2, z1, w1).

M has two foliations: into holomorphic curves (for z̄2 and �w2 fixed) and into anti-
holomorphic curves (for z1 and w1 fixed). The tangent spaces to the curves which
pass through a given point span the maximal complex subspace of the tangent space
of M at this point. The corresponding directions annihilate the degenerate complex
linear combinations of the components of the Levi form. Thus, they provide the
canonical splitting. By construction, the corresponding line bundles are integrable.
The induced almost complex structure is the one that is obtained by adopting
z1, z̄2, w1 and �w2 as holomorphic coordinates in the ambient space. Therefore, it is
clearly integrable. �

Remark 1. The embedding constructed in the proof of Proposition 1 has the
property that the two canonical foliations coincide with the foliations into the fibres
of the projections to the z1w1-plane and the z2w2-plane, respectively.

It was proved in [3] that elliptic CR-manifolds with non-linearizable isotropy
group are in one-to-one correspondence with shear invariant second order ODEs.
Such ODEs can be represented by

(1) y′′ =B(x, y, y′)= f0(y)(y−xy′)3+f1(y)y′(y−xy′)2,
where two ODEs are equivalent if and only if there is a mapping

(x, y) �−!
(

c1x

1−cy ,
c2y

1−cy
)

which takes one to the other. A finer classification can be obtained if we take
into account possible additional symmetries. Sophus Lie [4] classified second order
ODEs with one-, two-, and three-dimensional symmetry groups. The difference
with our approach is that we are interested in fixed points of the automorphisms,
whereas Lie always chooses a point where one of the symmetries is the translation
∂/∂y. In our situation one of the symmetries is the shear y∂/∂x. Our choice of the
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canonical symmetries and regularity of the ODEs at the reference point imply that
B is a third order polynomial with respect to y′ and x.

3. Classification of shear invariant ODEs with 4-dimensional isotropy

If there is only one (up to scale) shear symmetry of a shear invariant ODE then
it can be used as an invariant. On the other hand, as is known from [3], all ODEs
with more than one shear can be written as

y′′ =
K(y−xy′)3

(1−cy)3 .

If we exclude these ODEs, then any additional isotropic symmetry of the ODE
y′′=B(x, y, y′) must preserve the single shear symmetry and, consequently, must
have the form

(2) ((φ(y)+a)x+ψ(y))
∂

∂x
+φ(y)y

∂

∂y
.

The general equation for infinitesimal symmetries ξ∂/∂x+η∂/∂y is

ξ
∂B

∂x
+η

∂B

∂y
+φ

∂B

∂p
+

(

2
∂ξ

∂x
+3p

∂ξ

∂y
− ∂η

∂y

)

B(3)

− ∂2η

∂x2
+p

(

∂2ξ

∂x2
−2

∂2η

∂x∂y

)

+p2

(

2
∂2ξ

∂x∂y
− ∂2η

∂y2

)

+p3 ∂
2ξ

∂y2
= 0.

We plug in B from (1) and the infinitesimal automorphism (2). The component
of degree 3 in p and degree 0 in x in equation (3) immediately implies that ψ′′=0.
Since we are here interested only in isotropic automorphisms and since we know
that the shear y∂/∂x is an automorphism we may assume that ψ=0.

The component of degree 3 in p and degree 1 in x in equation (3) yields φ′′=0,
and thus φ=β1+α3y.

From the components of degree 3 in p and degree 2 and 3 in x we get

af1+3β1f1+3α3yf1+β1yf
′
1+α3y

2f ′
1 = 0,

2af0+4β1f0+3yα3f0+yβ1f
′
0+y2α3f

′
0 = 0.

If f0=
∑∞

n=k bny
n and f1=

∑∞
n=l cny

n then

(a+(n+3)β1)cn+(n+2)α3cn−1 = 0,

(2a+(n+4)β1)bn+(n+2)α3bn−1 = 0.
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The first equation for n=l and the second equation for n=k give rise to a linear
system that implies β1=a=0 and, consequently, α3=0, unless k=2l+2, or either
f0=0 or f1=0.

From the recursive formulae we find

f0 =C1 y
k(1−cy)−k−3,

f1 =C2 y
l(1−cy)−l−3.

By applying a transformation x1=c1x/(1−cy), y1=c2y/(1−cy) this can be
reduced to one of the following two series of ODEs

y′′ = yk(y−xy′)3,(4)

y′′ = yly′(y−xy′)2+Cy2l+2(y−xy′)3,(5)

where k and l are non-negative integers and C is a complex constant. According
to [3, Theorem 3] these ODEs are pairwise non-equivalent.

The additional symmetry is

(k+2)x
∂

∂x
−2y

∂

∂y
, resp. (l+2)x

∂

∂x
−y ∂

∂y
.

The corresponding CR-manifolds are exactly the CR-manifolds with an isotropy
group of real dimension 4.

We conclude the following result.

Theorem 1. The isotropy group of an elliptic CR-manifold has
(1) dimension 10 if and only if it is equivalent to the quadric;
(2) dimension 4 if and only if it corresponds to one of the ODEs (4) and (5);
(3) dimension ≤3 in all other cases.

Proof. Statements (1) and (2) follow from the obtained classification. State-
ment (3) was proved in [2]. �

4. SL(2, C) representation of the shear invariant manifolds

Any shear invariant ODE

y′′ = f0(y)(y−xy′)3+f1(y)y′(y−xy′)2

obviously admits the solutions y=cx for any constant c. Thus, the solution passing
through (x0, y0)∈C2

∗=C2\{(0, 0)} with slope p0=y0/x0 is y=p0x.
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Notice that the equation y=px describes a canonical section in the trivial fibre
bundle C2∗×CP1, which is induced by the tautological mapping

τ : C
2
∗ −!CP

1,

(x, y) �−! [x : y].

By M∗ we denote the bundle with deleted section τ .
Here we will give a representation of the part of the solution manifold that cor-

responds to initial conditions (x0, y0, p0)∈M∗. M∗ can be identified with SL(2,C)
using the map

(x, y, p) �−!

⎛

⎜

⎜

⎝

1
y−xp x

p

y−xp y

⎞

⎟

⎟

⎠

=
(

α β

γ δ

)

.

The two distinguished direction fields now take the form

Z1 = β
∂

∂α
+δ

∂

∂γ
,

Z2 =α
∂

∂β
+γ

∂

∂δ
+(f0(δ)+γf1(δ))Z1.

The one-parametric action produced by the field Z1 is right multiplication with
(

1 0
t 1

)

.

The second field generates a linear action only if f1≡0 and f0 is constant, i.e.,
in the cases of a quadric (f0≡0) or a quartic (f0≡1).

The shear symmetry is represented by

θ= γ
∂

∂α
+δ

∂

∂β

and produces left multiplication by
(

1 t

0 1

)

.

In the quadric case Z2=ZQ=α∂/∂β+γ∂/∂δ corresponds to right multiplication
with

(

1 t

0 1

)



260 Vladimir Ezhov and Gerd Schmalz

and in the quartic case Z2=ZQ+Z1 to right multiplication with
(

cosh t sinh t
sinh t cosh t

)

.

It is clear that in both cases these actions commute with the complete left
multiplication by SL(2,C).

For manifolds with two isotropic symmetries the second (linear) symmetry has
the form

L= 2α
∂

∂α
+(k+2)β

∂

∂β
−(k+2)γ

∂

∂γ
−2δ

∂

∂δ
,

and respectively,

L=α
∂

∂α
+(l+2)β

∂

∂β
−(l+2)γ

∂

∂γ
−δ ∂

∂δ
.

It generates the one-parametric action
(

α β

γ δ

)

�−!
(

tk+4 0
0 t−k−4

) (

α β

γ δ

) (

t−k 0
0 tk

)

,

and, respectively,
(

α β

γ δ

)

�−!
(

tl+3 0
0 t−l−3

) (

α β

γ δ

) (

t−l−1 0
0 tl+1

)

.

Since Z1 commutes with the left part of the action and is mapped to kZ1

(resp. (l+1)Z1) by the right part of the action we find

[L,Z1] = kZ1 resp. [L,Z1] = (l+1)Z1.

For the second field

Z2 = ZQ+FZ1

we have

[L,ZQ] =−kZQ resp. [L,ZQ] = (−l−1)ZQ

and

[L, FZ1] = kFZ1+(LF )Z1 resp. [L, FZ1] = (l+1)FZ1+(LF )Z1.

In the first case this requires LF=−2kF , which is satisfied for F=δk. In the
second case this requires LF=−2(l+1)F , which is satisfied for combinations of γδl

and δ2l+2.
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5. Dual ODEs

A duality of ODEs appears from the symmetry of interchanging the distin-
guished direction fields Z1 and Z2. This corresponds to interchanging the rôles of
the variables x and y and the parameters c1 and c2 of the solutions. In terms of the
embedded CR-manifold this will be achieved by complex conjugation. The sym-
metry group of the dual ODE clearly will be isomorphic to the symmetry group of
the initial ODE, though the action is different. It follows that ODEs corresponding
to elliptic CR-manifolds that are complexifications of real hypersurfaces in C

2 are
self-dual. The non-quadratic CR-manifolds with non-linearizable automorphisms
are never self-dual.

If the complete solution of an ODE is known then the dual ODE can be eas-
ily obtained by differentiating with respect to the parameters and eliminating the
variables x and y.

In the case of y′′=(y−xy′)3 the complete solution is the quartic

(y−c1x)2−c22x2−c2 = 0.

We find the dual ODE

(6) y′′ =
1−(y′)2

x(y′+
√

(y′)2−1)
.

(Here we adopted c2 as the new independent variable x and c1 as the new dependent
variable y.)

The family of solutions can be written in the form

(x−c1)2−(y−c2)2 = c21.

The symmetries are generated by

∂

∂y
, x

∂

∂x
+y

∂

∂y
, and 2xy

∂

∂x
+(x2+y2)

∂

∂y
.

The ODE (6) is equivalent to

η′′+
2η′(1−√

η′)2

ξ−η = 0

from Lie’s list of ODEs with three symmetries. The equivalence is established by
ξ=y+x and η=y−x. In this notation the infinitesimal automorphisms become

∂

∂ξ
+
∂

∂η
, ξ

∂

∂ξ
+η

∂

∂η
, and ξ2

∂

∂ξ
+η2 ∂

∂η
.
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The corresponding group is PSL(2,C) acting by “coupled” Möbius transformations
on the complex ξ and η planes

(ξ, η) �−!
(

αξ+β
γξ+δ

,
αη+β
γη+δ

)

.

6. Shear invariant ODE with one non-isotropic symmetry

If a shear invariant ODE admits a non-isotropic symmetry we may assume
that, after a coordinate change x=f(x∗, y∗), y=g(x∗, y∗), it takes the form ∂/∂x∗.
Then the shear becomes θ=ξ∂/∂x∗+η∂/∂y∗, where ξ=g∂f∗/∂x, η=g∂g∗/∂x, and
(f∗, g∗) is the inverse coordinate change. We prove the following result.

Lemma 1. If ∂/∂x∗ and the shear θ are the only symmetries of the ODE then
[

∂

∂x∗
, θ

]

=µθ.

Proof. From
[

∂

∂x∗
, θ

]

=µθ+ν
∂

∂x∗

we conclude that

∂

∂x∗
ξ= ν+µξ and

∂

∂x∗
η=µη.

Now, if µ=0, then

ξ= νx∗+K1(y∗) and η=K2(y∗).

We distinguish two subcases: If K2≡0 then ∂g∗/∂x≡0, and therefore g=g(y∗) with
g(0)=0. It follows that ξ=0 for y∗=0. Since θ vanishes exactly at one curve, this
curve must coincide with y∗=0. Hence ν=0.

In the second subcase y∗=0 is an isolated zero of K2. Thus again y∗ is the
only curve on which θ can vanish and therefore ν=0.

Suppose now that µ �=0. Then

ξ=
−ν
µ

+K1(y∗) eµx∗
and η=K2(y∗) eµx∗

.

Again, either K2≡0 or 0 is an isolated zero of K2. Analogous arguments to the
ones used above show that ν=0 in this case as well. �
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As in Section 3 we consider the equation (3). We conclude that ψ(y)=α0 but
now we assume that α0 �=0. Then we can rescale the additional infinitesimal auto-
morphism in such a way that α0=1. Thus we look for an infinitesimal automorphism
of the form

(1+(φ(y)+a)x)
∂

∂x
+φ(y)y

∂

∂y
.

From the component of degree 3 in p and 1 in x we find that

f1 =− φ′′

2α0
=−−φ′′

2
.

The components of degree 3 in p and 2 respectively 3 in x yield now the system
⎧

⎨

⎩

−1
6
(yφ′′′+3φ′′)φ− a

6
φ′′ = f0,

(4φ−yφ′+2a)f0+yφf ′
0=0,

(7)

which is equivalent to the ODE

(8) (y2φIV+8yφ′′′+12φ′′)φ2+a(3yφ′′′φ+10φ′′φ−yφ′′φ′)+2a2φ′′ = 0

on φ. We see immediately that a=0 implies φ′′=0 and therefore f0=f1=0. Assume
that a �=0. Then the ODE (8) yields the following equations on the coefficients of
an analytic solution φ(y)=

∑∞
n=0 φny

n:

j−2
∑

β=0

β
∑

α=0

(j−β+2)!
(j−β−2)!

φαφβ−αφj+2−β +8
j−1
∑

β=0

β
∑

α=0

(j−β+2)!
(j−β−1)!

φαφβ−αφj+2−β(9)

+12
j

∑

β=0

β
∑

α=0

(j−β+2)!
(j−β)!

φαφβ−αφj+2−β +3a
j−1
∑

β=0

(j−β+2)!
(j−β−1)!

φβφj+2−β

+10a
j

∑

β=0

(j−β+2)!
(j−β)!

φβφj+2−β−a
j

∑

β=0

(j−β+1)!
(j−β−1)!

(β+1)φβ+1φj+1−β

+2a2(j+2)(j+1)φj+2 = 0.

It follows for j≥0 that

(j+2)(j+1)(a+(j+3)φ0)(2a+(j+4)φ0)φj+2

+(j+2)(j+1)j(3a+2(j+3)φ0)φ1φj+1 = ...,

where the dots indicate a sum whose summands contain only factors φn with n≤j
and at least one factor φn with n≥2.
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Let φk with k≥2 be the first non-vanishing coefficient. Then either

φ0 =− a

1+k
and φ0 =− a

1+k/2
,

and, consequently,

φ1 =
aφk+1

(−1+k)(1+k)φk
and φ1 =

aφk+1

(−1+k)(1+k/2)φk
,

respectively.
For any parameter a �=0 related to the automorphism, we obtain two series of

solutions:
If 2a+(k+2)φ0=0 (the second option) then (a+(j+1)φ0)(2a+(j+2)φ0) �=0 for

all j≥k+2 and therefore all φj with j≥k+2 can be determined recursively for given
parameters k, φk �=0 and φk+1.

If a+(k+1)φ0=0 (the first option) then again all φj with j≥k+2 can be ob-
tained recursively, except for j=2k+2. Here an additional parameter φ2k+4 ap-
pears.

All other components in φ (and, thus, in f0 and f1) can be computed recursively
from (9), which can be rewritten as

(a+(j+k+3)φ0)(2a+(j+k+4)φ0)φj+k+2

+(j+k)(3a+2(j+k+3)φ0)φ1φj+k+1

+
j−k+2
∑

β=0

β
∑

α=0

(j−β−k+4)!
(j−β−k)!

φk+αφk+β−αφj−β−k+2

(j+k+2)(j+k+1)

+a
j

∑

α=0

(3j−k−4α+10)(j+2−α)(j+1−α)φk+αφj+2−α

(j+k+2)(j+k+1)
= 0.

The convergence of the formal solutions follows from an induction argument.
By applying a map of the form

x1 =
c1x

1−cy and y1 =
c2y

1−cy
we renormalize a solution in such a way that we get −a=α0=1, f1,k−2=
−(k(k−1)φk)/2α0=1 and f1,k−1=−(k(k+1)φk+1)/2α0=0. Thus, up to equiva-
lence, we obtain exactly two series of solutions, such that a solution of the first
series is determined by a non-negative integer k and a solution of the second series
is determined by a non-negative integer k and a complex number C which is related
to φ2k+4. In all cases we have

f0(y)=−1
6
(yφ′′′+3φ′′)φ+

1
6
φ′′ and f1(y)=

−φ′′
2
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with the additional symmetry

(1+(φ−1)x)
∂

∂x
+φy

∂

∂y
,

where φ satisfies (8) with initial conditions

φ0 =
1

j+1
, φ1 = 0 or φ0 =

2
j+2

, φ1 = 0.

The first option corresponds to

y′′ = yj(y−(x−c)y′)3,
which is obtained by shifting the ODE (4) in the x-direction by c. The parameter
c can be rescaled by applying the additional isotropic automorphism.

The second option corresponds to shifts of (5),

y′′ = yjy′(y−(x−c)y′)2+Cy2j+2(y−(x−c)y′)3.
In the special case C=0 we deduce f0≡0 and

(yφ′′′+3φ′′)φ−φ′′ = 0.

In terms of f1 the latter equation becomes
(

f1
3f1+yf ′

1

)′′
=−2f1.

7. Shear invariant ODEs with two additional symmetries

If a shear invariant ODE has two additional symmetries then either one of them
can be chosen to be isotropic or both give rise to a transitive sub-semigroup on C2.
According to the results of Section 3 the first case leads to three particular series of
ODEs, which have only isotropic symmetries. The only ODE (up to equivalence)
with two additional isotropic symmetries is

y′′ = (y−xy′)3.
Consider the second case. We may assume that there is an infinitesimal non-
isotropic automorphism σ in the direction of the line of fixed points of the shear θ.
Without loss of generality we have then

σ=
∂

∂x
and θ= (y+a)

∂

∂x
+b

∂

∂y
,
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where a(x, y) and b(x, y) are of at least second order. But then

[σ, θ] =λθ

because θ is the only isotropic symmetry. According to the results of Section 6 we
conclude that the ODE must be a shift of (4) or (5). Again, only

y′′ = (y−(x−c)y′)3

has three-dimensional symmetry.

8. Non-linearizable automorphisms of elliptic CR-manifolds

In [3] we proved that the phenomenon of non-linearizable isotropy takes place
on a whole complex curve. As a consequence of the classification results from above
we prove here the following converse statement for an elliptic CR manifold M with
the additional property that all infinitesimal automorphisms are globally defined.

Theorem 2. Let M be an elliptic CR-manifold with non-linearizable isotropy
group at p∈M . If M is neither equivalent to the quadric

w1−�w2−z1z̄2 = 0

nor to the quartic

w1+w2
1 z̄

2
2−(�w2−z1z̄2)2 = 0,

then there exists a neighbourhood U of 0 such that Autq M is linearizable for q∈U
outside a complex curve γ.

Proof. Let q∈M be a point with non-linearizable isotropy. If M is not equiv-
alent neither to the quadric nor to the quartic then there is a single shear at q,
which either coincides with the single shear in 0 or it provides an additional sym-
metry at 0. In the first case q is a fixed point of y∂/∂x and therefore belongs to
γ={(x, y, p):y=p=0}.

In the second case M corresponds to one of the ODEs listed above. But then
only the shear has non-isolated fixed points outside 0. All these fixed points belong
to {(x, y, p):y=p=0}. �

The quartic can be characterized by the following property.

Proposition 2. The set of points at the quartic with non-linearizable isotropy
is the complex hypersurface Γ={(x, y, p):y=xp}.
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Proof. The mapping

(x, y)= (a(x1+1)+cy1, b(x1+1)+dy1)

takes the the point (a, b, b/a) to (0, 0, 0) and the ODE y′′=(y−xy′)3 again to an
ODE that admits a shear, namely to

y′′ = (ad−bc)2(y−(x+1)y′)3.

Since the orbit of 0 under these mappings is the hypersurface Γ, at all points of Γ
the isotropy group is non-linearizable.

We show that the isotropy of the quartic is linearizable (even trivial) at any
point outside Γ. Any infinitesimal automorphism of the quartic at 0 has the form

(αx+βy)
∂

∂x
+(δx−αy) ∂

∂y
+(δ−2αp−βp2)

∂

∂p
.

If the discriminant ∆=α2+βδ is different from 0 then fixed points occur only
for x=y=0. If the discriminant vanishes we distinguish the two subcases β �=0 and
β=0. In the first subcase we find fixed points for αx+βy=0 and p=−α/β. This
implies that y−xp=0. If β=0 we conclude that α=δ=0. Then only the identical
automorphism has fixed points other than 0. �
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