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On the behavior of strictly plurisubharmonic
functions near real hypersurfaces

Björn Ivarsson

Abstract. We describe the behavior of certain strictly plurisubharmonic functions near

some real hypersurfaces in Cn, n≥3. Given a hypersurface we study continuous plurisubharmonic

functions which are zero on the hypersurface and have Monge–Ampère mass greater than one in

a one-sided neighborhood of the hypersurface. If we can find complex curves which have sufficiently

high contact order with the hypersurface then the plurisubharmonic functions we study cannot be

globally Lipschitz in the one-sided neighborhood.

1. Introduction

The potential theory for the complex Monge–Ampère operator is not as well
understood as potential theory for the Laplace operator. In the theory of one com-
plex variable the subharmonic functions are important. In several complex variables
the subharmonic functions are not the correct class to study since this class is not
invariant under holomorphic coordinate changes. One should study the class of
subharmonic functions which are invariant under holomorphic coordinate changes,
that is the class of plurisubharmonic functions which we shall denote PSH. The
subharmonic functions can be characterized as the functions satisfying ∆u≥0 in
the distribution sense. In the theory for plurisubharmonic functions the complex
Monge–Ampère operator plays the role the Laplace operator does in the theory of
subharmonic functions. However, the complex Monge–Ampère operator is nonlin-
ear and this makes the definition of the operator for nonsmooth plurisubharmonic
functions delicate. For C2-functions the definition is

det
(

∂2u

∂zj∂zk

)
.

In the language of currents a plurisubharmonic function is a function u which has
the property that
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ddcu = 2i

n∑
j,k=1

∂2u

∂zj∂zk
dzj∧dzk

is a positive current of bidegree (1, 1). Here d=∂+∂ and dc=i(∂−∂). Notice that
when u is a C2-function we have no problems defining (ddcu)n, the nth exterior
power of ddcu, and get

(ddcu)n = 4nn! det
(

∂2u

∂zj∂zk

)
dλ,

where dλ denotes Lebesgue measure. Here we have made the natural identification
between the volume form and the Lebesgue measure. So for a plurisubharmonic
function u of class C2 we see that (ddcu)n is a positive Borel measure. Therefore it
is natural to try to extend the definition of (ddcu)n for nonsmooth u as a positive
Borel measure. In [2] Bedford and Taylor obtained such a definition for locally
bounded plurisubharmonic functions. It is known that (ddcu)n cannot be defined
as a positive Borel measure for all plurisubharmonic functions, see Kiselman’s pa-
per [14]. Recently in [9] Cegrell has given a definition of (ddcu)n with domain of
definition as large as possible.

Assume that µ is a positive Borel measure on a domain Ω and ϕ is some
function on the boundary of Ω. Central to pluripotential theory is the study of the
Dirichlet problem {

(ddcu)n=µ in Ω,

u=ϕ on ∂Ω.

In this paper we shall always have µ=f dλ, where f is at least a continuous function
of z. We shall be considering the question of how regularity of f implies regularity
of u.

First consider (ddcu)n=0. One realizes that this equation can have very irreg-
ular solutions since any plurisubharmonic function which depend on n−1 variables
only solves the equation. However, if one demands that the boundary data be con-
tinuous then it can be proved in certain domains, as it was done by Walsh in [16],
that the solution is continuous. Put

PBϕ(z) = sup
{
v(z) ; v ∈PSH(Ω) and lim sup

z!z0

v(z)≤ϕ(z0) for all z0 ∈ ∂Ω
}
.

It had been observed by Bremermann in [7] that if the problem
{

(ddcu)n=0 in Ω,

u=ϕ on ∂Ω,
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is solvable the solution is the Perron–Bremermann envelope

(PBϕ)∗(z) = lim sup
ζ!z

PBϕ(ζ).

The result Walsh obtained is the following.

Theorem 1.1. Suppose that Ω is a bounded domain in Cn and ϕ∈C(∂Ω).
Assume that

lim inf
z!z0

PBϕ(z) = lim sup
z!z0

PBϕ(z) = ϕ(z0)

for all z0∈∂Ω. Then PBϕ∈C(Ω).

High order regularity is harder for the equation (ddcu)n=0. We give the exam-
ple u(z1, z2)=max

{|z1|2− 1
2 , |z2|2− 1

2 , 0
}2. This function is plurisubharmonic, satis-

fies (ddcu)2=0, is smooth on the boundary of the unit ball but is not smooth in
the unit ball. For more examples of lack of high order regularity see Bedford’s and
Fornæss’ paper [1]. The first result on high order regularity was obtained in 1985
by Caffarelli, Kohn, Nirenberg and Spruck in [8]. Note that positivity of f is crucial
in view of the example above. Actually, we state only a special case of the theorem
that Caffarelli, Kohn, Nirenberg and Spruck proved.

Theorem 1.2. Suppose that Ω is a bounded, strongly pseudoconvex domain in
Cn with smooth boundary. Let f∈C∞(Ω×R) be a strictly positive function which
is increasing in the second variable. Suppose that ϕ∈C∞(∂Ω). Then the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

det
(

∂2u

∂zj∂zk

)
= f(z, u) in Ω,

u=ϕ on ∂Ω,

u∈PSH(Ω)∩C2(Ω)∩C(Ω),

has a unique solution. Moreover u∈C∞(Ω).

Remark 1.3. When we say that a function g : R!R is increasing we mean
that x≤x′ implies that g(x)≤g(x′). If x<x′ implies that g(x)<g(x′) we say that g

is strictly increasing. Finally smooth will always mean C∞-smooth.

A domain Ω in Cn is called hyperconvex if for every z0∈∂Ω there exists
v∈PSH(Ω) such that v<0 and limz!z0 v(z)=0. Kerzman and Rosay showed in [13]
that for bounded domains it is equivalent to say that there exists a smooth bounded
strictly plurisubharmonic exhaustion function ρ in Ω, that is a strictly negative
plurisubharmonic ρ satisfying limz!z0∈∂Ω ρ(z)=0. This was improved upon by
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B�locki in [4] so that we can choose a smooth bounded strictly plurisubharmonic
exhaustion function ρ satisfying

det
(

∂2ρ

∂zj∂zk

)
≥ 1.

If we do not demand that the solutions be smooth we can get the following result,
which was proved by B�locki in [3].

Theorem 1.4. Let Ω be a bounded, hyperconvex domain in Cn. Assume that
f is nonnegative, continuous and bounded in Ω. Suppose that ϕ is continuous on
∂Ω and that it can be continuously extended to a plurisubharmonic function on Ω.
Then there exists a unique solution to the following problem⎧⎪⎨

⎪⎩
(ddcu)n=f(z) in Ω,

u=ϕ on ∂Ω,

u∈PSH(Ω)∩C(Ω).

B�locki has also given a sufficient condition for a smooth solution in convex domains
in [6]. This result has also been announced in [5].

Theorem 1.5. Let Ω be a bounded, convex domain in Cn. Assume that f is
a strictly positive, smooth function in Ω such that

sup
{∣∣∣∣∂f1/n

∂xl
(z)

∣∣∣∣; z ∈Ω
}

<∞.

Then there exists a unique solution to the following problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

det
(

∂2u

∂zj∂zk

)
= f(z) in Ω,

lim
z!z0

u(z) = 0 for all z0∈∂Ω,

u∈PSH(Ω)∩C∞(Ω).

Note that a convex domain is hyperconvex since a convex domain has a bounded
exhaustion function which is convex and convex functions are plurisubharmonic.
We also see that a hyperconvex domain is pseudoconvex since ρ̃(z)=− log(−ρ(z))
is plurisubharmonic and limz!z0 ρ̃(z)=∞, where ρ is a bounded plurisubharmonic
exhaustion function for the hyperconvex domain.

In [12] the author studied the regularity of plurisubharmonic solutions to the
problem ⎧⎪⎨

⎪⎩
det

(
∂2u

∂zj∂zk

)
= f(z, u) in Ω,

lim
z!z0

u(z) = 0 for all z0∈∂Ω,
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where f∈C∞(Ω×R) is a strictly positive function which is increasing in the second
variable. This problem was studied in a certain type of hyperconvex domains. The
proof of the main theorem in that paper [12, Theorem 5.1] rests on an a priori
estimate of the C2-norms of solutions by Schulz [15]. B�locki has discovered an error
in the argument leading to this estimate and therefore the proof of Theorem 5.1
in [12] is not complete. If we examine the argument in [12] we find that the following
can be proven.

Theorem 1.6. Let Ω be a bounded hyperconvex domain in Cn and f∈C∞(Ω×
R) be a strictly positive function which is increasing in the second variable. The
problem

⎧⎪⎨
⎪⎩

det
(

∂2u

∂zj∂zk

)
= f(z, u) in Ω,

lim
z!z0

u(z) = 0 for all z0∈∂Ω,

has a unique strictly plurisubharmonic solution u which is globally Lipschitz if we
can find a smooth plurisubharmonic function that is globally Lipschitz and ρ satisfies
limz!z0 ρ(z)=0 for all z0∈∂Ω and

det
(

∂2ρ

∂zj∂zk

)
≥ 1.

The purpose of this paper is to better understand when we can find such
a plurisubharmonic function ρ. We have the following two comparison principles
which will be useful in what follows. A proof of the first can be found in [2] and
a proof of the second in [12].

Lemma 1.7. Suppose that Ω is a bounded domain in Cn and v, w∈
C(Ω)∩PSH(Ω). Assume that (ddcv)n≥(ddcw)n. Then

min{w(z)−v(z) ; z∈Ω}= min{w(z)−v(z) ; z∈ ∂Ω}.

Lemma 1.8. Let Ω be a bounded domain in Cn. Assume that f∈C(Ω×R)
is a nonnegative function which is increasing in the second variable. Suppose that
v, w∈C(Ω)∩PSH(Ω). Then

(ddcw)n ≤ f(z, w), f(z, v)≤ (ddcv)n

and v≤w on ∂Ω implies that v≤w in Ω.
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2. Local behavior of strictly plurisubharmonic functions near real
hypersurfaces

In this section our analysis will be local and therefore we shall formulate our
results for smooth real hypersurfaces in Cn rather than for domains in Cn with
smooth boundary. For a smooth real hypersurface M we can find a real-valued
function ρ∈C∞(U), U⊆Cn, such that M ={z∈U ;ρ(z)=0} and dρ �=0 on M . We say
that ρ is a defining function for M . Given such a ρ we define M−={z∈U ;ρ(z)<0}.

We shall investigate the behavior of the normal derivative of any smooth strictly
plurisubharmonic function u which is zero on a given smooth real hypersurface and
satisfies

det
(

∂2u

∂zj∂zk

)
≥ 1.

In general such a plurisubharmonic function does not exist for a given smooth real
hypersurface. Namely if the Levi form

n∑
j,k=1

∂2ρ

∂zj∂zk
dzj∧dzk

has at least one strictly negative eigenvalue on the complex tangent space of M ,

TC
p (M) =

{
ξ ∈Cn ;

n∑
j=1

∂ρ

∂zj
(p)ξj = 0

}
,

such a plurisubharmonic function u would violate

det
(

∂2u

∂zj∂zk

)
≥ 1.

On the other hand if the Levi form is positive semidefinite such a function exists.
This is because such a smooth real hypersurface has a defining function which is
plurisubharmonic in M−, see Diederich’s and Fornæss’ paper [11]. Intersect M−

with a small ball. This domain is hyperconvex. In a hyperconvex domain such
a plurisubharmonic function exists, which was proved by B�locki in [4]. In [12] the
author introduced a notion that he called the non-precipitousness condition [12,
Definition 1.7]. We introduce a local version of this condition.

Definition 2.1. Let M be a smooth real hypersurface, p∈M and ρ be a defining
function for M . Assume that the Levi form is positive semidefinite on TC

q (M) for
all q∈M . We say that p∈M satisfies the local non-precipitousness condition, or
for short the local NP-condition, if we can find an open neighborhood U of p and
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a smooth plurisubharmonic function u defined on M− that is globally Lipschitz and
satisfies limz!z0∈M u(z)=0 and

(ddcu)n ≥ 1.

We shall now investigate the behavior of first derivatives of defining functions
of ellipsoids. Let a=(a1, ..., an)∈Rn, aj>0, and put

Ωa =
{

z ∈Cn ;
n∑

j=1

|zj|2
a2

j

< 1
}

.

A defining function for Ωa is ρa=
(∑n

j=1 |zj |2/a2
j

)−1. We see that

det
(

∂2ρa

∂zj∂zk

)
=

n∏
j=1

a−2
j

and

∂ρa

∂zj
=

1
aj

(zj

aj

)
,

∂ρa

∂zj
=

1
aj

( zj

aj

)
.

Let ρ̃a=
(∏n

j=1 a
2/n
j

)
ρa. We get

det
(

∂2ρ̃a

∂zj∂zk

)
= 1

and

∂ρ̃a

∂zj
=

∏n
l=1 a

2/n
l

aj

(zj

aj

)
,

∂ρ̃a

∂zj
=

∏n
l=1 a

2/n
l

aj

( zj

aj

)
.

In particular we see that

∂ρ̃a

∂z1
(a1, 0, ..., 0) =

∂ρ̃a

∂z1
(a1, 0, ..., 0) = a

2/n−1
1

n∏
j=2

a
2/n
j .

Thus we see that the normal derivative at this boundary point depends on the
lengths of the semi-axes. Now we investigate the boundary behavior of a smooth
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plurisubharmonic function satisfying

det
(

∂2u

∂zj∂zk

)
≥ 1

in the polydisk Dn, n≥3, and limz!z0 u(z)=0 for all z0∈∂Dn. Let us study the
normal derivative of u at the boundary point (1, 0, ..., 0). Fix a2, ..., an so that
Ωa⊆Dn for all small a1. We see that Ω̃a=Ωa+(1−a1, 0, ..., 0)⊆Dn and (1, 0, ..., 0)∈
∂Ω̃a∩∂Dn. By the comparison principle, Lemma 1.7, we get that

ρ̃a(z1+a1−1, z2, ..., zn)≥ u(z) in Ω̃a.

Therefore

lim
t!1−

u(1, 0, ..., 0)−u(t, 0, ..., 0)
1−t

≥ 2a
2/n−1
1

n∏
j=2

a
2/n
j .

This estimate holds for all small a1 and if we let a1 tend to zero we see that

lim
t!1−

u(1, 0, ..., 0)−u(t, 0, ..., 0)
1−t

=∞

and we conclude that Dn does not satisfy the NP-condition for n≥3. Notice that
this argument only works if n≥3. However, using a different argument the author
has proved that D2 does not satisfy the NP-condition, see [12]. We now use the
interplay between a1 and a2, ..., an to describe the behavior of strictly plurisub-
harmonic functions near some real hypersurfaces which do not necessarily contain
complex lines. We shall use the order of contact between a hypersurface M and
complex curves in the ambient space Cn. A complex curve is a holomorphic map-
ping γ from an open neighborhood of 0∈C to Cn such that ∂γ �=0. The order of
contact between M and γ at p∈M is l if dM (q)≤Cd(p, q)l near p and l is the largest
such number.

Theorem 2.2. Let M be a hypersurface in Cn which is pseudoconvex at p∈M .
Assume that there are complex curves γ2, ..., γn whose order of contact with M is
2l2, ..., 2ln, respectively, and that γ′

2, ..., γ
′
n are linearly independent. Suppose that

n∑
j=2

1
lj

< n−2.

Then p∈M does not satisfy the local NP-condition, see Definition 2.1.

Proof. After a rotation and a translation we can assume that p is the origin and
that ∇ρ(p)=(1, 0, ..., 0), where all γ′

j , 2≤j≤n, are tangent to M ={z∈Cn;ρ(z)=0}.
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We want to change coordinates holomorphically so that in new coordinates we can
approximate M by

∂Ω̃a = (−a1, 0, ..., 0)+
{

z ∈Cn ;
n∑

j=1

|zj |2
a2

j

= 1
}

near p. Define the invertible holomorphic mapping

F (ζ1, ζ2, ..., ζn) = (ζ1, 0, ..., 0)+γ2(ζ2)+...+γn(ζn).

In the coordinates (ζ1, ..., ζn) the curves γ2, ..., γn are the coordinate axes. Working
in these coordinates we show that p∈M does not satisfy the local NP-condition.
We now want to put ellipsoids in M− so that the intersection of the boundary
of the ellipsoid and M− is the origin. We can choose a2, ..., an so that Ω̃a=
Ωa+(−a1, 0, ..., 0)⊆M− and ∂Ω̃a∩∂M−={0}. Let ρ̃a(ζ) be the plurisubharmonic
function that satisfies

det
(

∂ρ̃a

∂ζj∂ζk

)
= 1

in Ω̃a and ρ̃a=0 on ∂Ω̃a. Using that the order of contact of γj with M is 2lj one sees
that we can choose aj =Kja

1/2lj
1 for j=2, ..., n and some constants Kj , 0<Kj<1.

For these a1, ..., an we get that

∂ρ̃a

∂ζ1
(0) = a

2/n−1+
∑ n

j=2(1/nlj)

1

n∏
j=2

K
2/n
j

and

∂ρ̃a

∂ζ1

(0) = a
2/n−1+

∑ n
j=2(1/nlj)

1

n∏
j=2

K
2/n
j .

We see that a negative smooth plurisubharmonic function which satisfies

det
(

∂2u

∂ζj∂ζk

)
≥ 1

and limζ!ζ0 u(ζ)=0 for all ζ0∈M also satisfies u(ζ)≤ρ̃a(ζ1+a1, ζ2, ..., ζn) in Ω̃a. We
get

lim
t!0−

u(0)−u(t, 0, ..., 0)
−t

≥ 2a
2/n−1+

∑ n
j=2(1/nlj)

1

n∏
j=2

K
2/n
j .

If 2/n−1+
∑n

j=2(1/nlj)<0 and we let a1 tend to zero we see that

lim
t!0−

u(0)−u(t, 0, ..., 0)
−t

=∞.
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Hence 0∈M does not satisfy the local NP-condition if

2
n
−1+

n∑
j=2

1
nlj

< 0.

This condition can be rewritten as
n∑

j=2

1
lj

< n−2. �

Remark 2.3. The condition
n∑

j=2

1
lj

< n−2

can also be understood in the following way. If at least two of the γj ’s have order
of contact with M greater than 2 then it is satisfied.

Remark 2.4. It is not clear what happens when the inequality

n∑
j=2

1
lj

< n−2

is not satisfied. It cannot be a necessary and sufficient condition for the local NP-
condition to fail. This is because the bidisk D2 does not satisfy the NP-condition,
see [12], and in this case the inequality is not met.

3. Discussion

In Remark 2.4 we noted that Theorem 2.2 only gives a sufficient condition
for the NP-condition to fail. In fact Theorem 2.2 gives us no information for
domains in C2. In Cn, n≥3, the theorem gives us plenty of examples of do-
mains which do not satisfy the NP-condition. The problem is to find the curves
γ2, ..., γn. A naive guess to decide which order of contact a complex curve can
have with M might be to look at the Levi form of M or maybe the Taylor ex-
pansion of a defining function ρ. However, the problem of determining the opti-
mal order of contact, denoted ∆1

reg(M, p), turns out to be harder than that. The
example M ={z∈C2 ;Re z1−|z1|2+Re z2

2 +|z2|4=0} shows this. A guess might be
that ∆1

reg(M, 0)=4. However, M contains the complex curve (ζ2, iζ) and hence
∆1

reg(M, 0)=∞. A good reference for methods for deciding best possible order of
contact is D’Angelo’s book [10]. Now it should be noted that in order to apply
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Theorem 2.2 the curves γ2, ..., γn need not have optimal order of contact. Look-
ing at the Taylor expansion of a defining function ρ it is not hard to derive a lower
bound for ∆1

reg(M, p). For example if M⊆C3 has a defining function ρ whose Taylor
expansion is

z1+z1+|z2|4+|z3|6+o(|z|6)

then the curves γ2(ζ)=(ζ4, ζ, 0) and γ3(ζ)=(ζ6, 0, ζ) have order of contact 4 and 6,
respectively, with M . We see this by studying the Taylor expansion of Kj(ζ)=
ρ(γj(ζ)), j=2, 3, around zero. We now use Theorem 2.2 to see that 0∈M does not
satisfy the local NP-condition.
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