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Steady periodic capillary waves with vorticity

Erik Wahlén

Abstract. We prove the existence of steady periodic capillary water waves on flows with

arbitrary vorticity distributions. They are symmetric two-dimensional waves whose profiles are

monotone between crest and trough.

1. Introduction

Until recently, the mathematical studies of water waves were mainly restricted
to irrotational flows. While the irrotational setting is regarded as appropriate for
waves traveling into still water [14], [18], there are many situations in which it is
necessary to take vorticity into account. For example, nonuniform currents generate
water flows with vorticity [22], [21], [23] and the effect of a wind blowing in one
direction results at first in the creation of capillary waves.

In the last few years there has been an increasing amount of research in the area
of water waves with vorticity, see [3], [4] regarding the symmetry of rotational water
waves, [12], [15], [16], [24] for questions of uniqueness and [1], [2], [5], [6], [25], [26] for
existence results. However, in all of these recent investigations the surface tension is
neglected. It is therefore an interesting task to study the effects of surface tension
in the presence of vorticity. As an approximation, we shall in this paper focus
on pure capillary waves, that is, we neglect the force of gravity. Experimental
studies show that this approximation is valid for short wavelengths (L�1.7 cm,
cf. [19]).

It is interesting to note that there exist explicit capillary solutions in the irrota-
tional case. In water of infinite depth the explicit solutions are known as Crapper’s
waves [9], and in the case of finite depth as Kinnersley’s waves [17]. These are
symmetric regular waves (having one crest and one trough per period, and strictly
monotone between crest and trough), which show an interesting feature: as the sur-
face amplitude increases, the waves develop sharp troughs and begin to overhang,
until eventually a limiting profile is reached, where an air-bubble is trapped at the
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trough of the wave. For higher amplitudes the wave profile intersects itself and must
therefore be discarded on physical grounds.

On the other hand, there are no known explicit examples of rotational capillary
waves. In this paper we prove the existence of symmetric regular capillary waves
for arbitrary vorticity distributions, provided that the wavelength is small enough.
The proof is inspired by the local bifurcation method used for gravity waves in [5]
and [6], but there are several interesting differences. As in [5] and [6] the water
wave problem is first transformed into a problem in a fixed domain, cf. (2.6). In
the case of pure gravity waves this problem included a first order oblique boundary
condition. In the presence of surface tension, this boundary condition involves
a second order derivative and requires more consideration. Connected with this is
the fact that for pure capillary waves the eigenvalue problem (3.3) involved in the
bifurcation analysis has an eigenvalue-dependent boundary condition, and is thus
not a standard Sturm–Liouville problem.

2. Preliminaries

In this section we present the governing equations for capillary waves [14].
We consider two-dimensional waves propagating over water with a flat bed. In its
undisturbed state the equation for the flat surface is y=0 and the flat bottom is given
by y=−d for some d>0. The x-variable represents the direction of propagation and
the wavelength is L. The equations of motion are the equation of mass conservation

ux+vy = 0,(2.1)

and Euler’s equation {
ut+uux+vuy=−Px,

vt+uvx+vvy=−Py,
(2.2)

where P (t, x, y) denotes the pressure. The boundary conditions for capillary waves
are the dynamic boundary condition

P =P0−σ ηxx

(1+η2
x)3/2

on y= η(t, x),(2.3)

P0 being the constant atmospheric pressure and σ>0 being the coefficient of surface
tension, as well as the kinematic boundary conditions

v= ηt+uηx on y= η(t, x),(2.4)
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and

v= 0 on y=−d.(2.5)

We are looking for steady periodic waves traveling at speed c>0, that is, the
space-time dependence of the free surface, the pressure, and the velocity field is
of the form (x−ct). The map x−ct �!x transforms (2.2)–(2.5) to the stationary
problem {

(u−c)ux+vuy=−Px,

(u−c)vx+vvy=−Py,
on −d< y<η(x),

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v=(u−c)ηx at y=η(x),

P =P0−σ ηxx

(1+η2
x)3/2

at y=η(x),

v=0 at y=−d,
The equation of mass conservation (2.1) allows us to introduce the (relative)

stream function ψ, satisfying ψx=−v and ψy=u−c. The kinematic boundary condi-
tion then shows that ψ is constant on the free surface, and we determine it uniquely
by requiring that the constant value is zero. Field evidence indicates that for waves
not near the spilling or breaking state, the propagation speed c of the surface wave
is considerably larger then the horizontal velocity u of each individual water par-
ticle [19]. It follows that ψ is a strictly decreasing function of y for each fixed x.
Let

p0 =
∫ η(x)

−d

[u(x, y)−c] dy

be the relative mass flux – it follows by differentiation, using (2.1) and (2.4), that
this expression is independent of x∈R. Then by construction ψ=−p0 on the flat
bottom. We can now pose problem (2.1)–(2.5) in terms of ψ:{

ψyψxy−ψxψyy=−Px,

−ψyψxx+ψxψxy=−Py,
on −d< y<η(x),

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ=0 at y=η(x),

P =P0−σ ηxx

(1+η2
x)3/2

at y=η(x),

ψ=−p0 at y=−d,
where P , ψ and η are L-periodic in the x-variable and ψy<0.
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The vorticity ω is defined by ω=vx−uy. The assumption u<c guarantees that
ω is globally a function of ψ, that is, ω=γ(ψ) (see [6]). Thus ∆ψ=−ω=−γ(ψ).
Introduce the function

Γ(p)=
∫ p

0

γ(−s) ds, p0 ≤ p≤ 0,

and let Γmin≤0 be its minimum value. Using the equations of motion and the
properties of ψ we can prove Bernoulli’s law, which states that

E=
(c−u)2+v2

2
+P−Γ(−ψ)

is constant throughout the fluid. On the free surface we have

E=
(c−u)2+v2

2
+P0−σ ηxx

(1+η2
x)3/2

,

so that letting Q=2(E−P0) we obtain

ψ2
x+ψ2

y−2σ
ηxx

(1+η2
x)3/2

=Q

on the free surface. This condition is equivalent to the dynamic boundary condition.

We have now obtained the following formulation of the capillary wave problem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∆ψ=−γ(ψ) on −d<y<η(x),
|∇ψ|2−2σ

ηxx

(1+η2
x)3/2

=Q at y=η(x),

ψ=0 at y=η(x),

ψ=−p0 at y=−d.
The main difficulty in this formulation lies in the fact that η is not known a priori.
For this purpose, we make a change of variables due to Dubreil-Jacotin [11]. Since
ψ is constant on the free surface and on the bottom and strictly decreasing as
a function of y, we choose the new variables q=x and p=−ψ(x, y). A domain
of one wavelength is then transformed to R={(q, p)∈R2 :0<q<L and p0<p<0}.
Introducing the height function h(q, p)=y+d, we have

hq =
v

u−c and hp =
1

c−u.

Thus

v=−hq

hp
, u= c− 1

hp
, ∂x = ∂q− hq

hp
∂p and ∂y =

1
hp
∂p.
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Note also that ω=γ(−p) and that η(x)=h(q, 0)−d. We obtain the following formu-
lation of the capillary wave problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1+h2
q)hpp−2hphqhpq+h2

phqq=−γ(−p)h3
p in p0<p<0,

1+h2
q−Qh2

p−2σ
h2

phqq

(1+h2
q)3/2

= 0 on p=0,

h=0 on p=p0,

(2.6)

where h is L-periodic in the q-variable and hp>0 throughout R.
So far we have derived (2.6) from (2.1)–(2.5). We shall now see that it is also

possible to derive (2.1)–(2.5) starting with (2.6). Denote the fluid domain

Dη = {(x, y)∈R2 :−d< y<η(x)}.
For the Hölder-parameter α∈(0, 1), let Cm+α

per (Dη) be the space of functions f :Dη!
R with Hölder-continuous derivatives of exponent α up to order m, and with period
L in the x-variable. Similarly, Cm+α

per (R) denotes the space of L-periodic real-valued
functions on R of class Cm+α. A small modification of the argument in [6] proves
the following result.

Proposition 1. Problem (2.6) is equivalent to (2.1)–(2.5). Furthermore, if
h∈C2+α

per (R) then (u, v, η)∈C1+α
per (Dη)×C1+α

per (Dη)×C2+α
per (R) and if h is even in

the q-variable, then u and η are even in x while v is odd.

3. Main result

Our main result is the following.

Theorem 1. Let the wave speed c>0, the relative mass flux p0<0 and the
vorticity function γ∈Cα[0, |p0|], 0<α<1, be given. Then for any wavelength L<L0,
where L0 is given by

L0 = 2π sup
p1∈M

(
σp2

1−
∫ 0

p1
(p−p1)2(2Γ(p)−2Γmin)1/2 dp∫ 0

p1
(2Γ(p)−2Γmin)3/2 dp

)1/2

,(3.1)

for M=
{
p1∈[ p0, 0]:σp2

1>
∫ 0

p1
(p−p1)2(2Γ(p)−2Γmin)1/2 dp

}
, there exists a C1 curve

C of small amplitude traveling wave solutions (u, v, η) of (2.1)–(2.5) in the space
C1+α

per (Dη)×C1+α
per (Dη)×C2+α

per (R), with period L, speed c and relative mass flux
p0, satisfying u<c throughout the fluid. The curve C contains precisely one trivial
flow (a parallel shear flow with a flat surface), while for each nontrivial solution
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(u, v, η)∈C (i) the functions u and η are symmetric around the line x=0 while v
is antisymmetric, (ii) the function η has precisely one maximum (crest) and one
minimum (trough) per period, (iii) the wave profile is strictly monotone between
crest and trough.

Remark. (i) Note that the set M appearing in Theorem 1 is non-empty since∫ 0

p1

(p−p1)2

p2
1

(2Γ(p)−2Γmin)1/2 dp! 0

as p1!0 by the dominated convergence theorem. If the denominator in (3.1) is zero
(e.g. for γ≡0), we take (3.1) to mean L0=∞. In Section 4 we shall see examples
of vorticity distributions for which bifurcation occurs for any wavelength, as well as
some for which a restriction of the size of L is needed.

(ii) It is obvious from the definition of L0 that for a fixed L and γ, the theorem
holds true if σ is large enough. Although σ varies with temperature [10], we will
consider it as having a fixed value rather than as a parameter.

In the rest of this section we fix L=2π. The condition L<L0 is then a condition
only on γ. Before proving Theorem 1 we shall first prove a number of lemmas.

Lemma 1. The trivial solutions h(q, p)=H(p) are

H(p)=H(p;Q)=
∫ p

p0

ds√
Q+2Γ(s)

,

where 0≤−2Γmin<Q.

Proof. A solution of the the form H(p) satisfies the ordinary differential equa-
tion

Hpp =−γ(−p)H3
p .

Integrating gives

Hp(p)= (λ+2Γ(p))−1/2

for λ>−2Γmin. The surface boundary condition yields λ=Q. Integrating once more
and keeping in mind the bottom boundary condition gives the above formula. �

We wish to bifurcate from the curve of trivial solutions parameterized by Q.
For a linear operator L, let N (L) be its null space and let R(L) be its range. Our
main tool will be the Crandall–Rabinowitz bifurcation theorem.
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Theorem 2. ([8]) Let X and Y be Banach spaces, I be an open interval in R
containing λ∗, and F : I×X!Y be a continuous map with the following properties:

(i) F(λ, 0)=0 for all λ∈I;
(ii) Fλ, Fw and Fλw exist and are continuous;
(iii) N (Fw(λ∗, 0)) and Y/R(Fw(λ∗, 0)) are one-dimensional, with the null space

generated by w∗;
(iv) Fλw(λ∗, 0)w∗ /∈R(Fw(λ∗, 0)).
Then there exists a continuous local bifurcation curve {(λ(s), w(s)):|s|<ε} with

ε sufficiently small such that (λ(0), w(0))=(λ∗, 0) and

{(λ,w)∈U :w �= 0 and F(λ,w)= 0}= {(λ(s), w(s))∈U : 0< |s|<ε}
for some neighborhood U of (λ∗, 0)∈I×X. Moreover, we have

w(s)= sw∗+o(s) in X, |s|<ε.
(v) If Fww is also continuous, then the curve is of class C1.

Let R be the open rectangle (0, 2π)×(p0, 0), T=(0, 2π)×{0} be the top, and
B=(0, 2π)×{p0} be the bottom of its closure R, and define the spaces

X = {h∈C2+α
per (R) :h= 0 on B} and Y =Cα

per(R)×Cα
per(T ),

where the subscript “per” means periodicity and symmetry in the variable q.
We define the nonlinear operator F : I×X!Y by

F(Q,w)= (F1(Q,w),F2(Q,w))

for w∈X and Q∈I=(−2Γmin,∞), where

F1(Q,w) = (1+w2
q)(Hpp+wpp)−2(Hp+wp)wqwpq

+(Hp+wp)2wqq+γ(−p)(Hp+wp)3

and

F2(Q,w)= 1+w2
q−Q(Hp+wp)2−2σ

(Hp+wp)2wqq

(1+w2
q)3/2

.

We have F(Q, 0)≡0 by construction.
The derivative of F with respect to w at w=0 is the pair Fw=(F1w,F2w),

where

F1w = ∂2
p +H2

p∂
2
q +3γ(−p)H2

p∂p in R,

F2w = −2(Q1/2∂p+Q−1σ∂qq)|T ,
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since Hp(0)=Q−1/2, so that the linearization of the problem (2.6) at w=0 is Fww=
0, i.e. ⎧⎪⎪⎨

⎪⎪⎩
wpp+H2

pwqq =−3γ(−p)H2
pwp in p0<p<0,

Q3/2wp+σwqq=0 on p=0,

w=0 on p=p0.

(3.2)

Introduce aQ=(Q+2Γ(p))1/2. We can then write (3.2) in the form⎧⎪⎪⎨
⎪⎪⎩

(a3
Qwp)p+(aQwq)q=0 in p0<p<0,

a3
Qwp+σwqq=0 on p=0,

w=0 on p=p0.

To investigate the kernel of Fw(Q, 0), we first look for solutions of the form
w=W (p) coskq. This leads to the equation (a3

QWp)p=k2aQW with the boundary
conditions a3

QWp=k2σW at p=0 and W=0 at p=p0. Consider the eigenvalue
problem ⎧⎪⎪⎨

⎪⎪⎩
−(a3

QWp)p=µaQW, in p0<p<0,

−a3
Q(0)Wp(0)=µσW (0),

W (p0)=0.

(3.3)

We are looking for a Q such that µ(Q)=−k2 is an eigenvalue(1). We restrict our
attention to k=1.

Lemma 2. The eigenvalue problem (3.3) has precisely one negative eigenvalue,
µ−(Q), and 0 is not an eigenvalue.

Proof. Let a=aQ. We introduce the Pontryagin space H=L2[ p0, 0]×C, with
the indefinite form

[ũ1, ũ2] = 〈au1, u2〉L2− 1
σ
b1b2,

where ũi=(ui, bi)∈H, i=1, 2. It is clear that H is a π1-space, i.e. any maximal
negative definite (or negative semidefinite) subspace of H has dimension one. On
H there is also an associated Hilbert space inner product, given by 〈ũ, ṽ〉H=[Jũ, ṽ],
where

J =
(
I 0
0 −1

)
.

(1) For an arbitrary wavelength L the corresponding condition is µ(Q)=−4π2k2/L2.
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Define the linear operator K by

Kũ=
(
−1
a
(a3u′)′,−a3(0)u′(0)

)
,

where we take as domain of definition

D(K)= {ũ= (u, b) :u∈H2[ p0, 0], u(p0)= 0 and b= σu(0)}.
The eigenvalues of (3.3) are precisely the eigenvalues of K. It is clear that D(K) is
dense in H and that K is closed. The identity

[Kũ, ũ] = 〈a3u′, u′〉L2 > 0, ũ �= (0, 0),(3.4)

shows that K is symmetric, that K>0, and that zero is not an eigenvalue.
In fact, K is selfadjoint and has discrete spectrum. To see this, notice that

(K−µI)ũ=f̃=(f, b) is equivalent to the system of equations⎧⎪⎨
⎪⎩

−(a3u′)′−µau=af,

B1(u):=u(p0)=0,

B2(u):=−a3(0)u′(0)−µσu(0)=b.

(3.5)

Let u1 and u2 be solutions of the equation −(a3u′)′−µau=0 with initial data u1(0)=
0, u′1(0)=1 and u2(0)=1, u′2(0)=0, respectively. The characteristic determinant

∆(µ)=
∣∣∣∣B1(u1) B1(u2)

B2(u1) B2(u2)

∣∣∣∣
is an entire function of µ. If µ is not a zero of ∆(µ), equation (3.5) is solvable by
means of the formula

u(p)= c1u1(p)+c2u2(p)+
∫ 0

p0

G(p, r, µ)f(r) dr,

where G is Green’s function for (3.5) and c1 and c2 are chosen so that u satisfies
the boundary conditions. Clearly, (u, σu(0))∈D(K). On the other hand any zero
of ∆(µ) is an eigenvalue of K. We have already seen that µ=0 is not an eigenvalue
of K. Hence ∆(µ) �≡0 and ∆(µ) has only isolated zeros of finite multiplicity. Since
K is symmetric and closed, it is selfadjoint with discrete spectrum.

Since H is a π1-space, K has exactly one negative semidefinite eigenvalue
(counting multiplicity) cf. [13], which is in fact negative definite due to (3.4). For
any eigenvector ũ corresponding to the eigenvalue µ, we have

µ[ũ, ũ] = [Kũ, ũ]> 0.

It follows therefore that µ<0 if and only if µ is of negative definite type. �
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In the following three lemmas, we let K be the operator from Lemma 2 for
a fixed Q, and let R=R(K−µ−I) and N=N (K−µ−I). The next two lemmas will
be needed in the proof of Lemma 9, where the range of Fw(Q∗, 0) is identified.

Lemma 3. There exists a positive constant C such that for µ<µ−,

‖Rµ‖H ≤ C

|µ−µ−| ,

where Rµ=(K−µI)−1.

Proof. Note that N is a maximal negative definite subspace and that it is invari-
ant under K. Letting N [⊥]={ũ:[ũ,N ]=0}, we have that H=N [+]N [⊥] (the sum is
[ · , · ]-orthogonal, direct and topological) and that N [⊥] is a positive definite space.
SinceK is selfadjoint, N [⊥] is invariant underK in the sense that K(D(K)∩N [⊥])⊆
N [⊥]. Let ‖ · ‖∗ be the norm induced by the decomposition H=N [+]N [⊥]. Then
‖ · ‖∗ is equivalent to ‖ · ‖H. Let ũ=ũ1+ũ2∈D(K) and ṽ=(K−µI)ũ=ṽ1+ṽ2, where
ũ1, ṽ1∈N and ũ2, ṽ2∈N [⊥]. By invariance, ṽ1=(K−µI)ũ1 and ṽ2=(K−µI)ũ2. Us-
ing that K is positive with respect to [ · , · ] we obtain that [ũ2, ũ2]≤[ṽ2, ũ2]/|µ|,
which yields ‖ũ2‖∗≤‖ṽ2‖∗/|µ| by Cauchy–Schwarz inequality. On the other hand,
the identity ṽ1=(µ−−µ)ũ1 shows that ‖ũ1‖∗=‖ṽ1‖∗/(µ−−µ). Combining these es-
timates on N and N [⊥] gives that there is a C>0 such that ‖ũ‖∗≤C‖ṽ‖∗/|µ−µ−|
for µ<µ−, which proves the statement. �

Lemma 4. The range R of K−µ−I is closed and thus H=N [+]R.

Proof. The relation [(K−µ−I)ũ+µ−ũ, ũ]≥0, gives

‖ũ‖∗≤ 1
|µ−| ‖(K−µ−I)ũ‖∗ for ũ∈D(K)∩N [⊥].

But R=N [⊥]. It follows that if ṽ∈R and (K−µ−I)ũn!ṽ, where ũn∈D(K), then
ũn!ũ∈H. Since K−µ−I is closed, ũ∈D(K) and (K−µ−I)ũ=ṽ. �

The next lemma is a Rayleigh-principle, which will be needed in order to prove
the existence of a point Q∗ with µ−(Q∗)=−1 (see Lemma 7).

Lemma 5. The negative eigenvalue satisfies

µ− = max
[Kũ, ũ]
[ũ, ũ]

, ũ∈D(K), [ũ, ũ]< 0.
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Proof. We have

[Kũ, ũ] = [Kũ1, ũ1]+[Kũ2, ũ2]≥ [Kũ1, ũ1]

=µ−[ũ1, ũ1]≥µ−([ũ1, ũ1]+[ũ2, ũ2])=µ−[ũ, ũ],

where ũ1∈N and ũ2∈R∩D(K). This yields

[Kũ, ũ]
[ũ, ũ]

≤µ−,

with equality if and only if ũ2=0. �

The following lemma shows that the negative eigenvalue is a monotone function
of the parameter Q. This will be needed in the proof of Lemma 7.

Lemma 6. µ−(Q) is a strictly decreasing function.

Proof. Let B1=D(K) considered with the H2×C-norm, and for a fixed Q=Q0

let R be the range ofK−µ−I and N=span W̃0 its null space. Then B1=N +̇(R∩B1)
by Lemma 4. Define the function G : (B1∩R)×C×(−2Γmin,∞)!B2, where B2=H
endowed with the standard L2×C-norm, given byG(ũ, µ,Q)=(K(Q)−µI)(W̃0+ũ),
where we consider K as a bounded operator from B1 to B2. Then Gũ(0, µ0, Q0)=
K(Q0)−µ0I, while Gµ(0, µ0, Q0)=−W̃0, where µ0=µ−(Q0). By Lemma 4, G(ũ,µ)

is an isomorphism, and the implicit function theorem guarantees that in a neighbor-
hood of (0, µ0, Q0), ũ and µ are C1 functions of Q, where G(ũ(Q), µ(Q), Q)=0. By
uniqueness we must have µ(Q)=µ−(Q). Furthermore, W̃ (Q)=W̃0+ũ(Q) is a (local)
C1 curve of generators of the null space of K(Q)−µ−(Q)I.

The above considerations allow us to differentiate equation (3.3) with respect
to Q. Let Lu=−(a3up)p, where a=aQ, and let W=W (p;Q) be defined as a local
C1 curve of solutions to the problem

LW =µ−aW, W (p0)= 0, Wp(0)=−µ−Q
−3/2σW (0),

where µ−=µ−(Q) is the negative eigenvalue. Denoting differentiation with respect
to Q by ˙ , we have ȧ=1/2a. Furthermore,

LẆ− 3
2
(aWp)p = µ̇−aW+

µ−

2a
W+µ−aẆ , Ẇ (p0)= 0,

and

Ẇp(0)=−µ̇−Q
−3/2σW (0)+ 3

2µ−Q
−5/2σW (0)−µ−Q

−3/2σẆ (0).
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Multiplying the W equation by Ẇ and vice versa yields after integrating

〈Ẇ , LW 〉=µ−〈Ẇ , aW 〉

and

〈LẆ ,W 〉+ 3
2

∫ 0

p0

aW 2
p dp−

3
2
aWpW

∣∣∣∣
0

= µ̇−

∫ 0

p0

aW 2 dp+
∫ 0

p0

µ−

2a
W 2 dp+µ−〈aẆ ,W 〉,

where 〈 · , · 〉 denotes the L2[ p0, 0] inner product. On the other hand

〈Ẇ , LW 〉−〈LẆ,W 〉 =
∫ 0

p0

[−Ẇ (a3Wp)p+(a3Ẇp)pW ] dp

= [−a3ẆWp+a3ẆpW ]|0.

Combining the last three equations we obtain

3
2

∫ 0

po

aW 2
p dp−

3
2
aWpW

∣∣∣∣
0

= µ̇−

∫ 0

p0

aW 2 dp+
∫ 0

p0

µ−

2a
W 2 dp+a3[ẆpW−ẆWp]|0.

The boundary terms, evaluated at p=0, are

a3(ẆpW−ẆWp)+ 3
2aWpW

=Q3/2
[−µ̇−Q

−3/2σW+ 3
2µ−Q

−5/2σW−µ−Q
−3/2σẆ+µ−Q

−3/2σẆ
]
W

−µ−
3
2Q

−1σW 2

=−µ̇−σW
2.

We thus have

µ̇−[W̃ , W̃ ] = µ̇−

(∫ 0

p0

aW 2 dp−σW 2(0)
)

=−µ−

∫ 0

p0

1
2a
W 2 dp+

3
2

∫ 0

p0

aW 2
p dp> 0,

so that µ− is strictly decreasing in view of [W̃ , W̃ ]<0. �

The next lemma proves the existence of a unique Q∗ such that the eigenvalue
problem (3.3) has the eigenvalue −1. Theorem 1 will then be proved by applying
Theorem 2 with λ∗=Q∗.

Lemma 7. If L0>2π, where L0 is given by (3.1), then there is a unique Q∗>
−2Γmin such that µ−(Q∗)=−1.
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Proof. Let

u(p)=

{
0, p0≤p≤p1,

p−p1, p1≤p≤0,

and ũ=(u, σu(0)). Then

[ũ, ũ] =
∫ 0

p1

aQ(p)(p−p1)2 dp−σp2
1< 0

for p1∈M and Q sufficiently close to −2Γmin. Furthermore, as λ!−2Γmin,

[K(Q)ũ, ũ]
[ũ, ũ]

=

∫ 0

p1
a3

Q(p) dp∫ 0

p1
aQ(p)(p−p1)2 dp−σp2

1

!
∫ 0

p1
a3
−2Γmin

(p) dp∫ 0

p1
a−2Γmin(p)(p−p1)2 dp−σp2

1

>−1,

for some p1∈M . It follows that limQ!−2Γmin µ−(Q)>−1 by Lemma 5 (the fact that
ũ /∈D(K) can be taken care of by an approximation argument).

On the other hand, let Q≥σ−2Γmin. Then aQ(p)=
√
Q+2Γ(p)≥√

σ. This
yields

∫ 0

p0

(aQw
2+a3

Qw
2
p) dp≥√

σ

∫ 0

p0

(w2+σw2
p) dp≥ 2σ

∫ 0

p0

wwp dp= σw2(0)

for w̃∈D(K). It follows that if [w̃, w̃]<0, then [Kw̃, w̃]/[w̃, w̃]≤−1. Hence µ−(Q)≤
−1 by Lemma 5. By continuity there is a Q∗ such that µ−(Q∗)=−1 and Q∗ is
unique by Lemma 6. �

The next lemma identifies the null space of Fw(Q∗, 0) and is needed in order
to prove property (iii) in Theorem 2.

Lemma 8. The null space of Fw(Q∗, 0) is one-dimensional.

Proof. Expanding an arbitrary function w∈X in a cosine series w(q, p)=∑∞
k=0Wk(p) cos kq, we obtain that w∈N (Fw(Q∗, 0)) if and only if Wk solves (3.3)

with µ=−k2. Since the only nonpositive eigenvalue of (3.3) for Q=Q∗ is −1, it
follows that the null space is one-dimensional. �

In the following lemma the range of Fw(Q∗, 0) is identified. This is also needed
in order to prove property (iii) in Theorem 2.
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Lemma 9. Let ϕ generate the kernel of Fw(Q∗, 0). The range of Fw(Q∗, 0)
consists of (A,B)∈Y such that∫∫

R

Aa3ϕdq dp+
1
2

∫
T

Ba2ϕdq= 0.

Proof. The vector (A,B) belongs to the range if and only if A=a−3(a3vp)p+
a−2vqq in R and B=−2(avp+σa−2vqq) on T , where a=aQ∗ . We have∫∫

R

Aa3ϕdq dp=
∫∫

R

((a3vp)p+avqq)ϕdq dp

=
∫∫

R

((a3ϕp)p+aϕqq)v dq dp+
∫

T

a3(vpϕ−vϕp) dq

=
∫

T

a3(vpϕ−vϕp) dq,

where the integral over R vanishes because of the equation satisfied by ϕ.
On the top we have

2(vpϕ−vϕp)= 2vpϕ+2v(σa−3ϕqq)=−a−1Bϕ+2σa−3(vϕqq−vqqϕ).

Thus the last integral equals

−1
2

∫
T

a2Bϕdq+σ
∫

T

(vϕqq−vqqϕ) dq,

where, integrating by parts, the last term disappears. This proves the necessity.
To prove the sufficiency, we expand in cosine series:

A(q, p)=
∞∑

k=0

Ak(p) cos kq, B(q)=
∞∑

k=0

Bk cos kq,

where
∑∞

k=0 ‖Ak‖2
L2<∞ and

∑∞
k=0 B2

k<∞. Letting K be the operator from
Lemma 2, we obtain the following sequence of problems

(K+k2)ũk =
(
−a2Ak,

a2(0)
2

Bk

)
:= ṽk, k≥ 0.

For k �=1, there is a unique solution ũk=R−k2(vk)∈D(K). For k=1, we have to use
the orthogonality condition. Let ϕ(q, p)=W (p) cos q. Then it is easy to see that the
orthogonality condition means precisely that∫ 0

p0

a3A1W dp+
a2(0)

2
B1W (0)= 0.



Steady periodic capillary waves with vorticity 381

But by Lemma 4, R(K+I)=(N (K+I))[⊥], so that ṽ1∈R(K+I). Hence the equa-
tion for k=1 is also solvable.

We now let u=
∑∞

k=0 uk(p) cos kq. By Lemma 3, we have for k≥2 the estimate

‖k2ũk‖2
H ≤ C2k4

(k2−1)2‖ṽk‖2
H

≤C1(‖Ak‖2
L2+|Bk|2)

for some C1>0. From the relation [Kũk, ũk]=−k2[ũk, ũk]+[ṽk, ũk] and (3.4) we
obtain

k2〈a3u′k, u
′
k〉L2 = k2[Kũk, ũk]≤‖k2ũk‖2

H+ 1
2 (‖ṽk‖2

H+‖k2ũk‖2
H),

where we have used that |[ũ, ṽ]|=|〈Jũ, ṽ〉H|≤‖ũ‖H‖ṽ‖H, since J is unitary. It fol-
lows that for some C2>0,

‖ku′k‖2
L2 ≤C2(‖Ak‖2

L2+|Bk|2).
Using the equation satisfied by uk we obtain also that ‖u′′k‖2

L2≤C3(‖Ak‖2
L2+|Bk|2)

for some C3>0. Combining all the estimates yields that the sum defining u con-
verges in H2

per(R) and in H2
per(T ). The limit function u is a strong solution of the

problem ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a3wp)p+(a wq)q=a3A in p0<p<0,

a3wp+σwqq =− 1
2a

2B on p=0,

w=0 on p=p0.

(3.6)

Let ψ∈C∞
c (R) be a nonnegative even function satisfying

∫
R
ψ(s) ds=1, and let

ψε(s)=ψ(s/ε)/ε. By mollifying u in the q-direction, we obtain a family {u(ε)}0<ε≤1,
u(ε)(q, p)=

∫
R
u(q−s, p)ψε(s) ds, satisfying⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a3u
(ε)
p )p+(au(ε)

q )q=ψε∗(a3A) in p0<p<0,

a3u(ε)
p +σu(ε)

qq =− 1
2ψε∗(a2B) on p=0,

u(ε)=0 on p=p0,

where convolution with ψε is in the q-variable. A priori u(ε)∈H2
per(R). However,

u(ε)( · , 0)∈C∞
per(T ), so that in fact u(ε)∈C2+α

per (R) (note that ψε∗(a3A), ψε∗(a2B)∈
Cα

per(R)). Furthermore, since ψε∗(a3A) and ψε∗(a2B) are bounded in Cα
per(R), and

u(ε)!u uniformly in R, the Schauder estimates in [20] show that u(ε) is bounded
in C2+α

per (R). It follows that there is some subsequence, {u(εn)}∞n=1, converging in
C2

per(R) to a solution of (3.6). Since u(εn) converges uniformly to u, it follows that
u∈C2

per(R). From the boundary condition on T it follows that u|T ∈C2+α
per (T ) and

hence u∈C2+α
per (R). �
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Before proving Theorem 1 we need to verify property (iv) of Theorem 2. The
proof uses the characterization of the range of Fw(Q∗, 0) given in Lemma 9.

Lemma 10. FwQ(Q∗, 0)ϕ/∈R(Fw(Q∗, 0)), where ϕ generates N (Fw(Q∗, 0)).

Proof. Throughout the proof we let a=aQ∗ . Let us first calculate FwQ. We
have

FwQ(Q∗, 0)=
(−a−4∂2

q −3γa−4∂p, 2
(
a−4σ∂2

q − 1
2a

−1∂p

)∣∣
T

)
.

By Lemma 9 we must check that I �=0, where

I =
∫∫

R

a3ϕ(−a−4ϕqq−3γ(−p)a−4ϕp) dq dp+
∫

T

a2ϕ(a−4σϕqq−(2a)−1ϕp) dq.

The first term equals ∫∫
R

a−1ϕ2 dq dp

due to the cosine. The second term equals

−3
2

∫∫
R

aϕ2
p dq dp−

3
2

∫∫
R

a−1ϕ2 dq dp+
3
2

∫
T

aϕϕp dq.(3.7)

Indeed, using ap=γ(−p)a−1 (by definition) and (a3ϕp)p=aϕ throughout R, we have
that∫∫

R

γ(−p)a−1ϕϕp dq dp=
∫∫

R

apϕϕp dq dp

=−
∫∫

R

(aϕ2
p+aϕϕpp) dq dp+

∫
T

aϕϕp dq−
∫

B

aϕϕp dq

=−
∫∫

R

aϕ2
p dq dp−

∫∫
R

a−1ϕ2 dq dp

+3
∫∫

R

γ(−p)a−1ϕϕp dq dp+
∫

T

aϕϕp dq

since ϕ=0 on B. We now obtain∫∫
R

γ(−p)a−1ϕϕp dq dp=
1
2

∫∫
R

a−1ϕ2 dq dp+
1
2

∫∫
R

aϕ2
p dq dp−

1
2

∫
T

aϕϕp dq,

proving (3.7). The total contribution of the third and fourth terms is

−3
2

∫
T

aϕϕp dq,

due to the boundary condition satisfied by ϕ on T .
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Adding up all terms we find that

I =−1
2

∫∫
R

a−1ϕ2 dq dp− 3
2

∫∫
R

aϕ2
p dp< 0. �

Proof of Theorem 1. We verify the conditions of Theorem 2 for λ∗=Q∗. Con-
dition (i) follows by construction, while the regularity conditions (ii) and (v) are
obviously satisfied. Condition (iii) follows from Lemma 8 and Lemma 9, while
(iv) is a consequence of Lemma 10. By Theorem 2, we deduce the existence of
a local bifurcation curve of class C1 for the problem F(Q,w)=0. Since h=H+w
and Hp>0 throughout R it follows that hp>0 in R sufficiently close to (Q∗, 0) in
I×X . Furthermore, we have that hq(q, 0)=−sW (0) sin q+o(s) in C1+α

per (T ), while
hqq(q, 0)=−sW (0) cos q+o(s) in Cα

per(T ). Choosing q0∈(0, π/2), we can find an ε

such that for 0<s<ε, hq(q, 0)<0 for q∈(q0, π−q0), hqq(q, 0)<0 for q∈[0, q0), while
hqq(q, 0)>0 for q∈(π−q0, π]. Since h(q, 0) is even and 2π-periodic, it follows that
hq(0, 0)=hq(π, 0)=0 and thus by construction hq<0 in (0, π) for 0<s<ε. Due to
the antisymmetry of hq with respect to q=π, it follows that hq>0 in (π, 2π). By
restricting the bifurcation curve, we may assume that hp>0 holds throughout R
and that h|T is strictly decreasing in (0, π) and strictly increasing in (π, 2π). For
small s<0, we have instead that h|T is strictly increasing in (0, π) and strictly de-
creasing in (π, 2π). Proposition 1 allows us to pass from solutions of the problem
F(Q,w)=0 to solutions of the water wave problem (2.1)–(2.5). Since h=H+w
with H∈C2+α(R), and u=c−1/hp, we obtain the desired regularity of the solu-
tion (u, v, η) of (2.1)–(2.5), and that u<c throughout the fluid region. The nodal
property follows from η=h|T .

Although we assumed that L=2π, a similar method as in Lemma 7 shows that
µ−(Q)!−∞ as Q!∞, so that one can find a Q∗ with µ−(Q∗)=−4π2/L2 as long
as L<L0. A careful examination shows that nothing is essentially changed in the
rest of the proofs. �

Remark. We proved bifurcation for the lowest wave number k=1. Since
limQ!∞ µ−(Q)=−∞, there are always waves of any sufficiently large wave num-
ber. From the uniqueness assertion of the Crandall–Rabinowitz theorem, it follows
that close to the trivial curve, the waves of mode k are identical to those of mode
1 and wavelength L/k.

4. Examples

In this section we look at a few particular examples of vorticity distributions.
We no longer assume that L=2π.
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Example 1. In the case of irrotational flow (γ≡0), the eigenvalue problem (3.3)
for µ=−4π2/L2 is simply⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Wpp =

4π2

L2Q
W, p0<p<0,

Q3/2Wp(0)=
4π2σ

L2
W (0),

W (p0)=0.

The solution is in this case W (p)=sinh(2π(p−p0)/L
√
Q∗), where Q∗ is determined

uniquely by Q∗=(2πσ)/L tanh(2π|p0|/L
√
Q∗). The uniform flow corresponding to

the bifurcation point has the velocity components (c−u∗, v∗)=(
√
Q∗, 0) since

H∗(p)=
p−p0√
Q∗ .

From the definition of p0, we infer that d
√
Q∗=|p0|. Hence, we have (c−u∗)2=

(2πσ/L) tanh(2πd/L), so that we obtain the dispersion relation [14], [19],

c−u∗ =

√
2πσ
L

tanh
(

2πd
L

)
.

Note that the intrinsic wave speed c−u∗ decreases with L.

Example 2. In the case of constant vorticity γ �=0, the substitution

W (p)=
2γ√

Q+2γp
W0

(√
Q+2γp
γ

)

transforms (3.3) with µ=−4π2/L2 into W ′′
0 =4π2W0/L

2. Since W0(p0)=0, we ob-
tain that

W (p)=
1√

Q+2γp
sinh

(
2π(

√
Q+2γp−√

Q+2γp0)
Lγ

)
.

The boundary condition Q3/2W ′(0)=4π2σW (0)/L2 then determines Q∗ as the
unique solution of the equation

tanh
(

2π(
√
Q−√

Q+2γp0)
Lγ

)
=

2πQ
L

1
4π2σ/L2+γ

√
Q
.(4.1)

The trivial flow corresponding to Q∗ has the velocity components (c−u∗, v∗)=
(
√
Q∗+γy, 0) because uy=γ. Moreover,

H∗(p)=
√
Q∗+2γp−√

Q∗+2γp0

γ
.
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From the definition of p0 we infer that
√
Q∗d− 1

2γd
2=|p0|, and thus

d=
√
Q∗−√

Q∗+2γp0

γ
.

Thus Q∗ is the solution of tanh(2πd/L)=(2πQ∗/L)/(4π2σ/L2+γ
√
Q∗). Solving for√

Q∗=c−u∗0, u∗0 being the velocity of the trivial flow at the surface, we obtain the
dispersion relation

c−u∗0 =
Lγ

4π
tanh

(
2πd
L

)
+

1
2

√
L2γ2

4π2
tanh2

(
2πd
L

)
+

8πσ
L

tanh
(

2πd
L

)
.

Let

f(Q)= tanh
(

4π|p0|
L(

√
Q+

√
Q+2γp0)

)
− 2πQ

L

1
4π2σ/L2+γ

√
Q
.

Then equation (4.1) has a solution Q∗>−2Γmin if and only if f has a zero in the
same interval. For γ<0, this function is well-defined on [0, (4π2σ/|γ|L2)2). Note
that

f(0)= tanh

(
2π
L

√
2p0

γ

)
> 0, while lim

Q!(4π2σ/|γ|L2)2
f(Q)=−∞.

Hence bifurcation always occurs for negative constant vorticity, regardless of the
size of L.

For γ>0, the function f is well-defined and decreasing on [2|p0|γ,∞). Noting
that limQ!∞ f(Q)=−∞, we find that bifurcation occurs if and only if

tanh

(
2π
L

√
2|p0|
γ

)
>

2π
L

2|p0|γ
4π2σ/L2+γ

√
2|p0|γ

.

Since tanh never takes values larger than 1, bifurcation does not occur if
4π|p0|γ>L(4π2σ/L2+γ

√
2|p0|γ). Fixing γ and L, this inequality holds for |p0|

sufficiently large. By Lemma 6, for this γ and |p0| bifurcation does not occur for
any larger L.

Remark. The fact that bifurcation always occurs for constant negative vorticity
can be generalized to an arbitrary nonpositive vorticity distribution by a similar
argument as in [26].
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