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Characterization of Orlicz—Sobolev space

Heli Tuominen

Abstract. We give a new characterization of the Orlicz-Sobolev space W% (R"™) in terms
of a pointwise inequality connected to the Young function W. We also study different Poincaré
inequalities in the metric measure space.

1. Introduction

Analysis in metric measure spaces, for example the theory of Sobolev type
spaces, has been under active study during the past decade. In a general metric
space we cannot speak about weak derivatives, which are an essential part of the
definition of the classical Sobolev space. Hence there has been a need for character-
izations of W1?(Q) that do not involve derivatives. Recall here that, for a domain
QCR", the Sobolev space WHP(Q), 1<p<oo, consists of the functions ue LP(£2)
whose all first order weak derivatives 0;u belong to L?(2). Pointwise inequalities
for pairs of LP-functions are used both as a definition of a Sobolev space in a metric
space, and as a tool to show that different definitions give the same set of functions
if the underlying metric space satisfies certain assumptions.

Let us recall the result that led Hajlasz to define the Sobolev space M1?(X) on
metric measure space in [9]. For 1<p<oo, the function u€ LP(R") is in WP(R")
if and only if there is a function 0<ge LP(R™) such that the pointwise inequality

(1.1) lu(z)—u(y)| < lz—yl(9(z)+9(y))

holds for almost every z, y€R™. The validity of (1.1) for ue WH?(R") follows from
the inequality

(1.2) u(z) —u(y)| < C(n)]x—y|[Majz—y [Vul(2)+ Majz—y [Vul(y)],

which holds for all 1 <p< oo, and the boundedness of the Hardy—Littlewood maximal
function for p>1. The boundedness of M is essential; for a function ue WH1(R")



124 Heli Tuominen

there is not necessarily any integrable function g such that inequality (1.1) holds,
see [10]. In [10], Hajtasz gave the following new characterization of W1!(R™) using
a pointwise estimate with maximal functions on its right-hand side.

Theorem 1.1. ([10, Theorem 4]) A function u€ L*(R") is in WLI(R™) if
and only if there exists a function 0<g€ L*(R™), a constant c>1, and a set E with
|E|=0 such that the pointwise inequality

(1.3) lu(@) —u(y)| < |z =yl [Moz—y 9(2) + M2y 9(y)]
holds for all x,yeR"\ E.

In this paper we study a generalization of Theorem 1.1 to Orlicz—Sobolev
spaces. Recall that for a domain QCR"™ and a Young function ¥, the Orlicz—
Sobolev space W1¥(Q) consists of the functions ue LY(Q) whose all first order
weak derivatives 9;u belong to the Orlicz space LY (2), see Section 2 for the defi-
nition of Young function and Orlicz space. The space W1¥(€2) is a Banach space
with respect to the norm

”u”Wls‘I’(Q) = HUHL‘I’(Q) + [Vl ”L‘I’(Q)a

where || - || ¥ (q) is the Luxemburg norm and Vu is the weak gradient of w.

In Theorem 1.2, we assume that U, Tis a pair of complementary Young func-
tions such that both functions are doubling. The easiest example of such a pair is
W(t)=tP/p, W(t)=t?/p', where 1/p+1/p'=1. Note also that the function

(1.4) T(t) = tP log® (e+1),

where p>1 and a>0, or p>1—« and —1<a<0, is doubling and has a doubling
complementary function. This can be checked by standard tests for N-functions,
(cf. [15, Chapter 4] and [17, Chapter 2.2.3]). Weakly differentiable functions with
gradient in the Orlicz space LY (Q), ¥ as in (1.4), are used in the theory of mappings
of finite distortion, see for example [13], [14] and the references therein. Orlicz and
Orlicz—Sobolev spaces with such ¥ are studied also in [2], [3], [6] and [8], the list
not being exhaustive.

Theorem 1.2. Assume that ¥, T is a complementary pair of doubling Young
functions. A function u€ LY (R™) is in WYY (R™) if and only if there exists a func-
tion 0<ge LY (R"™), a constant 0>1, and a set E with |E|=0 such that the pointwise
inequality
(1.5)  Ju(@)—u(y)| < Cle—y|[¥ ™ (Mglzy ©(9)(@) + T (Mol y U(9) (1)),

holds for all x,yeR"\ E.
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As in the case of WH1(R™), the proof consists of two parts which are interesting
also as separate results. The first part, Theorem 3.2, together with earlier results,
provides a close connection between the pointwise inequality and a W-Poincaré
inequality (1.6) below also in the metric space setting. In Theorem 3.3, we show
that the validity of a W-Poincaré inequality for a pair u€ LY (R"), 0<ge LY(R"),
guarantees that u€ WH¥ (R").

Given a strictly increasing Young function ¥, we say, as in [18], that a pair
u€L{ (X) and a measurable function ¢>0 satisfies a V-Poincaré inequality if there

loc

exist constants C'>0 and 7>1 such that

(1.6) ]{3|u—uB|du<Cq,r\Il1<][TB U(g) du)

for each ball B=B(z,r).

Now it is time to explain “the earlier results” mentioned above. As shown
by Hajtasz and Koskela in [11, Theorem 3.2], a (1, p)-Poincaré inequality, that is,
(1.6) with W(¢)=tP, for a pair u€ L} (X) and a measurable function g>0 implies
a pointwise inequality of the same type as (1.3),

(1.7) Ju(z) —u(y)| < Cd(z, y)[(Mar g,y 97 (@) "+ (Marage.y) 9 () 7]

for p-almost all x,ye X.

A VU-Poincaré inequality implies a similar estimate for the oscillation of a func-

1
loc

tion. Namely, if a pair uelL
p-almost all z, ye X,

(1.8)  u(@)—u(y)| < Cd(a,y)[¥ " (Maragey) ¥(9) (@) +¥H (Mara,y) ¥(9) ()],

where the constant C'>0 depends only on the doubling constant C), of 1 and on the
constant Cy of the U-Poincaré inequality, [18, Lemma 5.15].
The paper is organized as follows. In Section 2 we introduce the notation

(X), g>0 satisfies a U-Poincaré inequality, then for

and the standard assumptions used in the paper. Our main results, Theorem 1.2
together with the two steps of its proof, are proved in Section 3. Section 4 contains
a discussion about Poincaré inequalities connected with different Young functions.

2. Notation and preliminaries
2.1. Basic assumptions
Although our main theorem is for Orlicz—Sobolev space in R™ with the Eu-

clidean metric, part of our results hold also in the metric setting. Then we assume
that X=(X, d, ) is a metric measure space equipped with a metric d and a Borel
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regular, doubling outer measure u. The doubling property means that there is
a fixed constant C,>0, called a doubling constant of 1, such that

(2.1) p(B(z,2r)) < Cup(B(z, 7))

for each x€ X, and all r>0. Here B(z,r)={yeX:d(y,x)<r} is the open ball of
radius r centered at x. Given a ball B=B(x,r) and 0<t<oo, we let tB=DB(z,tr).
We also assume that the measure of every open set is positive and that the measure
of each bounded set is finite.

As a special case of doubling spaces we consider @Q-regular spaces, where the
measure u behaves almost as well as the Lebesgue measure in R". More precisely,
a metric space X with a Borel regular measure p is (Ahlfors) Q-regular, @>1, if
there is a constant Cg>1 such that

(2.2) C’élrQ < pu(B(z,r)) < Cor?

for each z€ X, and for all 0<r<diam(X). Here diam(X) is the diameter of X. We
say that X is a geodesic space if every two points x,y€ X can be joined by a curve
whose length is equal to d(z,y).

The mean value of a function u€ L'(A) over a p-measurable set A with finite
and positive measure is qufAud,u:u(A)’l fAudu. We say that a function u
belongs to the local space L? (X) if it belongs to L?(B) for each ball BC X.

loc

The restricted Hardy-Littlewood mazimal function of a function ue€ L] (X) is

0<r<R

(2.3) Mpu(z)= sup ]{3 )

For R=00, My u is the usual Hardy—Littlewood maximal function M u.

By wp, we denote the Lebesgue n-measure of the unit ball B(0,1)CR", and
by |E|, the Lebesgue n-measure of a measurable set ECR™. The characteristic
function of a set EC X is Xg. In general, C' will denote a positive constant whose
value is not necessarily the same at each occurrence. By writing C=C(K,\) we
indicate that the constant depends only on K and .

2.2. Review of Orlicz spaces

We will give a brief review to Orlicz spaces. Classical references to Young
functions, Orlicz spaces, and Orlicz—Sobolev spaces W1¥(R") are [1], [16], [15],
and [17]. For Orlicz—Sobolev spaces in metric space, see [18].

A function ¥: [0,00)—[0, 00| is a Young function if

(2.4) W(s)= / () dt,
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where ¥: [0,00)—[0, 00] is an increasing, left-continuous function which is neither
identically zero nor identically infinity on (0,00), and satisfies 1/(0)=0. A Young
function W is convex, increasing, left-continuous, ¥(0)=0, and ¥(t)—oo as t—o0.
A continuous Young function with the properties ¥(¢)=0 only if t=0, ¥(t)/t— o0
as t—o0, and U(t)/t—0 as t—0, is called an N-function.

Given a Young function ¥, the function W: [0, 00)—[0, oc],

W(s) =sup {st—U(t):t >0},
is the complementary function, and ¥~1: [0, 00]— [0, oc],
U L(t) =inf {s: U(s) > t},

with inf @=o00, is the generalized inverse of ¥. The function ¥~' is a right-
continuous, increasing substitute for the inverse function. If a Young function is
continuous and strictly increasing, then its usual inverse function coincides with the
generalized inverse. The functions ¥ and U~! satisfy the inequality

(2.5) T(PH() <t<WTH(T(L)

for all t>0.

It follows easily from the convexity and the property ¥(0)=0 that the function
t—W(t)/t is increasing. This implies that if ¥ is strictly increasing, then the func-
tion t+—W1(¢)/t is decreasing.

A Young function ¥: [0,00)—[0,0) is doubling (satisfies the Aj-condition) if
there is a constant C5>0 such that

U(2t) < Col(t)

for each t>0. The smallest such Cy is called the doubling constant of ¥. The
doubling condition implies that

n log, C2

(2.6) U (t) < Cy (;) U(s)
for all 0<s<t. It also tells that for large ¢ the growth of ¥ is dominated by the
function Ct? with some p>1 and C'>0, see [17, the proof of Corollary II.2.3.5].
Hence the doubling condition excludes functions with exponential growth. Func-
tions Uy (¢t)=at?, a>0, p>1, and ¥o(t)=(1+t)log(1+t)—t are examples of doubling
functions, whereas the complementary function of W, Ty (t)=e'—t—1 is not dou-
bling.

Note that, as a convex function, a real-valued Young function ¥ is continuous
on (0,00). By the convexity and the property ¥(0)=0, such a ¥ is continuous
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n [0,00). In particular, a doubling or strictly increasing Young function is real-
valued, and hence continuous. On the other hand, if ¥ is real-valued and ¥ (¢)=0
only if ¢=0, then it is strictly increasing.

Given a Young function ¥ and an open set QCX, the Orlicz space LY(Q)
consists of measurable functions u: Q—[—o0, co] for which

/ U (ar|ul) dp < oo
Q

for some a>0. If ¥ is doubling, then L¥(2) coincides with the set of functions u
for which fQ (Ju]) dp is finite. Equipped with the Luzemburg norm,

(2.7) ||u||L\y(Q):inf{k'>0:/ U (k™ ul) du<1},
Q

L¥(Q) is a Banach space. If Q=X we let |lul|g=||ul|pv(x). We say that a function
u is in the local space LY (X) if it is in LY (B) for each ball BC X. The Luxemburg
norm is monotone in the sense that if the measurable functions u and v satisfy
|u|<|v| p-almost everywhere, then ||uw <|/v| .

Ifw, T is a complementary pair of Young functions, then the generalized Hélder
inequality

(2.8) / fua)o@)] die < 2l e 101l

holds for all u€ LY(Q) and ve LY(Q).

If ¥ is doubling and Q a domain in R™, then the space C§°(£2) of infinitely
differentiable functions with compact support is dense in L¥(Q). The standard
convolution approximations J.*u of u€ LY (Q) converge to v in norm as ¢—0. If,
in addition, U is doubling, then LY () is reflexive and L‘I’(Q)*:L‘T’(Q) (see [1,
Chapter 8], [16, Chapter 3] and [17, Chapter 4]). Moreover, a version of Riesz
representation theorem holds for L (€2): for each functional L€ LY (Q)*, there exists
a unique v€ LY(Q) such that

(2.9) L(u):/guvdu

for each u€ L¥ (). Furthermore, the operator norm of L is controlled by the norm
of v,

||U||L‘TJ(Q) <|Lll < 2||U||L‘i’(Q)'
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In [18], we defined, in addition to a W-Poincaré inequality (1.6), that the pair u,g
satisfies a (U, ¥)-Poincaré inequality in € if

(2.10) ]{3 W(%) dp<Cy ][TB U(g)du

with some constants C, Cy>0 and 7>1.
We close this subsection by recalling the Jensen inequality, an important tool
in the theory of Orlicz spaces. If ¥: R—R is convex, u€ L (X), and ACX is of

positive and finite measure, then

(2.11) \Il<]{1 |u|du> §]{1\Il(|u|)du.

Using (2.11) and (2.5), we see that each function u€ LY (X) with a real-valued W is
locally integrable. Indeed, if a>0 is such that [, ¥(a|u|)du<oo and B is a ball,

then
/}3|u|du=@]{3a|u|du<@@1<]{3\I!(a|u|)du>.

3. Pointwise estimate, Poincaré inequality and Orlicz—Sobolev space

In this section, we will prove Theorem 1.2. We begin with a geometric lemma,
and continue by showing that the result that a U-Poincaré inequality implies a point-
wise inequality (1.8) for the oscillation of the function, can be converted. The proof
of Theorem 3.2 is a modification of the proof of Hajtasz [10, Lemma 5].

Lemma 3.1. Suppose that X is a geodesic metric space. If B=B(xq, R) a ball
in X, x€B, and 0<r<2R, then there is a ball of radius r/2 in B(z,r)NB.

Proof. If d(z,z¢)>r/2, then the assumption that X is geodesic implies that
there is a point z such that d(z,z)=r/2 and d(z,z0)=d(x,x0)—7r/2, and hence
B(z,r/2)C B(z,7)NB.

On the other hand, if d(x, x9)<r/2, then B(zo,r/2)CB(z,r)NB. O

Theorem 3.2. Let X be a Q-reqular, geodesic metric measure space, and ¥

a doubling Young function. If ue L (X), 0<geLy (X), and 0>1, C>0 are such
that the inequality

(3.1)  fu(@)—u(y)| < Cd(z, y)[¥™ (Moa(ay) ¥(9) (@) + T (Moaay) U(9)(y))]

holds for p-almost all x,y€ X, then the pair u, g satisfies a ¥-Poincaré inequality
with T=30. The constant C'y >0 of (1.6) will depend only on the constants of u,
U, and of C of (3.1).
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Proof. Let B=B(xg, R) be aball in X. We begin the proof by checking what we
can assume from u and g. Since neither the left hand side of (3.1) nor the ¥-Poincaré
inequality change if a constant is added to u, we may assume that essinfg |u|=0
for a set ECB with u(F)>0. We will choose the set E later. We define 7=30,
and h=g¢X,;p. The pointwise estimate (3.1) implies that, after a modification of u
in a set of measure zero if necessary,

(3.2) lu(z) —u(y)| < Cod(z, y)[¥~H (M U(h)(2))+ ¥~ (M T (h)(y))]

for all x,y€B.

We can assume that h>0 on a set of positive measure, since if h=0 almost ev-
erywhere in X, then u is constant in B, and the U-Poincaré inequality (1.6) follows.
By replacing h with the bigger function h=h+ ¥ ( f.5Y(h) du) if necessary, we
may assume that on 7B the function h satisfies

2

(3.3) h>ciqfl<]{3 U (h) dﬂ> >0.

Using the doubling property of ¥ and the fact that the function t—W¥~1(t)/t is
decreasing, we have that

vl (][B W (i) du> <Cput (][B w(h) du>,

and so the change from h to h will only increase the constant of the W-Poincaré
inequality. For each k€Z, we define

Ep={zcB: U Y (MU(h)(z))<2*} and aj=sup|u(z)|.

Ey

Then Ej_1 CEy and ap_1<aj for each k, and

(3.4) /|u—uB|d,u§2/ |u| dp <2 Z ap(Ex\ Ex—1).
B B

k=—o0

We will obtain an upper bound for the left-hand side of the W-Poincaré inequality
by estimating the value of |u| in the sets Fj.

Our next goal is to find for each x € E), a point y€ E_1 such that the distance
from y to 2 is at most Cu(B\Ex_1)/?. By the pointwise estimate (3.2), the
function u is Co2F*1-Lipschitz in Ej. Hence, for each x€ Ej, and y€ Ej_1, we have
that

(3-5) |u(z)| < Ju(z) —u(y)|+|uly)| < Co2" " d(z, y) +ar-1.
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Fix x€Ey. By Lemma 3.1, B(x,r)NB contains a ball of radius r/2 if 0<r<2R,
and hence, by the @Q-regularity of u,

(3.6) j(B(z,1)NB) > CiQ(g)Q.

If u(Ex-1)>0, we choose
Tk = 21+1/QCé/Q/J/(B\Ek_1)1/Q.
Then, by (3.6),
W(B(w, ) \B) > p(B\ Fy_1),

and hence there is y€ B(x, ;)N Eg—1. The upper bound r, <2R for r; holds by the
Q-regularity if Ej_, is large enough, if

(3.7) 2C3u(B\ Ex-1) < u(B).

Since ¥ is doubling, the function W(h) is in L .(X), and hence the weak-type

estimate for the maximal function, [12, Theorem 2.2], implies that
H(B\By-1) = p({ € B: U~ (MU (h)(2)) > 251}
< pl{z e B: MU(h)(z) > W(21)})
C
< | 0

Now (3.5), the definition of ry, and (3.8) imply that

(3.8)

A

1/Q
ar < ap-1+C02°u(B\ Ex_1)Y? <aj_ 1 +C28 W (2F-1)"1/Q (/ W (h) du>

B

whenever (3.7) holds for Fy_1.
Iterating the above estimate we have that if p1(Ejy,)>0 and (3.7) holds for ko,
that is, 2C3 u(B\ Ex,) <u(B), then

k i 1/Q
(39) akSGkO—FC Z W(/FB\I’UZ) du)

i=ko+1

for each k> k.

Claim. There is ko for which 2C3u(B\ Ex,) <u(B) and a constant C'>1 such
that

(3.10) C*l][B \I/(h)du§\11(2’“°)§c][3 U (h) dp.
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Proof. Since the assumption (3.3) guarantees that Fj, is empty for small k, and
since p(Ey)—u(B) as k— oo, there is an index kg for which

(3.11) Wiy 1) < (1—%);43) < (Bry).

The function ¥(g) is in L'(B) because g€ L)’ .(X) and ¥ is doubling. Hence the
definition of h and the Lebesgue differentiation theorem imply that M W (h)>|¥(h)]|
almost everywhere in B. Then, by the assumption (3.3) on h, the doubling property
of ¥, and the selection of ko such that Ey, is not empty, there is z€ B and a constant
C=C(C3), 0<C<1/Cy, such that

(3.12) C][ U(h)du < MU (h)(x) < W(2k).
B

To prove the opposite inequality of the claim, we use (3.11) and a weak type estimate
as in (3.8) to obtain

(2C%) ' w(B) < w(B\ Egy—1) = p({z € B: U H (M ¥(h)(z)) > 2" 1})
(3.13) o
< gy [, i

The claim (3.10) follows from estimates (3.12) and (3.13) using the doubling prop-
erty of ¥ and the Q-regularity of u. 0O

We select the set E discussed in the beginning of the proof to be Ej,, and assume
that essinfp, |u[=0. Then, by the 2ko+1_Lipschitz continuity of u in Ej,, and
(3.10), we have the following estimate for ay,:

(3.14) ag, =sup |u] §2k0+1-2R§CR\I/_1(][ U(h) du).
B

ko

By letting Ax=F})\ Fx-1 and using (3.4) we have that

/|u ug|dp < Z arp(Ag),

k=—o0

which, by estimate (3.9) for a with k>ko, is not larger than

(3.15)
kg:ooakoﬂ(Ak)‘f‘kg; (ak0+cz%:+l T TR (/B\I/(h)du>1/Q>M(Ak)

< i ko ft(Ar)+ (/ (h)du>1/Q i Z T 1/QM(B\Ek—1)-

k=-00 k=ko+1i=ko+1
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By the weak-type estimate (3.8), the last term in (3.15) is at most

1+1/Q oo 1
(3.16) C(/TB‘I/(h)du> > Z T(20-1)1/Q Y2k 1)

k=ko+1i=ko+1

Switching the order of summation and using the fact that W(27)/¥(271)<1 for
all j, which follows from the monotonicity of the function t— W(t)/t, we have that
the double sum in (3.16) is not larger than

o] 21‘ oS] 1 e8] 2i e8]
J
Z o (2-1)1/Q U2k 1) < Z W(2i-1 1/Q\I; 2i-1) 22
i=ko+1 k=i i=ko+1 Jzo
(3.17) < 2 2
q;(gko)Hl/Q 2(i—ko-1)(1+1/Q)
i=ko+1
C2ko

< W (2k0)1+1/Q

Now we use (3.14) for a,, estimates (3.15)—(3.17), comparability of ¥(2*0) and
f. 5 ¥(h)dy, and the Q-regularity of y, and obtain

/B lu—up|du< CRU (][B w(h) du> M(B)+C</TB (k) dﬂ>1+1/Q\P(2k§7I;H/Q
<CRU! (][TB U(h) du) w(B)+Cu! (][TB T(h) du) u(rB)+1/Q

<crv (£ wihdn) ).

which gives a W-Poincaré inequality for v and h. By the definition of h=gX, g, we
also have a W-Poincaré inequality for v and g. O

In the above proof, the assumption that X be a geodesic space was needed only for
the use of Lemma 3.1.

Notice that Heisenberg and Carnot groups are Ahlfors @Q-regular geodesic
spaces for a suitable (). However, the result above is not new in these spaces
because they support a (1,p)-Poincaré inequality for all p>1 and a U-Poincaré
inequality follows from a (1, 1)-Poincaré inequality, see Section 4.

Theorem 3.3. Let \I/,E/ be a complementary pair of doubling Young func-
tions. If the pair u, g€ LY (R™), where g>0 satisfies a V-Poincaré mequality (1.6),
then ue Wt ‘I’(R”) Moreover, if [g. ¥ )dx>1 then [ Vullle <C [g. ¥(9(y)) dy,
and if [g. U(g)de<1, then |||[Vullls <C([g. Y(g(y)) dy)'/ 182 C2 where Cg is the
doubling constcmt of U.
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Proof. We have to show that u has weak partial derivatives that are in L (R").
For each i=1, ..., n, there should exist an LY(R™)-function v; such that the partial
integration formula

(3.18) —/ uaigodx:/ vipdx,

where 9;¢ is the i*" partial derivative of ¢, holds for all peCg°(R"). Since both ¥
and its complementary function ¥ are doubling, by (2.9) and the density of C§°(R™)
in LY (R"), it suffices to show that the formula

(Oiu) () :z—/ ud;p dx

n

determines a continuous functional on C§°(R™) with respect to the || - ||g-norm.

Fix 0<e<1. Let o C5°(R"), and let JeC5°(B(0, 1)) be the standard mollifier
with J>0 and [, Jdz=1, and let J.(z)=e "J(z/e). Since ¥ is doubling and
u€ LY(R™), the convolution approximations

%@ﬁdwmm:/'¢@—www@

n

converge to u in LY (R"™) and satisfy

(3.19) —/ uO;p dxr = — lim u:0;p dr = lim (O Jexu)p du.

=0 Jgn e—=0 Jron
Since [g. 0;Jc dr=0, we have that
(0iJexu)(x) = (0iJe ¥ (u—tp(2,5)) (@),
and, by the U-Poincaré inequality
(3.20)

‘8¢J€*u‘(x)§05’”_1/ |u(y)—uB(m,E)|dy§C\I'1(][
B(z,e) B

Using (3.19) and the Holder inequality (2.8), we have that
(3.21)

(0s) ()| < liminf/ 1057l o] d < i inf 2] pll 02T ¥ull Lo oupp -
e—0 supp ¢ e—0

Y(g(y)) dy)-

(z,7e€)

By inequality (3.20) and the monotonicity of the Luxemburg norm, it suffices to
estimate the norm of the function

Mm:WI(émMW@@»@)

to find an upper bound for ||0;J:*ul| v (supp ¢)-
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Let KCR™ be compact and K,.={z€R":d(z, K)<7e}. If k>1, then we have

that
/ (h ) de <k~ / ][ ) dy dx
B(x, TE)

—klwy (re) " /K B(g(y) /K Xis(gre () dir dy
<k~ /KTE\If(g(y))dy-

If 0<k<1, we use (2.6) and a similar estimate for [}, W(h)dyu as above to obtain

Aw(@) deCgk‘1°g2C2/K W(g(y)) dy.

The norm estimate depends on A:fK U(g(y)) dy. By selecting k':fK . U(g(y)) dy
if A>1 and (C; fK (y)) dy)1/10g2 “ if A<1, we have that

n

(3.22) 1Al o) < / W(g(y)) dy < / W(g(y)) dy

TE

in the former, and

(3.23) |IAllpv) < (02 /}(Taqj(g(y))dyj/logz % _ <CQ/”\I’(g(y))dyj/logz@

in the latter case.
Using (3.21) and the norm estimates (3.22) and (3.23), we have that, if A>1,

B21)  10@I<Clely [ Vew)dy=Clely [ How)d,

supp ¢
or if A<1,

/log, C2

@)l <Clols ( [ ) dy)l
<clell ([ vowrar)

Hence (0;u)(¢) defines a continuous functional on C§°(R™) and extends to an ele-
ment of L¥ (R")*=LY(R"). By (2.9), there is a function v; € LY (R"), that satisfies
(3.18). Moreover,

(3.25)

luillw < 11(Bsu) |<C/ v)) dy,
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when A>1 and

1/log, Ca
oo < 0l <0 ([ wtot) ay)
if A<1, from which the theorem follows. [J

Remark 3.4. By the above proof, we see that also a local version of The-
orem 3.3 holds. Namely, if the pair u,g€ LY (R"), g>0, satisfies the W-Poincaré

loc
inequality (1.6), then uEVVﬁ)C\I' (R™). Moreover, if the pair u, g satisfies the (¥, ¥)-
Poincaré inequality (2.10), then it is enough to assume that ue L (R™), (cf. [18,
Lemma 5.13]).
Proof of Theorem 1.2. If ue WH¥(R™), then u belongs to VVI%)CI(R”) Inequal-

ity (1.2) holds for functions that are in the local Sobolev space WL (R™), see [5],
[9] and [10]. Hence the pointwise inequality

[u(z) —u(y)| < Cle—y|[ ™ (Mojo—y U(IVul) (@) + ¥ (Mgjo—y U(|Vu])(y))]

follows from (1.2) using the Jensen inequality.
If there is a function g€ LY(R™) such that (1.5) holds for u and g almost
everywhere, then u€ W% (R") by Theorems 3.2 and 3.3. 0O

4. Connections between different Poincaré inequalities

In this section, we briefly study how a ¥-Poincaré inequality depends on the
Young function V.

With the function ¥(t)=t?, (1.6) and (2.10) give a (1,p)- and a (p, p)-Poincaré
inequality, where a (g, p)-Poincaré inequality is

1/q 1/p
(4.1) <][ |lu—upgl|? du) <Cr<][ gP du) .
B(z,r) B(z,TT)

Recall that among the class of all (1, p)-Poincaré inequalities, the Holder inequality
shows that the (1,1)-Poincaré inequality is the strongest one. Moreover, a (q1,p1)-
Poincaré inequality implies a (g2, p2)-Poincaré inequality for all 1 <g2<q; and p2>p;.
A deep result of Hajtasz and Koskela in [11] shows that if the measure p is doubling,
then a (1, p)-Poincaré inequality improves itself to a (g, p)-Poincaré inequality for
some ¢>p, see also [7]. Concerning Poincaré inequalities with a Young function ¥,
we have the following results from [18]:

1. The Jensen inequality shows that a W-Poincaré inequality follows from
a (1,1)- and a (¥, ¥)-Poincaré inequality for any ¥.
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2. If the function WooW ! is convex, then a Wy-Poincaré inequality follows
from a Wi-Poincaré inequality by the Jensen inequality.

3. If the pair u,g satisfies a W;-Poincaré inequality, then it satisfies
a WyoW;-Poincaré inequality for any Wo, [18, Lemma 5.6]. This is a generaliza-
tion of the above mentioned result that a (1,¢)-Poincaré inequality follows from
a (1, p)-Poincaré inequality for 1<p<gq.

4. If ¥ is doubling, then a W-Poincaré inequality implies a (1,p)-Poincaré
inequality for p>log, Ca, where Cs is the doubling constant of ¥, [18, Theorem 5.7].

Bhattacharya and Leonetti showed in [4, Lemma 1] that if ¥: [0, 00)—[0, 00)
is a continuous, convex function with ¥(0)=0, BCR" is a ball, and ue WH1(B),
then inequality (2.10) holds for the pair u,|Vu| with C=2, Co=C(n), and 7=1.
Hence, if ¥ is a continuous Young function and u€ W¥(R"), then the pair u, |Vu|
satisfies the (U, ¥)-Poincaré inequality. Note that such a w is in VV&)C1 (R™) by the
Jensen inequality and the continuity of W.

In the next lemma, we generalize the Jensen inequality (2.11). Inequality

(4.3) can also been seen as a generalization of the consequence ( f, |ul? du)l/”g

(fA |u|? du)l/q for 1<p<q of the Hélder inequality.

Lemma 4.1. Let U1, Us: [0,00)—[0,00) be strictly increasing Young func-
tions, ACX be of positive and finite measure, and let u€ L*(A). If there are con-
stants Cy,Co>0 such that

\I’l(t) <C \I'l(s)

(4.2) \IJQ(CQt) =1 \IIQ(CQS)

for all 0<s<t, then there is C=C(C1,C2) such that

(43) vt (i) ) <0w3t(f walaluly )

Proof. Let A>0, and Ay={x€ A:|u(x)|>A}. By the assumption (4.2), we have
that

/A Wy () dps = /A s /A ()

<UL (W (A)+Cy /A %(@IM)%W

<w () (wm% / ‘1/2(02|U|)du>-
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For A=C;' U5 (§ , U3(Cs|ul) dp), the above inequality implies that

Ja ¥2(Calul) du)
£ 4 Pa(Colul) dp

)i e (c51st (£ waCaluan) )

/A w1<|u|>du<qfl<A><u(A>+cl
(4.4)

The claim follows from inequality (4.4) with C=(1+C)C5 ' because the function
t—Wt(¢)/t is decreasing. [

Using the lemmas above, we obtain a connection between Wi- and Wy-Poincaré
inequalities.

Corollary 4.2. Let ¥1,U5: [0,00)—[0,00) be strictly increasing Young func-
tions such that (4.2) holds for Uy and ¥o. If a pair u,g satisfies a VUq-Poincaré
inequality, then it also satisfies a Wo-Poincaré inequality.

Ezample 4.3. Calculations using the derivative of the function f(t)=
Uy (t)/Po(t) show that the following pairs of functions satisfy (4.2) with C; =Co=1:
1. the complementary pair Wq(t)=(1+¢)log(t+1)—t, Wo(t)=e'—t—1;

2. Uy (t)=(1+t)log(t+1)—t and Wy(t)=tP, p>2;

3. Uy (t)=tP, 1<p<2, and ¥so(t)=e'—t—1;

4. U4 ()=t and o (t)=t91log"(t+e), 1<p<q, a>0;

5. Uy (t)=t? and Uy(t)=t?log*(t+e), g>p+1, a>—1.
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